
Explainable Artificial Intelligence for Workflow Verification
in Visual IoT/Robotics Programming Language Environment

Gennaro De Luca and Yinong Chen
Arizona State University, Tempe, AZ 85281 USA

(Received 09 June 2020; Revised 14 October 2020; Accepted 27 October 2020; Published online 28 December 2020)

Abstract: Teaching students the concepts behind computational thinking is a difficult task, often gated by the inherent difficulty
of programming languages. In the classroom, teaching assistants may be required to interact with students to help them learn the
material. Time spent in grading and offering feedback on assignments removes from this time to help students directly. As such,
we offer a framework for developing an explainable artificial intelligence that performs automated analysis of student code while
offering feedback and partial credit. The creation of this system is dependent on three core components. Those components are a
knowledge base, a set of conditions to be analyzed, and a formal set of inference rules. In this paper, we develop such a system for
our own language by employing π-calculus and Hoare logic. Our detailed system can also perform self-learning of rules. Given
solution files, the system is able to extract the important aspects of the program and develop feedback that explicitly details the
errors students make when they veer away from these aspects. The level of detail and expected precision can be easily modified
through parameter tuning and variety in sample solutions.

Key words: explainable AI; π-calculus; VIPLE; education

I. INTRODUCTION
Software development is a complex field with intricacies in every
aspect of development. These intricacies range from simple choices
such as language choice to more complex problems such as
verification of program correctness. As hardware has become
more powerful with multicore machines and cloud computing
platforms, many of these complexities have become more difficult
to handle. To test a sequential, single-threaded program, more
straightforward methods could often be taken, such as a list of
behaviors and formal requirements. With multithreaded applica-
tions, multiple threads need to be verified not only for behavior but
also for communication and coordination [1]. Furthermore, multi-
threaded applications may not always produce the same results due
to race conditions and lack of synchronization. Verifying these
programs further adds to the difficulty of program verification.

As the difficulty of software development has increased, the
difficulty of teaching software development has similarly increased.
Although imperative programming is as straightforward to teach as it
was in the past, other paradigms (e.g., service-oriented) and other
features such as parallelism are more complex to teach.

As the difficulty of teaching increases, so too does the difficulty
of grading student work and offering feedback. However, the time of
skilled teaching assistants (TAs) is often better spent interactingwith
and helping students, rather than grading papers and projects. The
main goal of our research is to develop an explainable artificial
intelligence (AI) that can solve this problem by verifying student
code and offering feedback (i.e., explaining its results). Such a
solution would reduce the burden of TAs, enabling them to interact
more with students and spend less time (or no time) grading.

To resolve this issue in part, we developed the Visual
IoT/Robotics Programming Language Environment (VIPLE) for
teaching computational concepts. VIPLE enables us to focus on
computational thinking, the algorithmic thought process required
for students to program. By reducing the difficulty of program-
ming, students are enabled to learn how to program at a higher,
more general level. As they move on to more complex languages or
concepts, they will have the background required to succeed [2].
VIPLE overcomes the increasing difficulty of programming by
handling that complexity behind the scenes, thereby allowing
instructors to completely mask or slowly introduce these complex-
ities on their own terms. For example, VIPLE allows students to
interface with and control robots. At the simplest level though,
students can use a “robot controller” activity to handle communi-
cation. With no understanding of how robot communication works,
students can immediately jump into robot application development,
learning computational thinking in this area rather than focusing on
the syntactic complexity.

Our explainable AI solution is based on the concept of a
theorem prover and will be able to accomplish the aforementioned
tasks, namely the grading of student programs written in VIPLE
and automated feedback unique to that student’s work.

This paper details the components and their uses in this
solution. The main innovation of this research is the ability to
extract a set of rules that represent a correct solution from a given
solution document. While generating the solution rules, the system
will also generate the feedback corresponding to errors with each of
the rules. In this way, students will be given feedback on their
mistakes (i.e., any deviations from the set of solution rules). This
system supports parameter tuning, enabling modification to the
level of detail of the solution rules and the feedback. By changing
or adding additional solution files, the solution rules can be made
more general or more specific.Corresponding author: Gennaro De Luca (e-mail: gdeluca1@asu.edu).

