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Abstract:Although convolutional neural networks have become the mainstream segmentation model, the locality
of convolution makes them cannot well learn global and long-range semantic information. To further improve the
performance of segmentation models, we propose U-shaped vision Transformer (UsViT), a model based on
Transformer and convolution. Specifically, residual Transformer blocks are designed in the encoder of UsViT,
which take advantages of residual network and Transformer backbone at the same time. What is more,
transpositions in each Transformer layer achieve the information interaction between spatial locations and
feature channels, enhancing the capability of feature learning. In the decoder, for enhancing receptive field,
different dilation rates are introduced to each convolutional layer. In addition, residual connections are applied to
make the information propagation smoother when training the model. We first verify the superiority of UsViT on
automatic portrait matting public dataset, which achieves 90.43% accuracy (Acc), 95.56% Dice similarity
coefficient, and 94.66% Intersection over Union with relatively fewer parameters. Finally, UsViT is applied to
gear pitting measurement in gear contact fatigue test, and the comparative results indicate that UsViT can improve
the Acc of pitting detection.

Keywords: vision Transformer; residual connection; dilation rate; information interaction; pitting measurement

I. INTRODUCTION
Gear is a widely used motion and power transmission
component in mechanical equipment, and it is prone to
failure due to the poor working condition. Moreover, pitting
is the main failure mode of gear, which has been detected by
vibration-based methods in the past years [1–3]. However,
it is difficult for vibration-based methods to quantitatively
detect gear pitting. Gear pitting area ratio is a key metric for
evaluating the degree of failure, especially in the gear
contact fatigue test [4]. In order to calculate gear pitting
area ratio, machine vision may be a feasible tool [5]. Based
on machine vision methods, the key to measuring gear
pitting area ratio is the precise segmentation of the effective
tooth surface and the pitting from the acquired gear image.
However, the gear pitting is generally irregular, which bring
great challenges to the traditional computer vision techni-
ques including threshold segmentation and edge segmenta-
tion [6–8].

Convolutional neural networks (CNNs) have shown
excellent feature extraction ability and good semantic seg-
mentation performance in recent years, so they were suc-
cessfully applied to different fields of automatic detection
[9–11]. Zhang et al. [12] proposed a simple but efficient
segmentation model for road area extraction by applying
residual connection into U-Net. Ding et al. [13] proposed an
improved algorithm based on the encoder–decoder frame-
work of U-Net to accurately segment the common defects
such as untilled corner, scratch, and dirty in the process of
magnetic disc quality detection. Du et al. [14] proposed a
seismic crack recognition method based on ResU-Net and
dense CRF model, improving the efficiency and accuracy
(Acc) in the detection of seismic image dataset. Li et al. [15]

proposed a ship detection method based on U-Net++ and
multiple side-output fusion algorithm, solving the problems
of complicated background and various ship sizes in satellite
remote sensing images. However, there are few studies on
the gear pitting detection, and the accurate segmentation of
background, effective tooth surface, and pitting area still face
a big challenge. Also, it is worth noting that all the above
methods are based on CNNs which cannot well learn global
and long-range semantic information. To further improve the
segmentation performance of gear pitting image, it is indis-
pensable to develop a model which takes advantages of local
and global feature information simultaneously.

Transformer [16] has made a great achievement in
natural language processing over the last few years because
of its powerful ability of learning long-range feature infor-
mation. ViT [17] was the first work to introduce Trans-
former into computer vision, which had an outstanding
performance on image classification. Except for classifica-
tion, Transformer was also applied to dense prediction tasks
such as semantic segmentation and object detection. Zheng
et al. [18] proposed segmentation Transformer, which
provided two kinds of decoder and achieved better perfor-
mance of semantic segmentation. Pyramid Vision Trans-
former (PVT) [19] realized multiscale outputs and low
computational complexity by introducing a pyramid struc-
ture. Pyramid Pooling Transformer (P2T) [20] enhanced the
contextual information by adding the pyramid pooling to
Transformer. SegFormer [21] proposed a pure Multilayer
Perceptron (MLP) decoder to aggregate information from
different layers. The excellent segmentation performance of
the foregoing methods provides an idea to explore Trans-
former-based model for gear pitting measurement.

In this paper, we propose U-shaped vision Transformer
(UsViT), an efficient and powerful framework for gear
pitting measurement. Concretely, our contributions can
be summarized as: (1) residual Transformer blocks areCorresponding author: Yi Qin (e-mail: qy_808@cqu.edu.cn).

