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Abstract: The first International Symposium on Dynamics, Monitoring, and Diagnostics was held in Chongqing,
China, in April 2022. The Symposium, which was attended both virtually and in person, had an audience of 2000
and was aimed at enhancing the intelligence of condition monitoring for engineering systems. During the
Symposium, five keynote addresses were delivered by world leading experts, and this paper is comprised of
summaries of these addresses to ensure that the important messages of these speakers are properly on record and

readily able to be referenced.
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I. INTRODUCTION

This keynote summary reflects the important aspects in the
field of dynamics, monitoring, and diagnostics. Current
research and potential research trends in the future on these
important topics are discussed. Section II on choosing the
good signal model for vibration-based condition monitor-
ing was completed by Professor Jérdme Antoni from the
University of Lyon. Section III on the enhancement of
vibration monitoring under noisy nonstationary conditions
was written by Professor Stephan Heyns, Dr. Stephan
Schmidt, and Dr. Daniel Wilke from the University of
Pretoria. Section IV on machinery informatics: an interdis-
ciplinary subject to enable intelligent maintenance was
written by Professor Jing Lin from Beihang University.
Section V on frequency and mode assignment via structural
modifications: basic theory and applications was presented
by Professor Huajiang Ouyang from the University of
Liverpool. Section VI on gear wear: measurement, diagno-
sis, and prognosis was written by Dr Wade Smith from the
University of New South Wales.

II. CHOOSING THE GOOD SIGNAL
MODEL FOR VIBRATION-BASED
CONDITION MONITORING

Vibration-based condition monitoring heavily relies on
signal processing, for designing methods of detection,
identification, and characterization of faults, or for
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preprocessing signals before they are fed to machine learn-
ing classifiers. A plethora of ad hoc methods have been
proposed to achieve these tasks, sustained by an impressive
diversity of heuristics and algorithmic variants, and leading
to everlasting round-robin benchmarks. Although the quest
for universal methods is hopeless, the point made by this
presentation is that “optimal” indicators and signal proces-
sing methods can be designed, provided that they are
guaranteed to capture the diagnostic information contained
in a “good signal model.”

Coming back to the basics, condition monitoring con-
sists in assessing the health status of a machine from
measurements, typically in the form of vibration, electric
current, instantaneous speed of rotation, etc. [1]. A funda-
mental goal is to recognize possible symptoms of a fault—
the so-called mechanical signature [2]—which usually
manifest themselves as subtle changes in the signal proper-
ties [3]. This is where signal models are needed. A signal
model is here understood as a way to describe the observed
measurements, with capability to capture its symptomatic
behavior; this is not to be confused with mechanical
models, which are more concerned with the explanation
of the physical phenomena that produce the signals.

The standard and historical signal model is to describe
machine signals as a sum or periodic components, as
generated by the steady-state response of a system to
rotating forces. Condition monitoring then essentially con-
sists in checking for the presence of characteristic fault
frequencies, which can be calculated from the kinematical
diagram of the machine. It is noted at this juncture that
Fourier analysis offers an optimal tool in this endeavor. One
refinement of this model is to recognize that machine
signals are actually periodic with respect to the angle of
rotation of the mechanical components, rather than to time;
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even very small speed fluctuation can make this difference
palpable and jeopardize standard Fourier analysis if not
properly considered. The good signal model under this
perspective is that of angle-periodic signals. From the
technological aspect, the angle-periodic model requires
the additional measurement of a reference angle of rotation,
either by a dedicated encoder or directly from the signal
itself [4]; from the theoretical aspect, it has been showed
how to perform Fourier analysis of angle-periodic signals
directly from the time measurements [5,6], that is, without
needing angular resampling [7,8].

Models based on sums of periodic components are good
enough to represent “deterministic” signals but are unable to
reflect signals with “random” behavior, as is often encoun-
tered when the bandwidth of the measurements is increased
[9]. It is noted here that randomness is to be understood in its
epistemic meaning, as a way to coarsely describe phenomena
that are too complex to be modeled otherwise. When dealing
with rotating machines, typical examples are provided by
surface faults in bearings and gears. The theory of cyclos-
tationarity perfectly covers these cases by extending the
periodic model to random signals that still experience
some hidden periodicity due to the rotation of the mechanical
components. An illustrative example of a (second-order)
cyclostationary (CS) signal is a stationary random noise
that is amplitude modulated by a periodic function. The
application of CS models to condition monitoring has been
the object of several research works in the last two decades
[10], recently revivified by the introduction of a fast algo-
rithm to calculate the spectral correlation [11], a tool that
generalizes Fourier analysis to jointly display the spectral and
the modulation contents of a signal.