© The Author(s) 2021. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 21

Journal of Artificial Intelligence and Technology, 2021, 1, 21-27
https://doi.org/10.37965/jait.2020.0023 RESEARCH ARTICLE

mailto:gdeluca1@asu.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2020.0023


II. RELATED WORK
Autograding is a valuable aspect of computer science courses. It
can be used to provide feedback to students while preserving the
time of instructor and TA, thereby facilitating increase in class
sizes. Many approaches have been taken to increase the effective-
ness of autograders in the classroom, including gamification for
student encouragement [3] and the application of testing techniques
such as coverage testing to increase accuracy [4]. Various ap-
proaches have also been taken to make autograding more accessi-
ble, especially in online courses. These approaches include ideas
such as relegating autograding to cloud servers [5] and the addition
of inline comments to support student learning [6].

While these approaches may have proven efficacy, they fail to
address one of the major shortcomings of autograding. By nature of
their implementation, standard autograders work by analyzing the
output of student programs given various inputs. Some platforms
will perform additional analysis of the output. For example, Vocar-
eum allows variance in student output [7]. However, autograders
typically do not look at the semantics of the code, focusing only on
input and output. To overcome this issue, several novel approaches
have been presented, tested, and verified in recent literature.

The techniques that aim to resolve this issue are based on the
concept of program synthesis. Program synthesis is concerned
with the construction of programs from a set of logic rules. Such
platforms employ AI techniques such as machine learning (ML)
and Boolean satisfiability problem (SAT) solving to transition
from logic rules to program code [8]. One sample platform is
Refazer, which allows learning of code transformations. By
analyzing code changes as input–output pairs, Refazer can learn
how to move from incorrect code to correct code [9]. By applying
Refazer, powerful autograders can be developed that can offer
student feedback directly into their code, rather than offering
simple feedback about their program’s input and output.

One such example platform that was developed using Refazer
creates two models, one that analyzes student changes while they
work and one that analyzes changes offered by the instructor. Using
this information, the platforms can directly offer programmatic
feedback to the user. The instructor can label the different types of
errors with feedbacks, enabling more class-specific feedback [10].

While the approach in that platform was shown to be effective
[10], it has several weaknesses. Most notably, that platform does
not link the errors to general concepts and objectives of the course.
Another platform aims to solve these issues by starting with a
concept focused assignment development phase. The instructor
then employs the aforementioned coverage testing approach using
a test suite. By analyzing the outputs, the various types of errors can
be grouped according to the concept, and feedback specific to that
concept is offered. This approach was shown to produce a scalable
platform that can offer more personalized feedback that targets
concepts rather than errors in lines of code [11].

Despite the scalability, personalization of feedback, and pro-
gram synthesis techniques, these autograders fail to analyze the
code the student has. Rather, these approaches analyze either the
code they do not have, such as in [10], or the types of errors in
the student output according to different test cases [11]. The
approach discussed in this paper takes a program verification ap-
proach rather than a program synthesis approach in an effort to
solve these issues and offers a scalable autograding experience with
personalized feedback based on what the student wrote, rather than
samples from other students. The next section will cover require-
ments to accomplish this task in VIPLE.

III. THEOREM PROVER PREREQUISITES
There are several prerequisites that must be accomplished before
program verification can be performed. The first of these requirements
is the development of a mathematical framework for VIPLE. We
developed such a framework by creating a modified version of π-
calculus. π-calculus was chosen as it offers a simple mathematical
framework for representing languages that can be viewed as a net-
work. As a workflow language, VIPLE is well suited to π-calculus for
that reason. This novel version of π-calculus supports automated
conversion from VIPLE programs to mathematical representation. It
includes information on communication and coordination as standard
π-calculus would [12]. However, it also includes a foundation for
representing behavior of individual activities in VIPLE [13]. As such,
we have a full framework with which we can perform reasoning on
VIPLE programs.

