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Abstract: People with complex communication needs can use a high-technology augmentative and alternative communication
device to communicate with others. Currently, researchers and clinicians often use data logging from high-tech augmentative and
alternative communication devices to analyze augmentative and alternative communication user performance. However, existing
automated data logging systems cannot differentiate the authorship of the data log when more than one user accesses the device.
This issue reduces the validity of the data logs and increases the difficulties of performance analysis. Therefore, this paper
presents a solution using a deep neural network-based visual analysis approach to process videos to detect different augmentative
and alternative communication users in practice sessions. This approach has significant potential to improve the validity of data
logs and ultimately to enhance augmentative and alternative communication outcome measures.
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I. INTRODUCTION
An estimated 3.7 million people in the United States have severe
speech and language impairments due to various medical issues
such as autism, cerebral palsy, aphasia, and amyotrophic lateral
sclerosis. Augmentative and alternative communication (AAC) is
used to supplement or replace speech for them in the production or
comprehension of spoken language [1]. One type of AAC uses
high-tech AAC devices to communicate with others. AAC users
without physical impairment use their hands/fingers to select
words/icons on a device’s touchscreen to produce a computer
voice to express what they want to “say.” To improve AAC users’
communication performance, evidentiary interventions are neces-
sary to help users utilize the device functionalities effectively [1].
AAC intervention is expensive and time consuming [2], [3]. A
successful intervention relies on accurate log data collecting and
active outcome monitoring [4], [5]. However, various types of
AAC devices on the market have their own data collecting systems
and are not compatible with each other. Thus, the current AAC field
has no comparable means to gather, share, access, or analyze a
large pool of logged data to study the statistical correlation between
AAC users’ performance and technical variables during the inter-
vention. In the AAC clinical and research communities, practi-
tioners need a set of easy-use, objective measurement, and accurate
logging toolkits that can work with all AAC devices for both
clinical and research purposes.

Previous AAC studies have demonstrated the success of using
automatic data logging (ADL) to monitor AAC users’ language and
communication performance in research contexts [4], [6], [7]. ADL
has two basic variables: the timestamp and the text output. Some
extra variables may be available associated with different access
methods: keyboard typing, eye gazing typing, and so on [8].

According to the study done by Chen et al. [8], by utilizing different
ADL formats with various variables, AAC practitioners could
compare AAC users’ performance between different data logs.
However, the existing ADL can only capture the AAC usage
data without distinguishing its producers (users). In clinical settings,
AAC intervention sessions usually involve multiple participants (an
AAC user, a clinician, family members, and other communication
partners). Most of the time, only one AAC device is used. While an
AAC user practices on the AAC device, other participants use the
same device to provide modeling to help the user to learn words and
functions on the high-tech AAC system [9]. Therefore, when
reading the ADL files after sessions, it is difficult to differentiate
who generated particular words. Fig. 1(a) shows the ADL generated
by CoughDrop [10]. By reading the ADL data, it is impossible to
know if the three lines were generated by theAACuser only or other
participants. This limitation not only reduces the validity of data
logs and the accuracy of performance analysis including semantic
analysis, syntactical analysis, and usage efficiency [11], but also
further impedes the efficiency of AAC services. The current solu-
tion for this limitation is to have clinicians manually clean the ADLs
(filtering or labeling) by using predetermined guidelines [7] or
comparing the ADLs with the recorded videos from intervention
sessions with human vision. These methods are not only time
consuming and labor intensive but also error prone. In addition,
it reduces the time that clinicians can work with AAC users.

Although hand gesture analysis is common in other fields, so
far no related computing and analysis study has been applied in the
AAC field. Thus, we are working on a visual-based logging system
to make the data logging user (speaker)-aware-able by analyzing
AAC usage videos. Ultimately, the AAC data logs will have an
additional attribute indicating the producer of each event (see the
example in Fig. 1(b)). The essential part of this novel speaker-
aware information logging (SAIL) system is to recognize all
participants from the videos, where the hands are in an egocentricCorresponding author: Gang Hu (e-mail: hug@buffalostate.edu).
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viewpoint (see Fig. 1(c) and (d)). The contributions of this work are
twofold:

• Collect egocentric hand gesture images with labeled tags,
which is the first labeled image dataset in the AAC field.

