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Abstract: Modern manufacturing aims to reduce downtime and track process anomalies to make profitable
business decisions. This ideology is strengthened by Industry 4.0, which aims to continuously monitor high-value
manufacturing assets. This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing
systems. The major contribution is a framework for continuous monitoring and feedback-based control in the
friction stir welding (FSW) process. It consists of a CNC manufacturing machine, sensors, edge, cloud systems,
and deep neural networks, all working cohesively in real time. The edge device, located near the FSW machine,
consists of a neural network that receives sensory information and predicts weld quality in real time. It addresses
time-critical manufacturing decisions. Cloud receives the sensory data if weld quality is poor, and a second neural
network predicts the new set of welding parameters that are sent as feedback to the welding machine. Several
experiments are conducted for training the neural networks. The framework successfully tracks process quality
and improves the welding by controlling it in real time. The system enables faster monitoring and control achieved
in less than 1 s. The framework is validated through several experiments.

Key words: cloud; edge; deep neural networks; friction stir welding; Industry 4.0; internet of things; machine
learning; manufacturing; process control; process monitoring; signal processing

I. INTRODUCTION
Modern manufacturing aims to reduce downtime and track
process anomalies to make profitable business decisions.
This ideology is strengthened by the introduction of Industry
4.0, the fourth industrial revolution. It aims at continuous
monitoring of high-value manufacturing assets [1,2]. This
article reports an Industry 4.0 application developed and
implemented on a welding process. Welding leads to the
joining of discrete materials into one component. This attri-
bute makes quality assurance in welding essential. Conven-
tionally, weld quality is determined by post-weld tests. These
tests may be destructive or nondestructive; however, they are
time- and capital-intensive and are performed offline [3].
Instead, a network of sensors can be engaged for indirect
monitoring, thereby creating a closed-loop feedback system
from the sensory data [4]. Industry 4.0 has brought network
connectivity into manufacturing [5]. It aims at telemonitor-
ing, i.e., to transmit data to remote/cloud servers enabling the

Internet of Things (IoT) [2]. This article presents an Industry
4.0-enabled framework for continuous monitoring and feed-
back-based real-time control of an advanced welding tech-
nique named friction stir welding (FSW). In the following,
the theory of FSW process is discussed first, and then state of
the prior research is elaborated. The major contributions of
this work are presented next.

FSW joins materials by frictional heating, mechanical
deformation, and stirring [6]. It involves a nonconsumable
tool mounted onto the spindle of the welding machine. The
rotating tool plunges into base materials, generating fric-
tional heat and deforming the base materials plastically.
Later, it travels over the weld joint line stirring the plasti-
cized material. This fuses the materials, and a weld joint is
formed. Because FSW does not melt the base materials, it is
recommended for soft alloys such as aluminum, magne-
sium, and the like materials in both similar and dissimilar
configurations [7–10]. This welding process has multiple
applications in ship building, railways, aerospace, and
automobile sectors. Owing to the vast range of applications,
real-time monitoring of the process is essential to ensure
quality of the welds.Corresponding author: Surjya K Pal (e-mail: skpal@mech.iitkgp.ac.in).
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The prior research in this regard reports strategies devel-
oped for monitoring the welding process. Methods were
devised to classify defective and defect-free welds using
information derived from acoustic emission (AE), and longi-
tudinal and transverse force signals [11,12]. A few works
presented methods to localize welding defects using AE, axial
force, power, and spindle torque signals [12–18]. Information
derived from AE signal was also utilized in detecting voids in
the weld joint line [19,20]. A significant change in the energy
of the signal was observed for welds with and without voids.
Prior research also communicates about offline prediction of
weld quality using features computed from force, spindle, and
feedmotor current signals [21]. The outputs include prediction
of ultimate tensile strength (UTS) and yield strength of welded
samples. In addition to the data-driven methods proposed for
weld quality prediction, prior research also presents use of data
obtained from the physics-driven model to predict the weld
quality. Grain size of the welded samples was predicted using
strain, strain rate, and temperature modeled in a neural
network [22]. Grain size prediction was also achieved using
a thermomechanical model with the same set of inputs, i.
e., strain, strain rate, and temperature [23]. While these studies
present methods to judge the weld quality after the weld is
fabricated, they do not provide a requisite measure that can be
taken to avoid rejection of the weld. In other words, the prior
research cites methods to monitor the welding process; how-
ever, they overlook the control action required to reduce the
rejection or improve a weld in real time.