© The Author(s) 2022. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 223

Journal of Dynamics, Monitoring and Diagnostics, 2022, 1, 223-228
https://doi.org/10.37965/jdmd.2022.130 RESEARCH ARTICLE

mailto:qy_808@cqu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jdmd.2022.130


designed in the encoder of UsViT, which take advantages of
residual network and Transformer backbone at the same
time. What is more, transpositions in each Transformer
layer achieve the information interaction between spatial
locations and feature channels, so as to enhance the capa-
bility of feature learning. (2) Different dilation rates are
introduced to each convolutional layer for improving the
receptive field in the decoder. In addition, the residual
connections are applied to make the information propaga-
tion smoother when training the model. (3) UsViT achieves
better performance on automatic portrait matting public
dataset with relatively fewer parameters. Finally, UsViT is
applied to gear pitting measurement in the gear contact
fatigue test, and the comparative results indicate that UsViT
can improve the Acc of pitting detection.

II. METHOD
A. ARCHITECTURE OVERVIEW

As depicted in Fig. 1, there are two basic modules in UsViT:
Transformer layer in the encoder and decoder layer in the
decoder. Given an input image withH ×W × 3, UsViT first
downsamples it into several non-overlapping patches of
H
16 ×

W
16 by linear projection. Then, these patches are flattened

and input to the Transformer block as a sequence. Through
several residual Transformer blocks, we can reshape the
output feature map into H

16 ×
W
16 × C. Inspired by U-Net, we

design a similarly progressive upsampling decoder includ-
ing four same stages with 2× to reach the full resolution of
H ×W . We feed the reshaped feature map into the decoder,
and there is a decoder layer in each stage. In the end, the
output feature map from the decoder is processed by a 1 × 1
convolutional layer with softmax activation function for
predicting the pixel-level segmentation mask.

B. TRANSFORMER LAYER

Different from the original structure of Transformer encoder
in ViT, the Transformer block in UsViT is constructed with

the idea of residual connection, which consists of two
Transformer layers. The input sequence is first normalized
by layer norm (LN) and then feeds into multi-head self-
attention (MSA). After added by the input sequence, the
feature map is processed by transposition subsequently.
Through the similar step of LN, MLP, and transposition,
we can obtain the output feature map of one Transformer
layer. Two transpositions in Transformer layer achieve the
information interaction between spatial locations and feature
channels, enhancing the capability of feature information
learning. The Transformer block can be formulated as:

bFi = ðMSAðLNðFi−1ÞÞ + Fi−1ÞT (1)

Fi = ðMLPðLNð bFiÞ + bFiÞÞT (2)

dFi+1 = ðMSAðLNðFiÞÞ þ FiÞT (3)

Fiþ1 = ðMLPðLNðdFi+1Þ þ dFi+1ÞÞT (4)

Fo = Fi+1+ Fi−1 (5)

where Fi−1, Fi, and Fi+1 are the input or output feature map
in a Transformer layer. bFi, dFi+1 are the output feature map of
MSA module. Fo is the output feature map of a Trans-
former block.

In the Transformer layer, the MSA [22,23] is formu-
lated as:

AttentionðQ,K,VÞ = Sof tmaxðQK
T

ffiffiffiffiffi
dk

p ÞV (6)

where Q, K, V are calculated by the product of three
learnable parameters with the input feature maps; dk
denotes the channel dimension of K.
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Fig. 1. The overall architecture of UsViT.

224 S. Wang et al.

JDMD Vol. 1, No. 4, 2022



C. DECODER LAYER

After several Transformer blocks, we can obtain fine-grained
feature maps, which are subsequently reshaped into
H
16 ×

W
16 × C. The reshaped feature maps are then fed into a

progressive upsampling decoder including four same stages
with 2× to reach the full resolution of H×W. The details of
resolution and dimension of different stages are shown in
Fig. 1. Each stage consists of a decoder layer, which includes
a transposed convolutional layer and 4 convolutional layers
with residual connections. Furthermore, instead of using the
usual convolutions, different dilation rates (1, 3, 5, 7) are
introduced to each convolutional layer for enhancing recep-
tive field. In addition, with the help of residual connections,
multiscale feature information from different dilated con-
volutions is fused; thus, the performance of semantic seg-
mentation will be boosted. Finally, the output feature map
from the decoder is processed by a 1 × 1 convolutional layer
with softmax activation function for predicting the pixel-
level segmentation mask.