The other major prerequisite is a framework for performing
program analysis with the π-calculus representation. We chose to
employ Hoare logic for this task. While there are a variety of
complexities introduced by trying to analyze a service-oriented and
multithreaded programming language, our analysis demonstrated
that the combination of VIPLE and π-calculus enabled thorough
analysis of program behavior using Hoare logic [13].

With VIPLE, its modified π-calculus representation, and the
Hoare logic foundation, the explainable self-learning theorem
prover can be formally defined. The approach we have taken is
to create a theorem prover that is able to reason about a given set of
rules to determine whether a certain condition is met. Furthermore,
the use of a theorem prover facilitates the introduction of explain-
ability. As the inference rules are well defined, the AI’s behavior is
also well defined and clearly explainable.

There are three core components that enable the creation of this
theorem prover [14]. They are (a) a knowledge base that contains
all the information about the program being analyzed, (b) a set of
conditions to be analyzed for veracity (i.e., “sentences”), and (c) a
formal set of rules that enables inference and reasoning about the
knowledge base to verify the conditions.

The remainder of this paper will demonstrate each of these
three points to illustrate the formal definition of the theorem prover.
We will also discuss how we introduced explainability into our
system and how instructors can interact with our system for
classroom use. Our goal is not only to create such a system but
also to ensure that instructors do not require domain knowledge of
program correct, π-calculus, etc., to use our system.

IV. KNOWLEDGE BASE
To understand the knowledge base we use for our theorem prover,
we must first think about how π-calculus works. π-calculus is
based on the concept of sending and receiving data across
channels. It does not concern itself with how each node in the
network modifies the data. Rather, it treats each of them as black
boxes [15].

As we mentioned above, we developed a modified version of
π-calculus where these black boxes are given a representation. We
call these actions that are normally represented as black boxes in π-
calculus observable actions [13]. This is one of the key changes we
made to support VIPLE program verification. Our observable
actions in VIPLE do not directly interact with the π-calculus
communication or coordination (i.e., they do not directly affect
the flow of the execution). Rather, these actions may produce
values that can be used to determine branching that is already

JAIT Vol. 1, No. 1, 2021

22 De Luca and Chen



defined within the π-calculus. Although the π-calculus does not
normally analyze the internal behavior of conditionals, that behav-
ior is occurring regardless. It is not creating or destroying channels,
but it does choose which channel is followed in the π-calculus.

Another case where observable actions affect the behavior of
the program is in the modification of variable values. To resolve
this issue, we will introduce a “variable table.” Observable actions
will be able to interact with the variable table to send or receive
values along existing π-calculus channels. The variable table is a
two-dimensional data storage mechanism that tracks all defined
VIPLE variables within the given program. The values can only be
modified or read by employing one of the new observable actions.
In this way, symbolic execution can be applied to perform reason-
ing about certain parts of the program by only analyzing the
π-calculus expressions. By employing these π-calculus expressions
and the variable table, a full knowledge base can be automatically
generated for any given VIPLE program.

V. VERIFIABLE CONDITIONS
The second core component of the theorem prover is the definition
of a set of verifiable conditions that define the correctness of a given
VIPLE program. These verifiable conditions are defined by em-
ploying Hoare logic [13], as we discussed above. These conditions
are specified by first defining a set of Hoare triples, P, Q, and R,
where P is the precondition, R is the postcondition, and Q is a
command [16]. Hoare specifies the application of these three
components in verifying aspects of a program in his paper. As
explained in [16], “If the assertion P is true before initiation of a
program Q, then the assertion R will be true on its completion.”
Hoare logic enables the definition of logical statements that are
verifiable by our theorem prover. This section will examine each of
these three parts of the Hoare triplet and what they look like in the
context of this platform.

The first element of the Hoare triplet that we will cover is the
command, Q, also known as the “program” in Hoare’s paper [16].
A single Hoare triplet may not be able to correctly define all
important behaviors of a given program, but only part of a program.
As such, the command is dynamically defined during verification
of the program. There are two mechanisms by which this dynamic
definition is performed. First, in the case of event-driven VIPLE
programs, events can be specified as part of the Hoare triplet in
place of the command. As these VIPLE event activities are
translated into π-calculus expressions, the utilization of an event
in a Hoare triplet is equivalent to invoking a new π-calculus term.
Consider, for example, a program that employs the key press event
of “A.” Then, it may have a π-calculus term that appears as
follows: !KeyPressAðx0Þ · a1x0.