To address this challenge, a few authors proposed
controlling the plunge depth (p) of the tool considering
axial force as a feedback signal [24,25]. The plunge depth
marks the penetration of the tool’s shoulder into the base
metals to ensure a proper contact between them. A propor-
tional integral derivative (PID) controller was employed for
this task. A PI controller was implemented where rotational
speed maintained the temperature [26]. However, PID
controllers do not perform well in uncertainties and often
have a narrow range of stability. Nonlinearity exists in
FSW, because the process involves transient events. The
heat generated during welding process is influenced by
speed at which the tool is rotating and also the linear speed
of the machine bed. Increasing rotation of the tool or lesser
linear speeds lead to excessive deformation of base metals.
Thus, the reaction of the base metals to these movements
decreases. Contrary, the reaction force increases if the tool
rotation is insufficient or welding occurs at higher linear
speeds. Therefore, these events are not steady and might
change with fluctuations in the welding parameters. Hence,
an adaptive PID controller was utilized to control welding
speed by taking force as a feedback signal [27]. The control
systems tracking plunge depth of the tool may be unstable,
leading to sudden tool plunging or withdrawal, resulting in
welding defects [6]. FSW is governed by welding speed and
tool rotational speed which decide the amount of frictional
heat and plastic deformation of the base materials. Hence,
controlling both is crucial for the welding process. Besides,
these studies rely on a single sensor, which may form a
threat to the IoT systems. In this regard, data from multiple
sensors were collected for real-time control of FSW [28].
Discrete wavelet transform was applied on the signals to
locate the welding defects and predict the weld quality
using wavelet features. The developed framework was
executed on a cloud server, which had a processing time
of 8.53 s per batch of data for weld monitoring and control.
This article presents an enhanced and accurate system that

monitors and controls the welding process. Specifically, the
analyses and results demonstrate meaningful information
derived from the as-received signals and welding parame-
ters in contrast to the wavelet coefficients. It also demon-
strates the application of an edge device in addition to a
commercial cloud server that reduces the computational
time. Following are the major contributions of this article:

• Application of as-received raw signals in FSW process
for accurate prediction of UTS using a deep neural
network (DNN). A high coefficient of determination,
R-squared = 0.9999, is achieved by the deep learning
model with a mean absolute error (MAE) of 0.10 only.

• Application of a cost-effective machine learning model
like random forest in predicting UTS is also shown.
This model is also developed using the as-received raw
signals. Its performance is compared with that of the
neural network. The random forest model achieved a
MAE of 0.1557 only.

• To lower the variance in the as-received signals, several
filtering methods are applied on them. Random forest
models are built with each set of filtered data. These
models are compared based on their performance with
the processed data. The performance of random forest
model developed with the unfiltered data is found to be
equivalent with other models.

• An edge-cloud coupled monitoring and control system
is developed and successfully applied to the welding
process. Process monitoring task is accomplished at the
edge device located closer to the welding machine.
Process control happens via the cloud server. With this
improved framework, the feedback to the welding
machine is achieved in less than 1 s. Thus, reliability
and security are higher.

Base materials in FSW are placed side by side on the
machine bed without any gap using suitable fixtures. The
materials’ surface may have undulations at the mating edge
or inhomogeneity. Applications of FSW involve joining
large structures. However, it is impossible to check their
integrity. Besides, problems may occur in the welding
machine. These may deviate the welding speed or tool
rotational speed. Therefore, it is essential to monitor and
control the process continuously.

The remainder of the paper is organized as follows.
Section II discusses the experimental details and the signals
acquired during welding process. It also presents the moni-
toring and control system developed in this work. The results
obtained from the analyses and justifications are presented in
Section III. Results of the test experiments that validated the
developed system are also presented in this section. Finally,
the conclusions are presented in Section IV.

II. MATERIALS AND METHODS
This section lists the details of the welding experiments
conducted for understanding the domain knowledge of
FSW process. It also discusses sensor data collection and
analytics. Following is the Industry 4.0 framework devel-
oped in this work.

A. TESTMATERIALANDPOST-WELDSTUDY

Figure 1 depicts a schematic diagram of the welding process
with workpieces fixed on the machine bed in a butt-joint
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configuration. The rotating tool (shown in black color)
plunges into the workpieces (shown in blue color) resulting
in frictional heating and plastic deformation of the work-
pieces. It is followed by the translation of the tool leading to
the transport of plasticized material from one side to the
other. For the present work, weld joints were fabricated on a
numerically controlled FSW machine (WS004, ETA Ban-
galore). This machine operates in a displacement-controlled
mode, wherein the plunging position is fed to the machine
as an input, along with welding speed (v) and tool rotational
speed (ω). The test material is an aluminum alloy, AA6061,
measuring 100 × 80 × 3 mm. H13 steel-alloy tool was used
to weld test plates in butt joint. The tool had a flat shoulder
of 18 mm diameter, a conical-shaped pin of 6 and 4 mm top
and bottom diameters, with a pin length of 2.7 mm.

The experimental combinations (ω and v) are men-
tioned in Table I. A full factorial approach was carried out,
where each value of ω was combined with each value of v
resulting in 42 experiments. During the experiments, the
tool plunging depth (p) was kept constant for all the
experiments. The value was 0.2 mm, and it ensured a
proper contact between the tool and workpieces. The
post-weld study determined the UTS of 42 welds.

Tensile test was performed as per ASTM-E8 standard,
where a subsize specimen was selected. The test was
performed in a universal tensile testing machine (Instron,
8862) at 1 mm/min strain rate. The UTS values obtained for
the 42 welded samples are shown as a scatter plot in Fig. 2.