• Present a proof-of-concept application that utilizes a deep
neural network to classify different AAC participants using
the same device.

In the rest of this paper, Section II introduces some related
work; Section III presents the framework in detail; Section IV
provides the evaluation results; and Section V draws conclusions
and describes future work.

II. RELATED WORK
Many works employ deep convolutional neural networks (CNNs)
to study hand-object interactions in an end-to-end framework [12],
[13]. In contrast to these approaches, our solution involves the use
of first-person activity recognition, where human hands are natu-
rally the only information we can get as far as the movements are
concerned. Therefore, in the context of representing activities,
object manipulation and hand movements are the main source
of visual information.

Thus, related works in this category describe activities using an
object-centric approach that derives from the existence of specific
objects in the scene [13]–[16]. Moreover, scene understanding is
also used in [17]. In [18], a multitask clustering framework tailored
to first-person view activity recognition is presented. Another more
recent approach uses deep CNN architectures [19] to learn deep
appearance and motion clues. Deep CNNs are also used to learn
hand segmentations in order to understand the multiple user activi-
ties and interaction with each other [13], [20].

Some works focus on multimodal analysis of egocentric
cameras and information from other wearable sensor equipment
with the deployment of early or late fusion schemes [21]–[23].
More recently, González-Díaz et al. [24] proposed CNN-based
solution to control grabbing actions in an egocentric view, where an
eye tracking and image processing tools are used to measure eye
movements or gaze direction for target manipulation. To handle the
noisy and unstable gaze signals caused by unconstrained human
posture and cluttered working environment, CNN framework is
utilized to process the gaze fixation signal. It can determine the
target location and classify the object in an end-to-end fashion.

Motivated by the need of recognizing activities of patients with
critical disease in nursing homes or hospitals, Giannakeris et al.
[25] analyze egocentric videos provided by patient’s wearable
cameras. This setting is similar to ours. The detected objects
incorporating the motion patterns into low-level microaction de-
scriptors, Bag-of-Micro-Actions, and then, Gaussian mixture mod-
els clustering and Fisher vector encoding are used to recognize the
activities.

III. METHODOLOGY
Visual information of AAC practices is captured from an ego-
centric viewpoint [26], where the camera faces the hand and the
device screen with the same viewpoint as the AAC user’s eyes (see
Fig. 1(c)). The recorded videos contain the hand/finger actions and
the screen contents without the user’s face, which protects the
individual’s privacy and confidentiality in clinical data. To distin-
guish the roles of users, wearing a colored ring on the working
finger is required for some users, and the color is role dependent.
For example, a green ring is for family members and the red is for
therapists. AAC users can be with or without a ring. The color-role
association can be decided according to user’s preferences. Based
on this setting, the producers of the log data can be identified when
an AAC practice video is processed by the SAIL system, where a
customized deep neural network single shot detection [27] is used
for this task.

A. SINGLE SHOT DETECTOR (SSD) NETWORK
STRUCTURE

The single-shot detector (SSD)-based network structure has two
parts: the base network and the auxiliary network illustrated in
Fig. 2. The base network (blue blocks in Fig. 2) uses the well-
established VGG-16 [28] for feature extraction, and the auxiliary
section (green blocks) has several convolutional layers to predict
the bounding boxes and corresponding confidence scores for
detecting targets (hands). The size of the auxiliary layers gradually
decreases so that different sizes of hands can be detected. This
model predicts multiple boundary boxes from a single image, and
then, non-maximal suppression is applied to obtain the final
predictions with high confidence scores in the image. This SSD-
based detection model could handle the challenges in our task, such
as varied/poor lighting, diverse background, diverse view angles,
and unexpected occlusions.

B. TRAINING

We train the network to determine the target box via bounding box
regression, and object classification of the target box.