Just as for the periodic model, the CS model needs to be
refined when applied to signals measured on machines that
do not operate at perfectly constant speed. The issue is
however more intricate, since the angular dependence essen-
tially impacts the hidden periodicities (e.g. modulations) of
the signal but barely its local correlation. Angle-time cyclos-
tationarity is a new framework introduced by the author a
decade ago to account for this situation [12,13]. An angle-
time CS signal is one whose statistics depend on temporal
time lags (in second) and are periodic in angle (in radian).
This framework allows the generalization of the spectral
correlation to its order-frequency counterpart, which can
jointly display the spectral (in Herts) and the modulation
(in 1/rad or in order) contents of a signal. Some examples of
successful applications of this framework are the diagnosis of
rolling element bearings [14,15], the detection of rattle noise
in gearboxes [16], and blind deconvolution [17].

One of the definite outcomes of good signal models is to
allow the design of optimal health indicators, in the sense that
they maximally extract the diagnostic information contained
in a signal [18]. (Angle-time) CS models have proven very
rich in this respect; they have the quite unique capability to
capture the diagnostic information conveyed in the form of
nonstationarity, as is the case for the repetitive impacts or,
more generally, by the modulations produced by faults. This
draws a direct analogy with speech and music signals, where
information is mainly communicated by nonstationary pat-
terns. This reasoning is to be opposed to most other ap-
proaches, which mainly search for the diagnostic information
in the departure from non-Gaussianity [19].

It is worth pointing that other signal models, not covered
in this presentation, have proven successful in condition

monitoring. One exploits the sparsity characteristics of
incipient faults. It consists of representing the fault signature
by means of a decomposition basis that requires very few
components and to search for the presence of these in the
measurements. The periodic model actually falls in this
category, where periodic components constitute the sparse
representation. Perhaps less obvious is that a CS signal is also
an instance of a sparse model; this is because its spectral
correlation—a 2D distribution—is actually made of a sum of
spectral lines indexed by discrete cyclic frequencies, that is, a
1D distribution. This fact was for instance exploited in [20].

In conclusion, signal models offer to condition moni-
toring the framework to develop optimal diagnosis tools
and health indicators, where the notion of optimality takes a
precise meaning in terms of the information that a model is
able to capture. This is particularly needed nowadays, when
facing the huge number of scientific publications in the field
of condition monitoring, and attempting to benchmark their
contributions.

lll. ENHANCEMENT OF VIBRATION
MONITORING UNDER NOISY
NONSTATIONARY CONDITIONS

Vibration monitoring of rotating machinery under noisy
nonstationary operating conditions remains difficult
because of challenges such as amplitude and frequency
modulation, as well as impulsive noise, that impede the
application of conventional condition indicators.

To improve the performance of vibration monitoring
under nonstationary conditions, various techniques that rely
on traditional signal processing can be used. Learning-
based methods provide a complementary perspective on
the signal processing problem, by potentially alleviating
some of the shortcomings of traditional condition monitor-
ing methods.

This section highlights some concepts to enhance
vibration monitoring under nonstationary conditions,
from signal processing and learning-based perspectives,
and also through the use of a complementary approach.

A. A MULTIFACETED CHALLENGE

Vibration monitoring of complex machinery often poses a
multifaceted challenge. Not only does one deal with time-
varying operating conditions as seen in Fig. 1 top right, but
often we also deal with weak damage components that need
to be separated from the effects of the nonstationary condi-
tions, see the top left. Yet another problem is the vulnerability
of some analysis tools, to the effects of extraneous impulsive
signal components. This is highlighted at the bottom left. In
the 4th industrial revolution, we also have to deal with
progressively large amounts of data from multiple sensors,
and fleets of assets, and may lead to us being overwhelmed
by more and more data as shown at the bottom right.
Signal processing and learning-based techniques are
both commonly applied in condition monitoring. But to
deal with the problems outlined in Fig. 1, we propose the
use of signal processing techniques combined with learning-
based techniques: Increasingly using these two approaches in
a complementary way. Both these approaches encompass
methods, training, and evaluation as shown in Fig. 2.
However, these two approaches differ in focus: Signal
processing predominantly focuses on the methods used and
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Fig. 1. Multifaceted challenges in vibration-based condition
monitoring.