All the experimental observations are also listed in
Table II along with the selected welding parameters. The
UTS of the base material was 270 MPa. In the 42 welded
samples, the highest UTS value was obtained as 249.3 MPa
with the parametric combination of 1000 rpm (ω) and
200 mm/min (v). The lowest UTS value was 146.2 MPa
with the parametric combination of 600 rpm (ω) and
200 m/min (v). It was observed that there is an increase in

Fig. 1. Schematic picture of FSW.

Table I. Range of ω and v

ω values
(in rpm)

600, 1000, 1400, 1800, 2200, and 2600

v values
(in mm/min)

40, 50, 60, 80, 100, 150, and 200

Fig. 2. Variation of UTS values along with parametric
combinations.

Table II. Experimental observations

Expt#

Welding
parameters

UTS
(MPa)

Joint
strength
efficiency

(%)
ω (rpm)–

v (mm/min)

1. 600–40 210.09 77.81

2. 600–50 214.61 79.48

3. 600–60 215.47 79.80

4. 600–80 221.08 81.88

5. 600–100 228.15 84.50

6. 600–150 150.71 55.82

7. 600–200 146.20 54.15

8. 1000–40 225.60 83.55

9. 1000–50 224.58 83.18

10. 1000–60 221.50 82.04

11. 1000–80 229.44 84.98

12. 1000–100 235.41 87.19

13. 1000–150 244.82 90.67

14. 1000–200 249.31 92.34

15. 1400–40 191.06 70.76

16. 1400–50 199.81 74

17. 1400–60 192.90 71.44

18. 1400–80 188.44 69.79

19. 1400–100 233.26 86.39

20. 1400–150 231.33 85.68

21. 1400–200 241.68 89.51

22. 1800–40 190.33 70.49

23. 1800–50 195.14 72.27

24. 1800–60 197.97 73.32

25. 1800–80 205.06 75.95

26. 1800–100 208.25 77.13

27. 1800–150 218.36 80.88

28. 1800–200 241.68 89.51

29. 2200–40 185.76 68.80

30. 2200–50 171.48 63.51

31. 2200–60 194.19 71.92

32. 2200–80 207.40 76.81

33. 2200–100 211.94 78.50

34. 2200–150 190 70.37

35. 2200–200 190.02 70.38

36. 2600–40 178.40 66.08

37. 2600–50 186.09 68.92

38. 2600–60 188.53 69.82

39. 2600–80 193.89 71.81

40. 2600–100 210.84 78.09

41. 2600–150 226.22 83.79

42. 2600–200 225.66 83.58
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the UTS value whenω takes a lower value of 600 rpm, while
v keeps increasing, starting from 40mm/min to 100mm/min.
However, as the v value increases beyond 150 mm/min, the
UTS values decrease remarkably. This is due to the poor
material flow, which signifies that the available heat was
insufficient for deforming the material plastically. The
welded sample (ω= 600, v= 150, and ω= 600, v= 200)
had several surface defects, and thus, lower UTS.

Further, a few experiments were also conducted at
500 rpm; however, the fabricated welds had several surface
defects. Thus, the range of parameter selection was
restricted to 600 rpm. For the other parametric combina-
tions, for instance, at a higher value of ω, i.e., 2600 rpm, the
UTS of the welds which are fabricated with different values
of v is said to increase. In comparison to other values of ω,
2600 rpm is the highest, which indicates that frictional heat
availability at this value would have been the highest as
compared to other values. A few experiments were repeated
for ensuring the results.

B. SENSING AND DATA COLLECTION

The welding machine is integrated with multiple sensors
such as speed sensors for capturing the variation in v and ω,
a load cell for capturing axial force (Fz) and spindle torque
(Mz), and a power sensor for recording the total power (P)
consumed during welding. The speed sensors installed on
the machine are encoders that record rotational speed of the
spindle and linear speed of the machine bed. The load cell is
of strain gauge type, and a Hall effect-type power sensor
was integrated externally. As communicated, the weld
joints are created because of the pressure exerted by the
tool resulting in heat and deformation. Therefore, Fz forms
a crucial variable. In the event of any disturbance in the
process, Fz is expected to vary. With variation in Fz, the
torque experienced by the spindle will also vary. Therefore,
these data were captured during welding experiments.
Likewise, the power consumed by the welding machine
would differ for a faulty setting. For FSW, welding defect
is a fault which might occur because of improper settings.
The details about the working principle of strain gauge-
type load cell and Hall effect-type power sensor can be
read from the cited work [29]. For data collection, a virtual
instrument (VI) consisting of a time-controlled 4:1 multi-
plexer was built. The VI refers to a logic circuit designed to
select one of the several input lines to a common output line.
Figure 3(a) shows the circuit of the multiplexer utilized in
this study. The truth table and Boolean logic expression are
shown in Fig. 3(b).