III. EXPERIMENTS
A. DATASET

To verify the superior performance of UsViT, we first
conduct experiments on a public dataset. Automatic portrait
matting [24] is a portrait segmentation dataset collected
from Flickr, which contains 2000 images with high-quality
portraits. With the resolution of 800 × 600, these images are
randomly split into 1500, 200, and 300 for training, vali-
dating, and testing, respectively. In addition, the labeling
process is finished by closed-form [25] and K-Nearest-
Neighbor (KNN) [26] matting to make sure the high quality
of the dataset.

B. IMPLEMENTATION DETAILS

UsViT was trained by a computing platform with a NIVI-
DIA GTX 2080Ti based on Python 3.6 and Tensorflow 2.1.
Due to the limitation of computing resources, the input
imageswere resized to 256 × 256.During the training period,
Adamwas used as the optimizer and the total epochswere set
to 120. The initial value of learning rate was set to 0.0001 and
the batch size is 8. In the experiment, we used cross entropy
as the loss function. Acc, Dice similarity coefficient (DSC
[27]), and Intersection over Union (IoU [28]) are used as
evaluation metrics for the test set.

C. EXPERIMENTAL RESULTS

The comparison of the proposed UsViT model with U-Net
and its variants on the automatic portrait matting are shown
in Table I. It is apparent from the table that UsViT achieves
the best segmentation performance with 90.43% Acc,

95.56%DSC, and 94.66% IoU. Compared to U-Net, UsViT
gets 1.27% Acc improvement, 2.41% DSC improvement,
and 2.88% IoU improvement, respectively. What is more,
UsViT yields the best performance with only 25.6 M
parameters while U-Net has 31.1 M parameters. To sum
up, UsViT has higher segmentation performance with
relatively fewer parameters than other compared models.

Figure 2 demonstrates some segmentation results of
portrait images obtained by various segmentation models.
As depicted in Fig. 2, the segmentation result of UsViT is
closer to the ground truth compared to other models.
Especially at the edge of the segmentation result, UsViT
shows smooth and similar details as the ground truth. It then
indicates that UsViT has stronger learning ability of feature
representation and better segmentation performance. In a
word, UsViT takes advantages of convolution and Trans-
former meanwhile, which can realize the interaction of local
and global semantic information, so it can obtain better
segmentation results.

D. ABLATION STUDY

In this experiment, we conducted ablation study on auto-
matic portrait matting with reducing one factor at a time to
investigate the contributions of different factors. There are
four situations about base model: A1 – without residual
connections in the encoder; A2 – without transpositions in
the Transformer layer; A3 –without residual connections in
the decoder layer; and A4 – without dilation rates in the
decoder layer.

Table II shows the results of ablation study. It is obvious
that residual connections in the encoder and dilation rates in
the decoder layer make more contribution to the improve-
ment of segmentation performance. Residual connections in

Table I. Segmentation performance of automatic por-
trait matting dataset

Method Param Acc DSC IoU

UsViT 25.6 M 90.43 95.56 94.66

U-Net 31.1 M 89.16 93.15 91.78

ResU-Net 67.4 M 89.35 93.42 92.12

R2U-Net 70.5 M 82.17 85.89 84.45

   (a) Image        (b) Ground Truth      (c) UsViT (d) U-Net      (e) ResU-Net     (f) R2U-Net  

Fig. 2. Segmentation results of automatic portrait matting
dataset.

Table II. Ablation study on the impact of different
factors

Ablation of UsViT Acc DSC IoU

Base model 90.43 95.56 94.66

A1 89.14 93.23 92.37

A2 90.25 94.27 93.52

A3 90.17 94.13 93.28

A4 88.89 93.61 92.46
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the encoder make the feature information propagation
smoother. Different dilation rates in the decoder layer
enhance receptive field and aggregate characteristic infor-
mation. UsViT combines the advantages of both factors,
thereby achieving the best segmentation performance.