Condition monitoring: Learning-based
methods

Signal pr()(tessing"}_‘
methods X

Fig. 2. A complementary approach.

how the time series data are evaluated. Training is defined
through expert knowledge obtained through years of expe-
rience. Learning-based approaches focus on the methods
used and the training required to maximize method perfor-
mance. This may be viewed as the intersection between
methods and evaluation which corresponds to signal pro-
cessing and intersection of methods and training which
corresponds to learning-based methods.

Through the complementary use of these two ap-
proaches, we endeavor to move in the direction of scalable
solutions which benefit from the advantages of the present
day focus on data-driven approaches and algorithms, while
addressing the need for reduced human specialist expertise
required for large-scale predictive analytics but not forfeit-
ing the physical insights obtained from signal processing
techniques.
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B. SIGNAL PROCESSING

Various signal processing methods have been developed to
deal with time-varying operating conditions, weak damage
components, and extraneous impulsive components. Some
of these techniques are documented in detail by [21,22], and
[23]. Supplementing classical signal processing analysis
methods with historical data can also be very useful
[24,25]. Such an approach allows the detection of anomalous
components over time, detects changes in these anomalies
over time, and ultimately allows one to perform automatic
fault detection. These methods however still require an
engineer to decide which processing should be performed.
This remains difficult for complex machinery with many
rotating components and sources.

C. LEARNING-BASED METHODS

Learning-based methods provide complementary perspec-
tives on the signal processing problem, by potentially ad-
dressing some of the shortcomings of traditional condition
monitoring methods. In this regard, the use of generative
learning as opposed to discriminative learning is becoming
more important because of the focus on the unsupervised
problem in condition monitoring, given the usual limitation
of limited historical fault data to provide suitable labels. Such
unsupervised models try to model the underlying patterns or
distributions of data points. The success of these models can
be assessed in terms of the reconstruction error, which
represents the distance between the original data points
and its projection onto a lower dimensional subspace repre-
sented by the model and an interpretation of the latent signals
which capture the structure of the model [25,26].

In principle, one can use learning-based methods to
relieve the workload of engineers, at least for part of the
condition monitoring process, by automatically learning the
underlying structure of the data, through a process of
encoding and decoding the data.

Recent work emphasizes the value of untangling time
in the learning process [27]. This is something that is not
always realized when applying common machine learning
methods in condition monitoring.

D. COMBINING SIGNAL PROCESSING AND
LEARNING-BASED METHODS

Complementary use of signal processing methods together
with learning-based methods has proven to provide signifi-
cant advantages. In Fig. 3 on the left, one sees a health
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Fig. 3. Complementary use of signal processing and machine learning methods.
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indicator as function of angular position on our damaged
experimental gear, using a learning-based perspective only.
The health indicator clearly shows the fault at 180 degrees.
But if one combines time synchronous averaging
together with a learning-based approach as on the right,
one gets a much crisper definition of the fault angle and fault
progression as function of record number (or time).

E. CONCLUSION

There is still a plethora of challenging problems in vibra-
tion-based condition monitoring. These problems relate to
issues such as nonstationary operational conditions, weak
damage components, extraneous impulsive inputs, and
large amounts of data. Fortunately, signal processing pro-
vides very useful ways to enhance our ability to extract
diagnostic information from these signals.

At the same time, statistical and machine learning
methods are becoming important in the context of vibration
monitoring. This is due to lower levels of human experience
required, and the scalability of these methods to process
huge amounts of data.

The complementary use of these signal processing and
learning-based techniques provides new and untapped
potential for future research.