The data from the force, torque, and power sensors
together with a marker value are inputs to the multiplexer.
The marker signifies the completion of one complete set of
data. The output from the multiplexer is linked with the
input of the transmission control protocol (TCP) write
block. From here, the data is sent to the next block for
further processing. The machine input parameters, i.e., ω
and v, are returned to the machine via the same protocol.
LABVIEW VI obtains ω and v along with some markers to
differentiate them, i.e., firstly, a 0 is sent as a marker
followed by ω, and similarly, 1 is sent as a marker followed
by v. The actual data acquisition rate is 10 Hz. However,
there is a delay of ∼31 milliseconds in the multiplexer,
which leads to an effective sampling rate of 8 Hz.

For 42 experiments, these sensors’ data was collected.
Figure 4 presents the variation in the acquired raw signals.

To represent ω and v together, feed per revolution (FPR) is
considered, which is the ratio of v and ω. Figure 4(a) shows
the correlation among UTS and rotational speed and FPR.
Lower FPR produces welds with high UTS (> 210 MPa)
and moderate UTS (180–201 MPa), whereas higher FPR
gives rise to welds with lower UTS (< 150 MPa). FPR is
low when v is less, and ω is high, the combination results in
desirable frictional heating and plastic deformation of the
base materials. However, the opposite condition results in
low heat and deformation, resulting in defective welds. For
these situations, the sensors’ data also vary. Fz lies in 6000–
8400 N (Fig. 4(b)) andMz in 9–16 NM (Fig. 4(c)) for higher
UTS. The variation is also expressed with FPR and UTS
values, which shows sufficient segregation of welds. These
plots indicate that the raw signals can be utilized to model
UTS due to their close relationship.

C. MONITORING AND CONTROL
FRAMEWORK

Figure 5 depicts the schematic representation of the frame-
work consisting of welding machine and coupled edge-
cloud system. The major highlights of the framework are as
follows: (a) use of raw signals, (b) use of an edge device and

Fig. 3. Multiplex build in the VI: (a) circuit diagram and
(b) Boolean expression and truth table.
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cloud server, and (c) use of a limiter. The real-time data
acquired in the FSWmachine is continuously fed to an edge
device. The edge device is connected to the FSW machine
viaWebSocket using the TCP/internet protocol (IP). As the
effective sampling rate is 8 Hz, data to the edge device is
received in each millisecond interval. Each interval’s data is
fed to the DNN model (ML1) residing in the edge device
that predicts the UTS of the weld in real time.

As data is sampled in millisecond intervals, UTS
prediction also occurs in millisecond intervals. The decision
box compares the predicted UTS value with a desired UTS
value. If the predicted value is less than the desired UTS, the
data is sent to the cloud. For making it more relevant to the
industrial application, an instance of Google cloud server
was utilized. The cloud server consists of another DNN
model (ML2), which predicts the modified parameters to
achieve the desired UTS. The modified parameters form the
feedback to the FSW machine. Instead of directly feeding
the parameters, they are routed via the edge device. The
edge device consists of a limiter that checks and determines
whether the values are within the safe limits of the machine.
In the next section, the results achieved are discussed.

III. RESULT AND DISCUSSION
This section discusses the results obtained by applying the
proposed methodology.

A. DATA ANALYSIS – CORRELATION

The correlationmatrix was determined to explore the signals’
association with UTS. Correlation measures the extent to
which two variables tend to change together. Two methods
were considered for determining the correlation among the
parameters, namely (a) Pearson and (b) Spearman.

While the Pearson correlation evaluates the linear
relationship between two variables, the Spearman correla-
tion identifies the monotonic relationship. It is helpful
because the variables need not change together at a constant
rate. As the aim here was to determine the association of the
variables/parameters with UTS, the Spearman correlation
will be more helpful. This method is based on the ranked
values for each variable rather than the raw data.

Figure 6 depicts the correlation maps obtained by
employing the two methods. From the figure, ω, v, Fz,
and Mz can be found to have a moderate relationship with
UTS, and P has a weak relationship. The highest correlation
was found with FPR. Despite the weak relationship ex-
hibited by power, it can act as an alternative solution for the
control scheme if the load cell fails or starts behaving
erroneously.

B. IMPORTANCE OF DATA – NOISE AND
VARIANCE IN SIGNALS

It is imperative to study the presence of noise in the signals.
Raw signals might have random errors that imply unpre-
dictable variations in the measured signals. This error is also
referred to as noise, whose sources could be vibrations of
the machine, fluctuations in incoming electrical power,
electromagnetic radiation from nearby electrical equipment,
etc. Therefore, it was imperative to study the presence of
noise, i.e., variance and bias in the signals. Various filters
were applied to the raw sensors’ data: average filter, median

Fig. 4. Scatter plot of UTSwith: (a) tool rotational speed and FPR,
(b) force and FPR, (c) torque and FPR, and (d) power and FPR.