This term awaits the receipt of a value along the channel
corresponding to A’s key press event, namely the event KeyPressA.
Events of any variety may be repeatedly triggered. As such, the
formal π-calculus definition reflects this behavior through the
replication operator. To test the code gated behind such an operator,
a single π-calculus expression can be employed to open the channel
by sending the expected value to that specific channel. Specifics of
channel communication and coordination will be covered later in
this paper. Here is the π-calculus expression which performs this
task: x0 = KeyPressedA · KeyPressAhx0i.

The second mechanism of dynamic command generation is
employed in cases both with and without events. This mechanism
is the continual verification of the VIPLE program’s π-calculus
expressions until either (1) the postcondition is met or (2) the

program terminates. We will formalize this behavior in the later
section on π-calculus channel communication and coordination. By
employing these dynamic command generation mechanisms, mul-
tiple Hoare triples can be analyzed sequentially, enabling a more
thorough analysis of a given VIPLE program.

Although there are two remaining aspects of a Hoare triplet,
the precondition P and the postcondition R, we will discuss both
of them together. Both of these parts are conditions and share
syntax. As discussed in the paper by Hoare, the main method of
evaluating a program is an assignment condition, x≔ f, where x is
a variable identifier and f is an expression from the programming
language without side effects [16]. Using this condition, Hoare
offers the axiom of assignment which forms the foundation for
evaluation of multiple conditions. Namely, ⊢ P0fx ≔ f gP, where
P0 is obtained by substituting f in place of x in P [16]. Building on
this rule, more specific rules can be developed, including rules of
consequence, composition, and iteration [16]. In terms of this
work, the application of these rules and axioms enables the
analysis of a complete program and its behavior by analyzing
each step of the program. Furthermore, since f can be any
expression without side effects, Hoare logic enables and facilitates
the analysis of VIPLE programs as no VIPLE expressions have
side effects. Thus, the precondition P and postcondition R can be
constructed by employing expressions in VIPLE syntax and
assignment operators (which are represented in VIPLE by the use
of the Variable activity).

Following these guidelines, the purpose of the postcondition is
clearly to specify the expected state of the program at any given
point. For example, a single, trivial Hoare triplet such as true
{x ≔ 0.5 × f × 2}x ≔ f can be used to evaluate whether the given
program (the part in curly braces) culminates in x being f. Further-
more, true can be used as a precondition to signify that this post-
condition has no prerequisites and can be evaluated starting at the
beginning of the program. However, the precondition serves two
vital roles in cases with multiple Hoare triples. First, the precondi-
tion enables precise definition of the required state of the program
before evaluating the postcondition. For example, perhaps a pro-
gram is testing the following Hoare triplet: true{x ≔ 2 × f −1 × k}
x ≔ 27. In this case, a precondition could be vital to ensure that
attempts to evaluate the expression avoid invalid states. For
example, the precondition f≠ 0 prevents division by 0. Most
importantly, a continuation of postcondition to precondition
enables the application of the inference rule from Hoare’s paper,
the rule of consequence [16]. This inference rule is vital in
cases with multiple Hoare triples. The rule of consequence states:
if ⊢ PfQgR and ⊢ R ⊃ S then ⊢ PfQgS.

The application of the rule of consequence implies that the
entire program is correct assuming that each subcondition is
verified and that the subconditions are connected in this manner.
Essentially, this rule enables the analysis of the program step by
step while still guaranteeing that the entire program is correct.

The final prerequisite of the theorem prover is a formal set
of rules that enables inference and reasoning about the knowledge
base to verify the conditions. This set of inference rules will
enable the theorem prover to reason about the given knowledge
base (the π-calculus representation) to verify each of the sentences
(the Hoare logic triples). There are two components required for the
theorem prover to be able to analyze the π-calculus expressions and
verify the Hoare logic triples. First, it must be able to reason about
the π-calculus expressions’ communication and coordination. Sec-
ond, it must be able to evaluate the Hoare logic triples using the π-
calculus expressions and variable table.