IV. MACHINERY INFORMATICS: AN
INTERDISCIPLINARY SUBJECT TO
ENABLE INTELLIGENT
MAINTENANCE

A. BACKGROUND

During the past few decades, the techniques with respect to
machinery diagnosis and prognosis are growing rapidly,
especially with the development of instrumentation, inter-
net, computer science, and other emerging information
technologies, such as machine learning. The major reason
is that machinery diagnosis or prognosis is an interdisci-
plinary subject mainly concerning machinery dynamics,
computer science, instrumentation, and measurement. We
can easily understand it by reviewing the evolution history
of machinery diagnosis. For example, we do not have to
rely on the personnel experience as long as the data
acquisition system and signal analysis methods are avail-
able. Lots of remote condition monitoring and diagnosis
systems were established during the past two decades,
which benefits from the technical advance and cost reduc-
tion of internet and electronic products. Furthermore, based
on these systems, tons of data are produced and transferred
to remote sites in real time for the purpose of remote
monitoring, diagnosis, or maintenance. The methods
with respect to big data analysis, machine learning, and
Al algorithms are consequently with a blowout type
increase in the applications during the past 10 years.
However, on the other hand, whenever the manufac-
turers or the service providers are wondering how to
integrate the methods and techniques efficiently so as to
set up an optimal solution for maintenance. The key is to
understand the health condition and the degradation trend
thoroughly and deeply, which significantly depends on how
much information obtained throughout the lifecycle of the
machinery. Machinery informatics is a subject to investi-
gate the origin, representation, evolution, and acquisition of

the information on the health and performance throughout
the machinery lifecycle.

B. RESEARCH CONTENT

In 2004, Qu [28] proposed the concept of informatization of
mechanical products, which can be considered as the origin
of machinery informatics. In this concept, the performance
of traditional mechanical products could be improved
significantly by proper utilizing all kinds of dynamic infor-
mation on them, which comprises three steps, data acquisi-
tion, feature extraction, and performance improvement.

Machinery informatics can be understood from three
aspects. First of all, the research subject is machinery and
the main purpose is high efficiency and low cost, no matter
what method or technique is employed. It concerns the total
lifecycle of the machinery, including design, manufactur-
ing, operating, and maintenance. Secondly, the information
here is generalized, which contains not only dynamic
information with respect to the structure, function, and
performance of the machinery but also information tech-
nologies concerning data storage and communication, fea-
ture extraction and integration, decision, and prediction. To
some extent, the research process is to reveal the mecha-
nism and relationship between different dynamic behaviors
or between the dynamic behavior and the signal represen-
tation by using information technologies, including the
emerging big data and Al technologies. Finally, fusion
of different disciplines is the breakthrough point to investi-
gate machinery informatics. The fusion can be happened on
different levels which include sensation, feature extraction
and decision, or on different stages within the total lifecycle,
or even across different levels and stages.

C. TECHNICAL ROUTE

The more information utilized, the more accurate or com-
plete evaluation can be obtained about the condition of the
machinery. Originally, dynamics and cybernetics were
employed to model the failure and degradation process
for parts and the total system. For more generality, hydrau-
lic-electromechanical coupling was investigated for the
design, fault diagnosis, and performance evaluation for
complex electromechanical systems [29]. By using this
way, the information flow, matter flow, and energy flow
are taken into consideration simultaneously. Consequently,
more correlative information among different subsystems is
utilized to characterize the complex electromechanical
system accurately. Particularly, for high-precision elec-
tronic equipment such as radar and radio astronomy tele-
scope, the issue on electromechanical coupling has been
studied intensively and applied successfully for system
design and performance analysis [30].

Information extraction and fusion can be complemen-
ted by using model-based or data-driven method, or the
combination of the two. Among data-driven methods, the
emerging big data technology is considered as a promising
way to obtain latent information or reveal unknown corre-
lation mechanisms between the machinery performance and
the signal representations. However, lack of interpretation
is the prominent imperfection when machine learning
methods are simply used. For this reason, how to integrate
professional knowledge into the method is attracted high
attentions up to now, which is also considered as key feature
of the new generation of artificial intelligence.
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D. CONCLUSIONS

Machinery informatics is an interdisciplinary subject to
reveal the latent correlation mechanism between the perfor-
mance and the signal representations, which helps to under-
stand the health condition and degradation trend more clearly
and accurately. Together with professional knowledge, the
emerging information technology could be employed as an
efficient way to investigate machinery informatics.

V. FREQUENCY AND MODE
ASSIGNMENT VIA STRUCTURAL
MODIFICATIONS: BASIC THEORY

AND APPLICATIONS

Passive vibration control makes use of mass, stiffness, and
damping to influence how a structure behaves when excited
and requires no external power to operate. It is more reliable
and inexpensive in general, in comparison with active and
hybrid control.