Fig. 5. Schematic representation of the framework for real-time
monitoring, prediction, and feedback-based control of weld
quality.
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filter, Gaussian filter, Wiener filter, Fourier denoising,
wavelet denoising, and Whittaker smoothing. It was
assumed that the noise was additive. The average filter
is a linear filter used to reduce additive shot noise. It takes a
window sliding along the signal replacing the data value
with the mean value of all the neighboring data values. The
size of the sliding window (N) is an odd number. The

median filter is a nonlinear filtering technique utilized for
removing the additive noise of impulsive nature. It is similar
to the average filter, excluding the fact that the median of
the neighboring values alters the data value in this case.
A Gaussian filter is a linear low-pass filter in the frequency
domain, which convolves a Gaussian function over the
signal. It is effective in removing Gaussian noise.
The degree of smoothing is controlled by the standard
deviation (σ).

Wiener filter is based on the statistical approach, and it
works well for both additive and multiplicative noises. It
assumes that the spectral properties (cross-spectral density
between observed and original signal and power spectral
density of the original signal) are known. The noise is
considered to be uncorrelated with the signal. This filter
tries to reduce the overall mean square error of the denoised
data by comparing it with the original data. It is effective in
removing Poisson noise,Gaussian noise, and Speckle noise
from the signal. Fourier denoising is another filtering
technique in the frequency domain where Fast Fourier
Transform is applied to the data, and thresholding is done
based onDonoho’smethod.Wavelet denoising refers to the
time–frequency domain transform using wavelets to local-
ize the signal features at different scales. Lastly, Whittaker
smoothing was utilized, which smoothens the time series
based on optimization of penalized least squares. It attempts
to fit a curve that characterizes original data. The parameter
λ is the smoothing factor. A cost-effective machine learning
model, random forest, is developed with each set of filtered
data to predict the UTS. The performance of these models
developed with the filtered data is compared with the model
built using the unfiltered data. Random forest regression
model is chosen as it is popular for nonlinear modeling and
takes less computational time with no local minima/maxima
problems. The performance is compared in terms ofMAE as
presented in Table III.

Except for Fourier denoising, there does not exist a
significant difference in MAE. Least MAE was obtained
with Whittaker smoothing, which is not a substantial
improvement from the MAE obtained using raw data. If
this filter were utilized in real time, the cost and time
invested in filtering signal would weigh more than the
improvement in accuracy it provides. Fourier denoising
provided a substantial improvement in MAE. But it is a
frequency domain filter, so utilizing it in the model was not
possible for denoising in real time.

It is important to identify the reason why the raw signal
gives a better performance in the case of FSW. The probable
reasons for the same could be (a) negligible vibration during

Fig. 6. Correlation in the dataset: (a) Pearson and (b) Spearman.

Table III. MAE obtained in the ML model by using the filtered and raw datasets

Raw
signal

Whittaker
smoothing

Wavelet
denoising

Fourier
denoising

Weiner
filter

Gaussian
filter

Median
filter

Average
filter

MAE MAE λ MAE MAE MAE N MAE σ MAE N MAE N

0.1557 0.145 0.01 0.1349 0.068 0.144 3 0.121 2 0.135 3 0.134 3

0.134 0.1 0.135 5 0.113 4 0.134 5 0.137 5

0.133 1 0.133 7 0.127 6 0.132 7 0.151 7

0.131 10 0.129 9 0.139 8 0.122 9 0.148 9

0.129 100 0.132 11 0.118 10 0.117 11 0.137 11

0.124 1000 0.132 13 0.112 12 0.113 13 0.140 13

0.116 10,000 0.133 15 0.100 14 0.113 15 0.131 15

0.107 100,000 0.137 17 0.098 16 0.113 17 0.126 17
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the welding and (b) negligible effect of other electronic
components, etc.

There might be other reasons for this as well, but they
have not been the focus of this article. Further to explore the
efficacy of the raw data over the processed data, principal
component analysis was also carried out. As mentioned in
the introduction, earlier research has shown the utility of the
wavelet decomposition technique for localizing the welding
defects in real time, where the detail coefficients were
extracted from the signal [28]. It comprised of a set of
35 detail coefficients, each of force, torque, and power, a
total being 105. The raw data utilized in this study consists
of five components, i.e., force, torque, power, ω, and v.

Figure 7(a) shows the plot of variance in the case of the
wavelet coefficients, and Fig. 7(b) shows the same with
respect to the raw data. It can be observed that close to 90%
of the variance can be explained by only 2 components of
raw data, while the same requires more than 20 components
in the case of the processed data. Thus, the weld quality
prediction can be better performed by using the raw data
instead of performing further signal processing. This will
ensure the timeliness of the monitoring and control system

Thus, the database consists of the historical data of
various welding jobs (42 numbers of experiments) per-
formed at different process parameters, i.e., ω and v,
corresponding sensors’ data (i.e., force, torque, and power),
and UTS values of each weld. FPR was not taken into
consideration as the input parameters for welding consisted

of ω and v only, and this was beneficial for real-time
application.