During training, we determine the correspondence between
default boxes to a ground-truth detection. For each ground-truth
box, we find its default box with the best overlap, and also match the
default boxes to any ground truth with overlap higher than a
threshold (e.g., 0.5). This allows the network to predict high scores
for multiple overlapping default boxes rather than picking only the
onewithmaximumoverlap. The overall loss function L is a weighted
sum of localization loss (loc) and the confidence loss (conf):

Lðx,c,l,gÞ = 1
N
ðLconf ðx,cÞ þ αLlocðx,l,gÞÞ, (1)

whereN is the number of matched boxes. The weight term α helps us
in balancing the contribution of the location loss. As usual in deep

Fig. 1. Example of AAC use with its automatic data log (ADL) and the
proposed SAIL.
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learning, the goal is to find the parameter values that most optimally
reduce the loss function, thereby bringing the predictions closer to
the ground truth. In this work, α is set to 1 by cross validation.

Confidence loss (conf) measures how confident the network
believes the true object is in the computed bounding box. Cate-
gorical cross-entropy is used to compute this loss:

Lconf ðx,cÞ = −
XN

i∈pos
xpij logðeðcpi ÞÞ −

X

i∈neg
logðeðc0i ÞÞ, (2)

where xpij = f1,0g is an indicator for matching the i-th default box to
the j-th ground-truth box of p class; and e(·) is the prediction logits
of class p.

Location loss (loc) measures how faraway the predicted
bounding boxes are from the ground-truth ones from the training
set:

Llocðx,l,gÞ =
XN

i∈pos

X

m∈fcx ,cy,w,hg
xijsmoothL1ðlmi − gmj Þ, (3)

where smoothL1 loss between the predicted box (l) and the ground-
truth box (g) parameters is used. Here,m includes the center (cx, cy),
width (w), and height (h) of default and the ground-truth boxes. By
minimizing this loss, the network regresses the target to the ground-
truth box.

C. AAC EGOHAND DATASET

For this proof-of-concept application, we collected four videos of
simulated AAC practice sessions from four different users inter-
acting with three AAC software: CoughDrop [10], Sono Flex [29],
and Proloquo2go [30]. These were downloaded from the Apple
App Store and have grid-design displays, color icons, and syn-
thesized speech output (see Fig. 3). Depending on the AAC
activities in these simulation sessions, we extracted roughly
1,200 to 2,500 hand images per video, which are then manually
annotated with ground-truth (GT) labels at the pixel level. There
are five hand categories defined (see Fig. 3): hands with blue, red,
yellow, and green rings, and a bare hand without a ring. We have
collected 7,124 labeled images for our AAC egohand dataset,
which are split into training and testing sets with 5,055 and 2,069
images.

Since the size of our AAC egohand dataset is relatively small,
we followed the fine-tuned transfer learning strategy to train our
model. Specifically, an SSD model pretrained on the common
objects in context (COCO) dataset [31] is publicly available and
utilized as the starting point of our training process. Our specific

hand detection network is further trained on our AAC egohand
dataset. COCO, a large-scale object detection dataset, has 200k
labeled images with 1.5 million object instances under 80 object
categories. By utilizing the generic image features extracted from
this large dataset, the training process for our task is efficient and
effective.

D. DATA AUGMENTATION

Like in many other deep learning applications, data augmentation
has been crucial to teach the network to become more robust to
various object sizes in the input. To this end, additional training
examples are generated. They are from the patches of the original
image at different overlap ratios (e.g., 0.1, 0.3, 0.5, etc.) and
random patches as well. Moreover, each image is also randomly
horizontally flipped with a probability of 0.5, thereby making sure
potential hand objects appear on left and right with similar
likelihood.

Fig. 3. AAC egohand dataset with five classes.

Fig. 2. Network structure of SSD.
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IV. EVALUATION
A. EXPERIMENTAL SETTING AND NETWORK
TRAINING