A particularly interesting passive control methodology
is to assign frequencies or modes or both by means of
structural modifications, that is, changing the mass and
stiffness (and much less often, damping) of a structure so
that it acquires desirable frequencies and modes. The
required structural modifications may be found through a
trial-and-error process, which is tedious and does not
guarantee an optimal solution. Inverse structural modifica-
tions aim to determine the required modifications in a
systematic way.

Research into structural modifications for passive
vibration control at Liverpool was initiated by Mottershead
in early 2000s [31] and has been championed by Ouyang in
recent years. The Liverpool approach is mostly a recep-
tance-based methodology. Using a small number of recep-
tances that can be measured fairly easily, a numerical model
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of the structure to be controlled is not required. This means
two big advantages: (1) absence of modeling errors and (2)
realistic representation of real structural properties
(e.g., nonproportional damping). This keynote speech gives
a brief introduction of the theory behind the receptance-
based approach and focuses on several successful examples
of laboratory and practical implementations.

After introducing the concept of passive vibration
control with two real examples—vibration absorbers
used in Millennium Bridge in London and Taipei 101
Tower—the speaker defined frequency and mode assign-
ment and briefly described the procedure of the receptance-
based inverse structural modification approach. Forced
vibration and based-excited vibration of a one-degree-of-
freedom (DoF) mass-spring-damper system were used to
demonstrate the vibration suppression principle of fre-
quency assignment. The inherent mathematical challenges
in frequency/mode assignment were highlighted using the
equation of the linear eigenvalue problem. The concept of
receptance was provided.

The speech then moved forward to the presentation of
the examples of applying the receptance-based approach for
frequency and mode assignment by means of structural
modifications, conducted mostly in the Dynamics and
Control Group at Liverpool, often in collaborations with
international researchers.

The first example is about a five-DoF mass-spring
structure shown in Figs. 4 and 5.

Among the five frequencies and modes, two frequen-
cies and their associated modes are assigned different
values. In particular, a node is assigned to each of the
two modes, which is quite challenging. The determination
of the required modifications is cast as a continuous-vari-
able optimization problem with the five masses and five
grounded springs being the design variables. These mod-
ifications are found to realize the desired modal properties
very well when they are implemented in practice [32].

Fig. 4. A five-DoF mass-spring structure with a shaker.
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Fig. 5. Schematic of the structure in Figure 4.
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Because the actual mass and stiffness modifications are
respectively in the form of small blocks of identical mass and
thin steel plates of nominally identical stiffness, determina-
tion of the required modifications is recast as an integer-
variable optimization problem in multiple units of the mass
blocks and steel plates, which leads to a very good yet very
different solution from that of the continuous-variable opti-
mization [33]. Structural modifications in terms of integer
multiples of standard units are more realistic and thus more
useful in practice.

Apart from the discrete structure shown in Fig. 4, a
continuous structure of a I'-shaped frame is modified to gain
one or two frequencies of a II-shaped frame, as shown
in Fig. 6.

For this kind of flexible structures, not only transla-
tional receptance but also rotational receptance at the
modification (connection) point are required, the latter of
which is more difficult to acquire (when using a transla-
tional input such as a hammer impact and translational
accelerometers). To overcome this difficulty, an indirect
method for measuring a rotational receptance in a hammer
test using (translational) accelerometers was developed
[34]. The main idea is the introduction of a simple auxiliary
structure, a T-shaped frame in this case, to the modification
point, in order to “tease out” the rotational receptance there,
via substructure-decoupling technique. One frequency, two
frequencies, and one frequency and one antiresonant fre-
quency were respectively assigned successfully [35].

The third example is a mass modification to a real dual-
shaft system with two discs, a pair of gears, and five sets of
bearings treated as linear springs, as shown below Fig. 7.

Each circular disc has 16 small circular threaded holes
equally spaced around the disc. A hole allows a set of
screw and nut to be attached to a disc so that its inertia is
modified. Two frequencies were assigned separately or
simultaneously [36].

Portal frame - adding a leg (beam)

Fig. 6. The original (I'-shaped frame) on the left and the modified
(IT-shaped frame) on the right.

30 cm
X X gear pair
X
. ———
bearings — %

E
XX

X
100cm

The fourth example was frequency assignment of a
linear feeder conducted by Zanardo [37].