C. MACHINE LEARNING

The application of a cost-effective ML model like random
forest for predicting the weld quality is established in
Section III.B. This model is developed using the unfiltered
and unprocessed data, and its performance is determined to
be equivalent to the models developed with the filtered data.
This section discusses the development of DNN model for
predicting the UTS using the unfiltered and unprocessed
data. The performance of this model is compared with that
of the random forest model.

Two DNN models are built: one (ML1) for predicting
the UTS and the second (ML2) for predicting the modified
parameters. These models are trained and tested offline and
then are deployed in the scheme for real-time decision-
making. ML1 is deployed in the edge device and ML2 in the
cloud server. The dataset for training ML1 consisted of five
features, i.e., Fz, Mz, P, ω, and v, and UTS was the output.
From the correlation map, it is observed that all the sensors’
data are having a moderate degree of correlation with UTS.
Therefore, all the contributing factors were considered in
modeling. The dataset for ML2 consisted of four features,
i.e., Fz, Mz, P, and desired UTS, and ω and v were the
outputs. A neural network tries to generalize a problem by
learning a mathematical transformation between given in-
puts and outputs. The learning occurs in deep networks of
the model having several layers and neurons. Because of
their capability in generalizing a given problem, they are
considered to be more robust than the shallow ML models.
Therefore, the performance of random forest model and
DNN model is compared. Also, an earlier research work
developed neural network model for UTS prediction using
filtered and processed data [28]. Therefore, to compare the
usefulness of employing unfiltered and unprocessed data,
the architecture of the models proposed in [28] is consid-
ered. This includes hidden layers and hidden neurons in
each layer. The modification was in the input layer only.
The UTS prediction model consisted of 8 hidden layers and
the other model for predicting the modified parameters
consisted of 10 hidden layers, as presented in Fig. 8(a)
and (b), respectively, with multiple neurons in each layer.
The optimized architectures of ML1 andML2 were obtained
by applying genetic algorithm.

These models were trained with the unfiltered data
recorded in this study by utilizing the backpropagation
algorithm that employs the gradient descent method. The
learning rate for ML1 was varied from 0.001 to 0.00001,
and for ML2, it was varied from 0.01 to 0.00001. The
models were tuned using the Adam optimizer [30]. The
momentum coefficient was fixed as 0.9. The activation
function is a scaled exponential linear unit that helps
preserve the mean and the activation function. It preserves
the mean and variance information from the previous layer
making the neural net self-normalizing. It prevents the
problem of vanishing gradients.

For training and testing of the models, a random split of
70% and 30% of the dataset was performed. The validation
set was a part of the training data. In the model development
process, a part of the data was always held back and the
MAE was computed to determine the models’ performance.
The performance of the models was ensured to be adequate
by testing on several portions of the training data. Finally,

Fig. 7. Plot of explained variance in case of: (a) processed data
and (b) raw data.

182 Debasish Mishra et al.

JDMD Vol. 1, No. 3, 2022



the performance was ensured by computing on the unseen
test data. The test data was completely new to the model
and, therefore, a separate data for validation was not
considered. The training and testing loss for the models
predicting UTS and modified parameters are presented in
Fig. 9(a) and (b).

These plots show the minimization of the loss with the
increasing number of epochs during the training. The testing
results for the model predicting UTS is depicted in Fig. 10,
where the predicted UTS values are shown to correspond to
the actual values. The metrics considered for evaluating the
performance of the model are listed in Table IV.

A satisfactoryMAEwith a high R2 value is obtained for
the model. However, since multiple features are input to the
DNN, the R2 value can give a false impression. It is
validated by evaluating the Adjusted R2, which in this
case is 0.9994. It suggests the ability of the model to
make accurate predictions. In comparison to prior research,
the model developed in [28] has a mean absolute percentage
prediction error of ∼4%, which is less than 1% with the
DNN model developed in this work.

1) EDGE DEVICE – PROCESS MONITORING. An edge
device is located at the edge of communication between a
source of data generation and a server. In this work, it is
between the FSW machine and the Google cloud server.
This device usually has a low hardware configuration and is
attached to the machine via some communication protocol.
The purpose is to filter, analyze, or process the data locally,
close to the point of generation. Manufacturing machines
will generate a vast amount of data, and the data has to be
analyzed to make intelligent decisions. The analyses can be
entirely performed in a cloud server; however, the data must
be continuously sent and received, requiring an uninter-
rupted high bandwidth. Therefore, an edge device proves
beneficial to having a reliable system and preventing loss of
data. It accelerates data streaming and helps in eliminating

time lag. The edge device used in this work has a random-
access memory (RAM) of 8 GB and 500 GB disk space and
a Windows operating system. This computer accessed the
FSW machine via the TCP/IP protocol, and they exchange
data through WebSocket. As the welding starts, this device
receives the sensors’ data (Fz, Mz, and P) and the input
parameters (ω and v) and feeds them to ML1 for predicting
the UTS.

Fig. 8. Architecture of DNN models: (a) UTS prediction model
and (b) modified parameters prediction model.

Fig. 9. Plots depicting the training and testing loss: (a) UTS
prediction model and (b) modified parameters prediction model.