JAIT Vol. 1, No. 1, 2021

Explainable AI for Workflow Verification 23



VI. FORMALIZING π-CALCULUS
INFERENCE RULES

To accurately represent VIPLE programs, we have employed a
specially modified variant of π-calculus unique to VIPLE. To
reason about the program, the inference rules need to be examined
for correctness despite those modifications. The key aspect of
analyzing the π-calculus expression lies in the analysis of how
these expressions communicate and coordinate with each other.
These behaviors are contained within the term “reaction” as defined
by Milner [15]. There are several vital reaction rules that are
defined by Milner for π-calculus. Those rules are TAU, the
unobservable action rule; REACT, the reaction rule; PAR, the
parallelism rule; and RES, the reduction semantics rule.

These rules succinctly define several important reaction con-
cepts that are vital to the analysis of the π-calculus expressions.
First, the REACT rule defines how processes can communicate and
coordinate. Namely, if process P is preceded by the receiving of y
along x and process Q is preceded by the sending of z along x, the
communication will immediately occur, sending z to P (denoted by
the replacement of y by z in P). Concurrently, Q continues exe-
cution. Using this rule, complex sets of π-calculus expressions can
communicate with each other. Furthermore, a simple lemma that
can be obtained from the REACT and PAR rules enables sequential
coordination. The PAR rule states that one process can indepen-
dently execute regardless of other processes executing in parallel.
In other words, parallel processes can execute concurrently.
Consider the following π-calculus expression: ðP · xðyÞ · 0þMÞj
ð�xhzi · Qþ NÞ.

From the PAR rule, P can execute in parallel with the second
process. After P completes execution, the next process in the
sequence is executed, namely x(y). From the REACT rule, this
expression becomes: ð0Þjð�xhzi · Qþ NÞ. The nil activity further
reduces as follows: ð�xhzi · Qþ NÞ. As such, P and Q were forced
to execute sequentially, despite their expressions being in parallel.
In this manner, all VIPLE activities are considered to exist in
parallel. This parallelism enables the direct representation of
activities as distinct processes, rather than considering all sequen-
tial processes as part of one process. The distinction of processes is
vital to the reasoning of programs, such as in the dynamic
generation of Hoare logic commands. Furthermore, despite all
activities being in parallel, these rules enable both coordination
and communication between the activities.

The TAU rule must be slightly changed to correctly apply to
the updated π-calculus representation used in VIPLE. In that new
representation, tau actions are replaced by representations of the
activities’ actual behavior. However, since these actions do not
directly modify or communicate with the π-calculus channels, they
do not affect the π-calculus process execution or inference rules. By
replacing tau with any VIPLE activity action, the inference rule
remains valid. Consider, for example, the Calculate action. The rule
can be modified as follows while remaining valid: CALCULATE:
Compute(expression) · P + M → P. Identical rules can be con-
structed for variable assignment and data values.

As mentioned above, the variable table is completely inde-
pendent from the π-calculus channels, so interfacing with the table
is also an acceptable action that does not affect the reaction rules for
π-calculus expressions. However, an issue arises in the case of Join.
Join employs the sending and receiving of a vector value (the
dictionary), which is not directly supported in the monadic π-
calculus. As such, the polyadic π-calculus can be employed in such
cases. The main difference between the two is the ability to send

multiple values along a single channel. This guarantees that
all values are received by a single receiving process and that all
values are received at once. To support the polyadic π-calculus, the
reaction rule must be updated to support vectors, as explained
by Milner [15]. The updated REACT rule is as follows (note
that the vectors ~z and ~y must have the same length): REACT∶
ðxð~yÞ · PþMÞjð�xh~zÞ · Qþ NÞ → f~z replaced by~ygPjQ.

The combination of these rules enables the complete evalua-
tion of any set of VIPLE specific π-calculus expressions. The next
section will detail how the Hoare logic triples can be evaluated,
despite being written in VIPLE syntax and not as π-calculus
expressions.