A brake-clutch in a Spanish company emitted loud
squeal noise. The mass and stiffness modifications required
to suppress it were determined and the latter was imple-
mented on a laboratory brake-clutch which no longer
squealed after a spring was connected to the stationary
disc of a simplified brake-clutch system [38].

Assignment of one or two frequencies of a complicated
ship-hull structure was briefly discussed in the speech.
Since this work will be submitted to a journal, it is not
covered here.

A U-shaped pipeline had five mass-spring supports as
vibration isolators. Its internal fluid flow speed and the
measurement noise were taken as interval-type uncertainty.
Two antiresonant frequencies were assigned with high
accuracy in the presence of the uncertainty [39]. This
work brought application of frequency assignment closer
to practical use.

The Liverpool approach relies on high-quality mea-
sured receptances. For this reason, research on how to
measure receptances of complicated structures was carried
out. This speech gave two such examples: receptance
matrix of a point on the tail cone of a Lynx helicopter
[40] and torsional receptance of a shaft [41], both through
an auxiliary structure (an X-shaped frame and a T-shaped
frame, respectively) and substructure decoupling.

Partial assignment [42,43] is more challenging and also
more useful. Work on this topic is going on and several
papers on this topic have been published.

It should be pointed out that eigenvalue (or pole) and
eigenvector assignment may be made using the Liverpool
approach in principle. It should be noted that the real part of
a complex eigenvalue/pole is more sensitive to damping.

The Engineering and Physical Sciences Research
Council and the Royal Academy of Engineering sponsored
some of the research. I have had the good fortune of
working with many people on frequency and mode assign-
ment since 2003, who have all been acknowledged at the
end of this speech. Drs Sung-han Tsai and Shike Zhang, Mr
Lin Zhang and Prof John Mottershead provided some slides
used in this speech.

VI. GEAR WEAR: MEASUREMENT,
DIAGNOSIS, AND PROGNOSIS

A. BACKGROUND AND INTRODUCTION

Geared transmission systems inevitably experience wear,
which in its broadest definition includes any material
removal process, of which the most relevant for gears
are abrasive wear, based on the contact and breakage of

2N

main shaft X

Fig. 7. A dual-shaft system with two discs, two gears, and five sets of bearings.
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asperities in sliding contact, and fatigue pitting, based on
repetitive loading.

Wear creates deviations from the ideal involute tooth
profile, altering the load distribution at the meshing inter-
face, and so the development of one wear mechanism can
promote the initiation of another and can ultimately lead to
gear failure, whether catastrophic or functional (machine no
longer performs to requirements). This wear may be evenly
distributed around the gear or localized to a small number of
teeth, although in most applications it tends to be widely
distributed, especially in moderate-severe stages. Because
of this, its diagnosis has typically been based largely on
changes in gear mesh (GM) harmonics. Abrasive wear is
highly dependent on sliding velocity and so tends to
generate a “double-scalloped’ wear pattern, with minimal
wear at the pitch line, where the sliding velocity dips
momentarily to zero, and higher wear near the root and
tip of the tooth [44]. This creates a distortion in the gear
meshing pattern, affecting several harmonics of the GM
frequency, with the second and higher harmonics consid-
ered the best indicators of wear in the early stages [44];
however, these have not been shown to give a clear
indication of severity and their capability in tracking
wear level remains unproven.

B. MEASUREMENT OF ABRASIVE WEAR
USING TRANSMISSION ERROR

Transmission error (TE) is defined as the difference in the
angular displacement of the driven gear with respect to that
of the driving gear, taking into account the gear ratio
[45,46]. TE occurs in healthy gears from factors such as
the deformation of teeth under load or to profile modifica-
tions made in the manufacturing process (e.g., tip relief).
Faults introduce their own additional TE signatures, with,
for example, root cracks (stiffness reduction) exhibiting
localized load-dependent symptoms and abrasive wear
(profile changes) showing distributed load-independent
effects.

The measurement of TE requires shaft encoders on the
input and output shafts, ideally on an unloaded portion such
as the free ends. TE is readily divided into three categories:
geometric (GTE), measured at low speed and low load;
static (STE), measured at low speed and operating load,
including deflection of the teeth; and dynamic (DTE),
measured at operating speed and load, thus including
transfer function effects. While the concept of TE has
been understood since at least the 1930s [47] and was
used throughout the 20th century [48], its early use was
rather as a design and quality control tool, and it was not
employed for gear diagnostics until the early 2000s, with
the seminal work of Endo et al. [49,50]. Yet even since
then, in the author’s opinion, it has been somewhat under-
used as a monitoring tool, perhaps owing to the perceived
difficulty in measurement requirements.