Fig. 10. Plot depicting actual and predicted UTS values.

Table IV. Model evaluation

MAE R-squared Adjusted R-squared

0.10 0.9999 0.9994
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2) CLOUD SERVER – PROCESS CONTROL. The cloud
server is an instance ofGoogle Cloudwith a RAM of 16 GB
and 500 GB of disk space. It was connected with the edge
device via TCP/IP but on a different port number. The cloud
server consists of the ML2 to predict the modified parame-
ters. The sensory data is received here when the predicted
UTS is lower than the desirable UTS value. While control-
ling the FSWmachine for achieving a better weld is taken in
the edge, the action is performed through this cloud. The
model exploits the correlation to find the values of ω and v
needed to achieve the desired value of the UTS. The
predicted ω and v are sent back to the edge using the socket
connection between the cloud and the edge based on the
TCP/IP protocol. The edge acts as a relay between the cloud
and the FSWmachine, i.e., to transfer the feedback received
from the cloud to the FSWmachine. Edge performs a safety
check using the predefined constraints on the parameters
received as feedback from the cloud and ensures that the
predicted values do not compromise the machine’s health.

The employed FSW machine can accommodate v of
1000 mm/min and ω of 3000 rpm. The edge bounds ω in
600–2600 rpm and v in 35–200 mm/min. These were
identified from the experiments. A set of experiments in
this study was conducted at 2600 rpm, which produced
satisfactory welds. Thus, 2600 rpm has been set as the upper
limit.ω< 600 rpm is insufficient to plasticize the workpiece
and, therefore, has been ignored. At the same time, no
welding was performed at v> 200 mm/min. The lower limit
(35 mm/min) avoids making the process slow, affecting
efficiency. If ω is predicted to < 600 or > 2600 rpm, then
600 and 2600 will be sent to the machine, respectively.
Similarly, if v is predicted < 35 mm/min or > 200 mm/min,
then 35 and 200 will be sent, respectively. These constraints
ensure that the motors of the machine are rotating within the
safe values.

D. VALIDATION OF THE DEVELOPED
SCHEME

Several experiments were performed to test the proposed
framework. The results are presented in the following
subsections. Tensile specimens were cut from the welded
sample, and their UTS was determined to validate the
scheme’s results. However, one challenge here was that
as the model detected the predicted UTS to be lesser than
the desired value, it sent the data to the cloud to control the
weld quality, which occurred in less than a second. But, the
tensile specimen (as per ASTME8) needs to have a width of
10 mm (subsize sample). Thus, it was decided to deal with
the data in batches for validating the scheme to address this
challenge. However, a constant batch size may not be
capable of deriving acceptable results each time. Consider-
ing the continuous and constant length of the samples to be
welded, it may work fine when v is chosen in small values.
Still, when v is considerably high, the welding will finish
instantly without even letting the scheme control the pro-
cess during any anomaly. Therefore, an equation has been
written for the dynamic batch selection, as shown in Eq. 1.

Batch size =
60 × 10 × 8

Initial velocity ðvÞ (1)

where 60 is used for conversion of time to seconds, 10
corresponds to the width of the tensile sample for which the
dynamic batch is being selected, 8 refers to the sampling

rate of 8 Hz, and the initial velocity is the v with which the
welding process begins, and the batch size is always an
integer value.

1) REAL-TIME CONTROL OF WELD QUALITY – START-
INGWITHOPTIMUMCONDITIONS. A sample was welded
by selecting the following input parameters: 1400 rpm (ω)
and 50mm/min (v). These parameters were chosen randomly
from the database.

As per the database, this parametric combination pro-
duced a weld with a UTS of 199MPa, which corresponds to
∼70% joint strength efficiency (shown as “Initial selection”
in Fig. 11). However, to validate the developed scheme,
80% joint strength efficiency was fed to the system, which
formed the desirable value. As the welding begins, the data
is received in the edge device, which continuously predicts
the UTS of the weld being fabricated. The picture of the
welded sample is depicted in Fig. 11. As per Eq. 1, the batch
size for this weld was 96.

Therefore, after collecting 96 data points, the scheme
was fed with the next set of data points of Fz, Mz, P,ω, and v
for predicting the UTS, which was less than the desired
value (80% joint strength efficiency). Therefore, that cor-
responding batch of sensors’ data was sent to the cloud
server, which predicted the modified parameters as shown
in Fig. 11: 1006 rpm (ω) and 49 mm/min (v) (shown as
“Achieved result”). The predicted UTSwas 220MPa which
corresponds to 81.5% joint strength efficiency. This result is
validated from the experimental knowledge base developed
in this study. The closest parametric combination is
1000 rpm (ω) and 50 mm/min (v), which produced a
weld sample with joint strength efficiency of 83%.

Figure 12 shows the corresponding sensors’ data dur-
ing the entire process. The maximum amplitude of Fz and

Fig. 12. Picture depicting variation in sensors’ data (force and
torque) corresponding to Fig. 11.