VII. EVALUATING HOARE LOGIC
WITH π-CALCULUS

By employing those reaction rules, the VIPLE program’s π-calcu-
lus representation can be analyzed for specific communication or
coordination behaviors. However, the conditions to be analyzed are
written as Hoare logic triples, and therefore use the VIPLE syntax.
We considered two solutions for resolving this issue. First, the
Hoare triples could be written in the modified π-calculus syntax.
However, π-calculus expressions are restrictive in terms of speci-
fying the behavior of a VIPLE program. By introducing new π-
calculus expressions, the behavior of the system changes since
communication will be sent to these new terms. One of the rules
of Hoare triples is that expressions must not have side effects, but
π-calculus expressions would break that rule. Furthermore, we
wanted a solution that could be feasibly employed by instructors
without requiring an understanding of π-calculus. VIPLE syntax,
on the other hand, is much simpler and lacks side effects. The
solution we chose to pursue is an evaluation of the Hoare
triplet conditions by analyzing the effects of the π-calculus
expressions.

There are three components required to analyze Hoare triples
according to the effects of the π-calculus expressions. They are
(a) the translation of state variables to the variable table, (b) the
analysis of values being sent along channels, and (c) the evaluation
of VIPLE expressions. Furthermore, the analysis of Hoare logic
triples is dependent on the concept of dynamic command defini-
tion, as mentioned above. To dynamically define commands,
π-calculus expressions were defined distinctly, with each activity
being its own expression. In this way, the command can be
constructed with a single activity at a time. One of the main issues
with this approach is the problem of parallelism. To resolve this
issue, we employed a modified backtracking approach. Essentially,
a tree is constructed based on the π-calculus expressions for the
VIPLE program. A breadth-first analysis is conducted. All π-
calculus nodes from that level of the tree are marked as the Hoare
triplet command. Then, the postcondition is checked according to
the rules which will be described below. Note that the precondition
is always checked before constructing the command. Once a
specific path through the tree is found that satisfies the postcondi-
tion, all the nodes in that path are marked, and the other nodes are
released. In this way, nodes from other paths (i.e., threads) that do
not contribute to the postcondition are not consumed by the
analysis of that Hoare triplet. With this command construction
and postcondition analysis algorithm, solutions to the aforemen-
tioned issues can be defined.

The first issue (translation of state variables to the variable
table) can be easily resolved by employing the variable table, which
is already independent of the π-calculus expressions. Whenever the

JAIT Vol. 1, No. 1, 2021

24 De Luca and Chen



postcondition needs to be evaluated, references to state variables
(e.g., state.variableName) are replaced by references to the variable
table (e.g., VariableTable[“variableName”]).

The second issue (analysis of values sent along channels) can
be resolved during the application of the backtracking algorithm.
Each time a node on the tree is evaluated, its children are designated
according to the π-calculus communication that occurred following
the reaction rules detailed above. Each child will receive a single
input along a single channel from its parent. Since the polyadic
π-calculus is employed, even Join parents are guaranteed to send
a single input (a vector) along a single channel to each of its
children. Thus, after a command is evaluated, the values sent
along these channels can be immediately analyzed for the Hoare
logic triplet postconditions. References in these postconditions to
“value” will be replaced by a reference to these values sent down
the tree.

The final issue (evaluation of VIPLE expressions) can be
resolved now that the previous two issues have been resolved.
Since these expressions are guaranteed to not have side effects, as
discussed earlier, the only difficulty in their analysis is the retrieval
of variables (resolved using the variable table) and the retrieval of
values sent along channels (resolved during the backtracking
algorithm). After these two adjustments are applied, the expres-
sions can be immediately resolved by employing the VIPLE
expression evaluation algorithm. This algorithm is essentially a
stateless (i.e., no side effects) interpretation engine that inputs the
given syntax and offers the resulting value. Employing this
approach enables the complete evaluation of any of the Hoare
logic triplet conditions according to the effects of the π-calculus
expressions.