Despite showing great potential for diagnostics, until
recently one important aspect of TE was overlooked: that of
the mean (or DC) TE component. TE is calculated by
obtaining phase-time maps of the two shafts in question
and subtracting one from the other (allowing for gear ratio).
In this process, since the initial phase of both maps is
arbitrary, it is usually set to zero, giving a resulting TE curve
with zero mean. However, as illustrated in Fig. 8, in the
event of moderate-severe abrasive wear, the primary effect
on (geometric) TE would be a DC offset in the TE curve
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Fig. 8. Schematic showing how with extended wear the
DC component of TE is primary, and not variations around the
mean [51].

corresponding to the mean depth of material removed, with
variations about that mean a secondary consideration, and
diminishing in importance with the further progression
of wear.

This realization—that wear is essentially captured by
the DC component of TE, typically discarded—prompted
the development in [51] of absolute TE (mean plus
deviations). The key to the absolute TE concept is to
establish, in a given TE measurement, a reference point
(a certain tacho pulse from the input shaft, e.g.) in the
hunting tooth cycle (HTC) of the gear pair. It is this that
allows comparison of measurements at different wear
stages, because the same HTC reference point can be
used in all subsequent measurements. This is done by
using a “rephasing” technique explained in [51], which
rephases future measurements so they commence at the
same HTC reference point, meaning the starting phase of
the encoder phase maps is no longer arbitrary, giving a
meaningful DC component of TE when one map is sub-
tracted from the other. Once this reference point is
decided, all subsequent measurements are to be rephased
so as to commence at the same point in the HTC, allowing
the generation of so-called “absolute TE” curves that
evolve with the condition of the gear pair, all using the
same (ideally unworn) initial reference condition.

To test this concept, an extended wear test was con-
ducted on a single-stage spur gearbox rig at UNSW Sydney.
The test employed soft gears and no lubrication, to generate
high levels of abrasive wear. Further details can be found in
[51]. Figure 9 shows the generated absolute TE curves and
their evolution throughout the test. Test 0 served as the
baseline and hence has zero absolute TE, with Test 14 the
final test. A dominant periodicity can be seen in the TE
curves (GM frequency), but after the first few measure-
ments this variation about the mean is dwarfed by the mean
TE itself, which approaches 800 um by Test 14—very
severe wear for module 2 gears.

To validate these figures, all wear particles from the
gears were carefully collected throughout the test and
weighed periodically, and the mass used to calculate the
average wear depth using the known material density,
geometry of the gears, and the assumption that the wear
was uniform across the gear face width. The resulting
calculated wear depth is plotted in Fig. 10, alongside the
mean TE figure obtained using all three TE forms: GTE,
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Fig. 9. Schematic showing how with extended wear the
DC component of TE is primary, and not variations around the
mean [51].
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Fig. 10. Wear depth calculated using “absolute TE” concept and
comparison with particle mass-based measurements [51].

STE, and DTE. It is clear that all TE forms give virtually
identical results, and that the TE wear quantification is
indeed very close to the mass-based calculation.
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As shown in [51], the vibration signals recorded
throughout the testing did not give a clear indication of
wear severity. While this example shows the power of TE in
gear diagnostics, it is interesting to note that a good
approximation to the mean TE (and hence wear level)
could be obtained using just once-per-rev tachometers on
the input and output shafts. This would essentially give one
point for each of the curves in Fig. 9—more than sufficient
to diagnose wear severity in the moderate-severe stages.

C. A DIGITAL TWIN APPROACH FOR WEAR
MONITORING AND PREDICTION

This section explains the development and use of simula-
tion models to monitor and predict gear wear, the basic
premise being that with regular updating of certain model
parameters, good predictive capabilities can be achieved,
even with very simple models. Figure 11 shows a 21-DOF
lumped parameter representation of the same gearbox used
in the absolute TE study. The model includes a term, e, for
the profile changes (GTE) arising from wear.