Fig. 11. Picture of the welded sample with achieved joint
strength efficiency of 80% from the initial selection of 70%
using the developed monitoring and control scheme.
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Mz during the stage of “Initial selection” is ∼4000 N and
∼10 NM, respectively, which was a result of the selected
process parameters, 1400 rpm (ω) and 50 mm/min (v).
Upon detection, this resulted in modified parameters in real
time, i.e., 1006 rpm (ω) and 49 mm/min (v), while the
magnitude of force was ∼5000 N and torque of ∼12 NM.

In this manner, the framework is able to control the
weld quality. Variation in power is not shown, since there
was no significant change in the power signal. The reason
for this could be its lower correlation with UTS, ω and v.

2) REAL-TIME CONTROL OF WELD QUALITY – START-
ING WITH DEFECTIVE CONDITIONS. Figure 13 depicts
the picture of another welded sample, the fabrication of
which was initiated at 600 rpm (ω) and 250 mm/min (v).

This set was chosen to produce a defective weld, which
was known from the created knowledge base. The defects
can be seen in the figure (shown as “Initial selection”). For
this experiment, the scheme was fed with the desirable UTS
to be 220 MPa, i.e., 80% joint strength efficiency. In this
case, the batch size was 19 (Eq. 1). As the welding began
and the data was received, the model fed the machine with
modified parameters, 1008 rpm (ω) and 60 mm/min (v),
which has a UTS of 220MPa (shown as “Achieved result”).
This predicted parametric combination avoided the welding
defects in contrast to the initial set conditions. Figure 14
shows the corresponding variation in the sensors’ data (Fz

and Mz) during the entire process. Huge fluctuations in the
data can be observed for the selected initial combination. As
highlighted, the combination of ω and v decides the fric-
tional heating and plastic deformation. When these quanti-
ties are improper, defects will be produced. The sensors
capture the effect of the welding parameters; thus, huge
fluctuations are observed. However, post the control over

the process in real time, there is negligible variation in the
sensors’ data, and a sound weld is produced.

As highlighted, the developed scheme always attempts
to maintain the desired UTS. Industries may not have a
fixed UTS value. In that case, the system can be fed with an
upper and lower band of UTS values catering to industry
needs. If the predicted UTS is out of that band, the batch of
sensors’ data and the mean of the lower and upper bounds
can be sent to the cloud server for predicting v/ω. In this
way, the system can maintain the UTS of the sample being
welded in certain bounds. As the framework works on each
data point, the control is achieved in less than a second.
However, to test and validate the scheme model, a batch
size has been selected here. For industrial applications, this
batch size can be removed.

E. BENEFIT OF USING EDGE ALONG WITH
THE CLOUD SERVER

The edge-cloud architecture provides a trade-off between
the qualities of edge and cloud computations and attempts
to derive the best from both. It utilizes the high computa-
tional power of the cloud system, which may simulta-
neously control many machines in a manufacturing
industry. At the same time, it also uses the edge system
attached to the individual machine for real-time data stream-
ing and processing, which eliminates time lag while making
the process real time.

In this manner, the presented architecture derives
optimal results by harnessing the qualities of the blocks
mentioned above. Figure 15 shows the throughput of the
real-time data transmission between edge and cloud. It can
be observed that the time taken for transmitting data to the
edge device is always lesser than that of the cloud. Hence, it
benefits by reducing time lag. The other advantage could be
from the security perspective. Industries are concerned
about sharing their data on a public cloud server. As the
manufacturing data is limited within the edge device for
monitoring, it ensures the security of the data. The data will
only be sent over a public network in an anomaly in the
process.

IV. CONCLUSION
An intelligent Industry 4.0 framework for continuous mon-
itoring and feedback-based real-time control of defects in

Fig. 14. Picture depicting variation in sensors’ data (force and
torque) corresponding to Fig. 13.

Fig. 15. Data transmission between edge and cloud.

Fig. 13. Picture of the welded sample with achieved joint
strength efficiency of 80% from the initial selection of 50%
using the developed monitoring and control scheme.
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the FSW process is presented in this article. The following
are the major conclusions:

• Raw signals carry adequate information that can be
leveraged for online monitoring of the weld quality. In
this study, the variance and bias in the data is assured
by modeling the UTS using filtered and unfiltered data.

• A cost-effective ML model like random forest predicts
the UTS values using unfiltered or unprocessed data
with aMAE of 0.1557 only. The neural network model
trained on the unfiltered data is superior to random
forest model and predicts UTS values with a MAE of
0.10 only.

• Axial force and spindle torque are strong indicators of
weld quality. Severe fluctuations are observed in these
signals while welding with improper welding parame-
ters resulting in defective welds.

• An on-off type controller, as proposed in this study, can
avoid defective welding conditions. It operates on a
desired UTS value which is compared with the pre-
dicted UTS value.

• Edge devices are essential for addressing time-critical
manufacturing decisions. The edge-cloud system
developed in this study reduces the throughput time
compared to the use of cloud infrastructure only.
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