VIII. SELF-LEARNING HOARE TRIPLES
With the above inference and reaction rules, the theorem prover can
be modified to not only prove the conditions but also generate
conditions. Returning to the idea of the dynamically defined com-
mand algorithm, the π-calculus expressions can be viewed as a tree.
To maximize the correctness of the Hoare logic triples, each distinct
path through the tree can be considered as vital to the program’s
correctness. Furthermore, overfitting should be avoided. Thus, a
general middle-ground approach is taken, where the defining factors
of a program’s behavior are the variable table and Join nodes.

To construct the Hoare triples, the algorithm starts by search-
ing through the tree in an identical fashion to the theorem prover.
Each time one of those aforementioned defining conditions is met,
a postcondition is defined (and the following precondition). Events
are also handled in an identical fashion, where each event is
considered a unique branch of the tree. As events enable different
ordering of the code, the results of an event path may change
depending on ordering of the events. To resolve this issue, the
number of possible paths is permuted in every possible way. The π-
calculus expression tree is analyzed in every ordering of every
permutation. The ordering that produces a set containing every
other uniquely met state is considered the testing order. In other
words, that ordering defines the Hoare triples that will be learned.

IX. CASE STUDY
The semantic autograder can be used for problems of varying
difficultly, pursuant to the needs of the class. This case study will
examine the application of the autograder to a lab where students

Fig. 1. Dog example.

JAIT Vol. 1, No. 1, 2021

Explainable AI for Workflow Verification 25



are expected to program a robot dog to perform various actions. By
default, the dog is expected to be sitting. From there, the dog is
pet (p) or sees a squirrel (s). If the dog sees a squirrel, it should bark.
If it is pet and is barking, it shakes. If it is pet and is shaking
already, it sits. Fig. 1 shows a correct implementation in VIPLE of
this lab.

Students may correctly program this application using alter-
native syntactic structures such as a single if conditional or a switch
statement. They may print out different values or print out nothing
at all. Unlike conventional autograders, this autograder is not
analyzing the output.

For this example, the rules were autogenerated. From there, the
feedback was updated to clarify the meaning of the key presses
p and s as well as the meaning of the status variable. These
modifications are optional but build on the rules offered to produce
clearer feedback. The rules are shown in Fig. 2.

The next step of the semantic autograder is to convert the code
into the modified π-calculus representation. This representation is
shown in Fig. 3.

With the π-calculus representation, the Hoare triples are verified
using the automated theorem prover. In this case, the sample code is
correct, so no errors are found. However, suppose that the student
mistakenly told the dog to shake if it is pet while already shaking. In
this case, an error message will be given to the student explaining the
error and the expected behavior as shown in Fig. 4.

To achieve this level of accuracy in standard autograders, a
complete test suite would need to be used for each program, such
that every combination of transitions is tested. In this case, the test
suite is autogenerated through the analysis of potential paths

through the program. In more complex examples, the number of
test cases in standard autograders would increase exponentially.
This semantic autograder does not need to test every possible
combination since it analyzes the logic of the program itself, rather
than the results of various permutations of input. In the error
example, it finds that the user program performs the transition
to shake dependent on the dog being pet and already shaking. In
this way, the specific error can be found and feedback can be given
that is directly relevant to the error, unlike standard autograders
which may only offer the failed test case to the user with no advice
on resolution of the error.

X. CONCLUSION
This paper detailed our research and development of an automated
theorem prover for use in VIPLE. By introducing aspects of
explainability to our work, we are able to not only verify and
grade student programs but also offer feedback and partial credit.

While this project is strongly beneficial for use with VIPLE
inside the classroom, there are various other programming lan-
guages that other universities employ. These languages range from
similar workflow languages to vastly different text-based lan-
guages with different programming paradigms. With a strong
foundation for developing such an explainable AI, future work
could attempt to apply these steps to another language. The main
difficulty and novelty of such work would likely result from
VIPLE’s special construction that facilitated this work, such as
side-effect free actions, and a more limited syntax.

Further work could also involve the employment of MLwithin
the context of this research. There are many opportunities to
employ ML in this area, such as the analysis of students as they
interface with the development environment. Another area could
involve analysis of human graders in an effort to design a frame-
work that takes into consideration how the humans work rather
than only the mathematical constructs we defined.