IV. APPLICATION
A. ACQUISITION OF GEAR PITTING IMAGES

As shown in Fig. 3, the first step in gear pitting measure-
ment is to acquire gear pitting images. The experimental
device is presented in Fig. 4. The left of Fig. 4 shows
general view of test rig, while the right illustrates the test
gearbox and the vision measuring device. For online
acquiring the image of gear teeth, a vision measuring
systemwas designed. First, we used a transparent plexiglass
plate as upper cover of test gearbox for clearly taking
photographs of gear teeth. Then, to facilitate the adjustment
of the shooting angle, the Charge Coupled Device (CCD)
industrial camera was fixed in a flexibly adjustable bracket,
and LED light source was used. Via gear contact fatigue

experiments and the vision measuring system, 800 gear
pitting images were collected. To make complete gear
pitting dataset, we made corresponding labels by LabelMe
image annotation tool. The resolution of pitting images is
256 × 256, and the ratio of the training images’ quantity, the
validating images’ quantity, and the testing images’ quan-
tity is 7:1:2. Except that the iteration is set to 160 on gear
pitting dataset, other implementation details are the same as
that of automatic portrait matting dataset.

B. RELATIVE ERROR

In addition to the three metrics of Acc, DSC, and IoU, the
relative error of gear pitting area ratio (Re) is also employed
to evaluate segmentation performance on the gear pitting
dataset. After counting the number of pixels from effective
tooth surface area (At) and pitting area (Ap) in acquired
image, the gear pitting area ratio (AR) can be calculated by

AR =
Ap

At
× 100% (7)

After the actual pitting area ratio (ARa) and the pre-
dicted pitting area ratio (ARp) are calculated, Re can be
computed by the following formula. Additionally, average
Re (i.e. Re) of multiple test images is used to compare
segmentation performance of different models.

Re =
����
ARp − ARa

ARa

���� × 100% (8)

C. EXPERIMENT RESULTS

Test results of gear pitting dataset are listed in Table III. From
the table, we can note that the segmentation performance of

Fig. 3. Flow chart of application in gear pitting measurement.

test 
gearbox

gear contact 
fatigue tester controller transparent 

plexiglass 
plate

camera 
bracket

 camera

(a) (b)

Fig. 4. Test rig and vision measuring system for gear contact fatigue. (a) test rig (b) vision measuring system.

Table III. Segmentation performance of gear pitting
dataset

Method Param Acc DSC mIoU Average Re

UsViT 25.6 M 97.91 94.52 92.45 6.78

U-Net 31.1 M 96.73 93.19 90.98 8.94

ResU-Net 67.4 M 96.24 92.45 90.62 9.83

R2U-Net 70.5 M 95.86 91.79 84.21 14.65
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UsViT is better than othermethodswith 97.91%Acc, 94.52%
DSC, and 92.45% mIoU (average IoU) at relatively fewer
training parameters. Compared to U-Net, UsViT gets 1.18%
Acc improvement, 1.33%DSC improvement, and 1.47% IoU
improvement, respectively, which indicates that our approach
can achieve better segmentation performance and save cal-
culation cost.What ismore, Re (average Re) of UsViT is only
6.78%, which is smaller than those of other segmentation
models. Therefore, the proposed UsViT is more suitable for
calculating the gear pitting area ratio.

Figure 5 demonstrates some segmentation results of
gear pitting images obtained by various segmentation mod-
els. As depicted in Fig. 5, the pitting and effective tooth
surface segmented by UsViT are better, compared to other
models. It then indicates that UsViT has stronger learning
ability of feature representation and better segmentation
performance for small targets. Therefore, UsViT takes
advantages of convolution and Transformer meanwhile,
which can realize the interaction of local and global seman-
tic information, resulting in better segmentation results.

V. CONCLUSION
In this paper, we propose UsViT, an efficient and powerful
framework based on Transformer and convolution. Specif-
ically, residual Transformer blocks are designed in the
encoder of UsViT, which take advantages of residual
network and Transformer backbone meanwhile. What is
more, transpositions in each Transformer layer achieve the
information interaction between spatial locations and fea-
ture channels, enhancing the capability of feature learning.
In the decoder, for enhancing receptive field, different
dilation rates are introduced to each convolutional layer.
In addition, residual connections are applied to make the
information propagation smoother when training the model.
The experiments on automatic portrait matting public da-
taset verify the advantages of the proposed UsViT, which
achieves 90.43% Acc, 95.56% DSC, and 94.66% IoU with
relatively fewer parameters. Finally, UsViT is applied to
gear pitting measurement in gear contact fatigue test, and

the comparative results indicate that UsViT can improve the
Acc of pitting detection.
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