The training and testing of this proof-of-concept system were
conducted on a Dell server with two NVIDIA GeForce RTX
2080 GPUs, Intel(R) Core(TM) i7-9800 3.80 GHz CPU and 64
GB RAM. The neural network is built on the deep learning
framework TensorFlow 1.15 on Ubuntu 18.04 operating system.
The program code is written in Python 3.7.6. The input image size
is 1240 × 720 pixels, which is then adjusted to 300 × 300 during
the training process. Training is a process of network updating, and
is set to 200,000 iterations with batch size= 5. The initial learning
rate is set to 4e-3. After 60k, 120k, and 180k iterations of training,
the rate was reduced to 3.8e-3, 3.6e-3, and 3.4e-3, respectively.
Table I lists the details of the training settings. The goal of training
is to minimize the difference between the predictions and the
ground truth. Such differences are represented by the loss values.
For the object detection tasks, there are two types of losses:
classification loss and localization loss. Localization loss gives
the distances between the predicted boxes to the target object
(hand), while the classification loss reflects the recognition errors
on the predicted target boxes. The total loss combines both with
corresponding weights. Fig. 4 shows the total loss curve during the
training process, which has a rapid downward trend at the begin-
ning, and then slowly decreases until convergence. The training
loss is eventually stable and reaches the minimum value 1.63 at
200,000 iterations.

B. NON-MAXIMUM SUPPRESSION

Given the large number of boxes generated during a forward pass of
the network at inference time, it is essential to prune most of the
bounding box by applying non-maximum suppression. Specifically,
the boxes with a low confidence value (e.g., <0.01) and a small
overlap ratio (e.g., <0.45) are discarded, and only several top
predictions are kept. This ensures only the most likely predictions
are retained by the network, while themuch noisier ones are removed.

C. PERFORMANCE ASSESSMENT

Several metrics are used to assess the effectiveness of our hand
detection model. The object detection accuracy is associated with
the bounding box overlap between the prediction and the ground
truth. The intersection over union (IoU) is defined to express the
overlap:

IoU =
P∩GT
P∪GT

, (4)

where P andGT represent the bounding boxes of the prediction and
ground truth, respectively. A threshold θIoU≥ 0.5, indicates an
object has been detected. Furthermore, both precision and sensi-
tivity are used to compute the ratios of detected true positives
against predictions and entire data samples, respectively. The mean
average precision (mAP) combines both sensitivity and precision
for detected hands:

mAP =

PQ
q=1 AP

Q
, (5)

where AP is the average precision and Q is the number of testing
cases. Fig. 5 shows the mAPs for different IoU thresholds. When
IoU= 1, the performance of our model reaches 85%+. mAP is
close to 100% when IoU = 0.5, which is a common threshold
treating an object as detected. This result demonstrates that the
trained model performs well on the testing dataset.

In addition, the sensitivity score is also present on Fig. 6 which
shows a curve of average sensitivity for top 10 detection ranking.
The score gradually increased until it reached its highest peak at
91% when the training was close to iteration # 200k.

Table II is the confusion matrix of our AAC participants role
detection based on IoU= 0.75. According to the experimental
assumption, therapist, both family members, and social worker
wear blue, red, yellow, and green rings, respectively, while AAC
user (the patient) does not wear anything. This matrix uses different
font colors to indicate the roles of AAC participants. From the
matrix, the AAC user with bare hand and Therapist (with blue ring)
hand can be recognized with almost perfect accuracies. However,

Fig. 4. Training loss curve.

TABLE I. Parameters in SSD Model

Parameter name Value

Original image size 1240 × 720

Adjusted image size 300 × 300

Initial learning rate 4 × 10−3

Learning rate decay steps 60,000

Learning rate decay factor 0.95

Image number in each iteration 5

Iteration number 200,000

Fig. 5. mAP of different IoU.
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the family member with the yellow ring is relatively easy to be
confused with social worker with the green ring. The major reason
for this issue is related to the light condition and the ring colors, that
is, the green color under the indoor light was turned to yellowish
color, which makes the network hard to distinguish both roles. We
will change the ring shape or color in future study.

V. CONCLUSION AND FUTURE WORK
Our proof-of-concept application demonstrates a deep neural
network framework for differentiating different “Speakers” using
one AAC device. Our system can detect above 90% of different
hands successfully across three different AAC software and four
different users. The model verifies that the concept does indeed
function as envisioned. This approach provides a solution to the
clinical issue in the AAC domain. The system is able to improve the
validity of automatic data logs, and potentially will make AAC
users’ performance analysis more accurate. Our next step is to
improve the detection accuracy by increasing the diversity of
training data, utilizing more salient hand features. We also will
use an interoperable data log format [6] to generate our SAIL data
logs, then conduct a user study to evaluate their consistency and
usability by comparing with traditional language sample analysis.
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