ACKNOWLEDGMENT

The research is partly supported by general funding at IoT and Robotics
Education Lab and FURI program at Arizona State University.

REFERENCES

[1] E. W. Dijkstra, “A constructive approach to the problem of program
correctness,” BIT Num. Math., vol. 8, pp. 174–186, 1968, DOI: 10.
1007/BF01933419.

[2] Y. Chen and G. De Luca, “VIPLE: Visual IoT/robotics programming
language environment for computer science education,” in IPDPS
Workshops, Chicago, IL, USA, 2016, pp. 963–971.

Fig. 2. Dog rules.

Fig. 3. Dog π-calculus representation.

Fig. 4. Error message.

JAIT Vol. 1, No. 1, 2021

26 De Luca and Chen

https://doi.org/10.1007/BF01933419
https://doi.org/10.1007/BF01933419


[3] A. Iosup and D. Epema, “An experience report on using gamification
in technical higher education,” in Proc. SIGCSE, Atlanta, GA, USA,
2014, pp. 27–32, DOI: 10.1145/2538862.2538899.

[4] D. Jackson and M. Usher, “Grading student programs using
ASSYST,” ACM SIGCSE Bull., vol. 29, no. 1, Mar. 1997,
pp. 335–339, DOI: 10.1145/268084.268210.

[5] D. Milojicic, “Autograding in the Cloud: Interview with David
O’Hallaron,” IEEE Internet Comput., vol. 15, no. 1, Jan. 2011,
pp. 9–12, DOI: 10.1109/MIC.2011.2.

[6] T. MacWilliam and D. J. Malan, “Streamlining grading toward better
feedback,” in Proc. ITiCSE, Canterbury UK, 2013, pp. 147–152,
DOI: 10.1145/2462476.2462506.

[7] “How a Columbia University Faculty uses Juypter for Coursework
and Lectures.” Available: https://www.vocareum.com/2019/02/08/
columbia/.

[8] S. Gulwani, “Dimensions in program synthesis,” in Proc. Symp.
PPDP, Hagenberg, Austria, 2010, pp. 13–24.

[9] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann, “Learning syntactic program transfor-
mations from examples,” in Proc. ICSE, Buenos Aires, Argentina,
2017, pp. 404–415.

[10] A. Head, E. Glassman, G. Soares, R. Suzuki, L. Figueredo, L.
D’Antoni, and B. Hartmann, “Writing reusable code feedback at
scale with mixed-initiative program synthesis,” in Proc. Conf. Learn-
ing @ Scale Cambridge, MA, USA, 2017, pp. 89–98.

[11] G. Haldeman, A. Tjang, M. Babeş-Vroman, S. Bartos, J. Shah, D.
Yucht, and T. D. Nguyen, “Providing meaningful feedback for
autograding of programming assignments,” in Proc. SIGCSE,
Baltimore, MD, USA, 2018, pp. 278–283, DOI: 10.1145/3159450.
3159502.

[12] G. De Luca and Y. Chen, “Visual IoT/robotics programming
language in pi-calculus,” in Proc. ISADS, Bangkok, Thailand,
pp. 23–30.

[13] G. De Luca and Y. Chen, “Semantic analysis of concurrent comput-
ing in decentralized IoT and robotics applications,” in Proc. ISADS,
Utrecht, the Netherlands, 2019, pp. 95–102.

[14] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd ed., Upper Saddle River, NJ, USA: Pearson, 2009.

[15] R. Milner, Communicating and Mobile Systems: The π-Calculus,
Cambridge: Cambridge University Press, 1999.

[16] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, pp. 576–583, Oct. 1969.

JAIT Vol. 1, No. 1, 2021

Explainable AI for Workflow Verification 27

https://doi.org/10.1145/2538862.2538899
https://doi.org/10.1145/268084.268210
https://doi.org/10.1109/MIC.2011.2
https://doi.org/10.1145/2462476.2462506
https://www.vocareum.com/2019/02/08/columbia/
https://www.vocareum.com/2019/02/08/columbia/
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/3159450.3159502