Figure 12 gives a very basic schematic of the proposed
wear prediction approach, first outlined in [52]. The scheme
consists of the 21-DoF model (“dynamic model”), which
feeds GM contact forces/pressures into the wear model,
which in this case is simply Archard’s abrasive wear model
[53], requiring only contact force/pressure, sliding velocity,
and a single wear model parameter K (to be updated based
on measurements). Without any wear model updating, the
model predicts future wear levels and resulting gear tooth
profiles, which can be fed back into the dynamic model.
However, with no self-correcting mechanism, these predic-
tions would likely deviate from reality after some time, and
so the updating loop on the right-hand side of Fig. 12 is
introduced. This updating loop is based on a comparison
between measured and simulated vibration responses, with
Archard’s wear parameter K adjusted to ensure a match
between the two. Ideally, this would be based on a vibration
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Fig. 11. 21-DOF lumped parameter model of UNSW gearbox test rig [52].
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Fig. 12. Proposed vibration-based updating methodology for
predicting gear wear [53].

indicator both sensitive and specific to tooth profile changes.
In the results that follow, however, simple vibration RMS
levels were employed, found to be acceptable in this case of a
simple single-stage gearbox with no other developing faults.
Figure 13 shows the results of applying the gear wear
monitoring approach to a dry test on the single-stage spur
gearbox. The left plot shows a comparison between experi-
mental and simulated vibration RMS levels throughout the
test. In this case, wear parameter updating was only required
on two occasions, undertaken whenever the two RMS values
differed by more than 5%. The right plot shows the experi-
mental and simulated wear depth evolution, where excellent
agreement can be seen. Note that wear depths were not
compared in the updating process, and the agreement
between these two curves is a genuine indication that the
(updated) model is tracking very well the true state of the
gears. Ref. [54] gives further details, and in [55] a more
comprehensive prediction process is outlined, in which the
abrasive wear component of Fig. 12 is augmented with a
fatigue pitting prediction loop so that the two common wear
modes can be monitored and predicted simultaneously.
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D. ADVANCED WEAR ANALYSIS USING
CYCLOSTATIONARITY

Space limitations prevent a full discussion of work in this
area, but brief mention must be made of the use of CS signal
analysis in the detailed study of gear wear. This work
commenced with studies [56,57], which explored the con-
nection between the level of cyclostationarity in the vibra-
tion signal and the surface roughness of gears. The theory—
supported, though not yet clearly “proven,” by experimen-
tal evidence—is that gears with rougher surfaces will
produce signals with stronger second-order CS content
(at cyclic frequency equal to GM) due to the increase in
asperity contacts associated with increased roughness.
More recent and advanced developments of this concept
include application of generalized Gaussian CS signal
models to represent sliding contact conditions in gears
using acoustic emission signals [58,59], and the discovered
connection between carrier frequency CS signal content and
gear tooth spatial frequency distribution [60]. The latter was
proposed as a way of differentiating abrasive- and pitting-
dominant wear cases in gears, since the two wear mechan-
isms produce surfaces of vastly different spatial composi-
tion (high frequency for abrasion and low for pitting).

E. CONCLUSIONS AND FUTURE
DIRECTIONS

This paper briefly explained several key developments in
gear wear measurement, diagnosis, and prognosis, based on
research at UNSW Sydney over the last few years. This
includes the use of TE as a powerful yet underused diag-
nostic tool, the prediction of gear wear using a simple digital
twin approach, and the use of CS modeling to uncover the
finer details of gear surface conditions.

Despite this progress, much remains to be done. Surely
an area for further development involves TE analysis—a
measurement likely to become more accessible under Indus-
try 4.0 and Internet of Things paradigms, where shaft en-
coders and other embedded sensor technology will become
increasingly commonplace. Prognostics is an obvious area
for further work, yet improvements in robust fault severity
assessment will be required to fully enable the potential in
this domain. A last mention should be made of CS signal
analysis. A fortuitous feature of gear signals is that even the
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Fig. 13. Comparison between experiment and model after updating wear parameter K. Left: vibration RMS (used for updating); right:

wear depth (not compared during simulation) [54].
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random components tend to have a very deterministic statis-
tical structure, with the cyclic frequency of random vibrations
known precisely (GM frequency), and often unique in a
given machine. This permits the separation of such content
and the isolation of components related solely to the gear pair
under analysis. This is a promising avenue for fault severity
assessment and prognostic analysis.
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