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Abstract: Fault-related resonance frequency band extraction-based demodulation methods are widely used for
bearing diagnostics. However, due to the high peaks of strong gear meshing interference, the classical band
selection methods have poor performance and cannot work well for bearing fault type detection. As such, the
CVRgram-based bearing fault diagnosis method is proposed in this paper. In the proposed method, inspired by the
conditional variance (CV) index and root mean square (RMS), a novel index, named the CV/ root mean square
(CVR), is first proposed. The CVR index has high robustness for the interference of non-Gaussian or Gaussian
noise and has the ability to determine the center frequency of the weak bearing fault-related resonance frequency
band under strong interference. Secondly, motived by the Kurtogram, the CVRgram algorithm is developed for
adaptively determining the optimal filtering parameters. Finally, the CVRgram-based bearing fault diagnosis
method under strong gear meshing interference is proposed. The performance of the CVRgram-based method is
verified by both the simulation signal and the experiment signal. The comparison analysis with the Kurtogram,
Protrugram, and CVgram-based method shows that the proposed technique has a much better ability for bearing
fault detection under strong noise interference.
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I. INTRODUCTION
Bearings are critical components of gearboxes, which are
widely used in drive train systems of mechanical equip-
ment. Typical examples include wind turbines, aircraft
engines, and helicopter gearboxes [1]. Due to harsh work-
ing environments such as shock, heavy load, and high
temperature, bearings are easily damaged, and their failure
may lead to unplanned shutdowns and increase in mainte-
nance costs or even fatal accidents. In addition, the bearing
fault feature is usually submerged in strong interference,
such as gear meshing vibration or other background noise
[2]. Hence, bearing fault diagnosis under strong gear inter-
ference has become an important topic in recent years.

Rolling bearing defects often occur in the loading area;
when the rolling elements pass through the defect, a series
of impulses are generated, and these impulses will excite
high-frequency system resonance. Namely, the vibration
signal in the high-frequency resonance band preserves
bearing fault information well [3]. Hence, high-frequency
resonance extraction is an important step for bearing fault
diagnosis.

In the past few decades, a variety of methods have been
proposed to select the informative frequency band. Among
them, spectral kurtosis is the first systematic indicator.
Spectral kurtosis (SK) is defined as the kurtosis of its
frequency components and is compared to the variability
in the amplitude of the different spectral frequencies [4].
Thus, the SK can be used to indicate the impulsiveness
change of a signal with frequency.

For improving the frequency resolution of the SK,
Antoni et al. [5] proposed the Kurtogram, which displays
spectral kurtosis values in a visual form on a 2D plane as a
function of the central frequency and the bandwidth of the
filtered signal.

The Kurtogram is effective to determine optimal filter-
ing parameters; however, its application is limited due to the
expensive computation. Then, based on a multi-rate filter
bank structure, the Fast Kurtogram was proposed by Antoni
[6]. The Fast Kurtogram has a higher calculation efficiency
than the Kurtogram; thus, it has been widely used and
considered a benchmark technique for mechanical fault
diagnosis.

The Kurtogram is constructed based on the kurtosis
indicator which is sensitive to impulses; it would fail in
cases when the strong non-Gaussian noise contains high
peaks than fault impulses. To address this issue, a series of
enhanced spectral kurtosis methods were proposed. Firstly,
Protrugram was proposed by Tomasz Barszcz et al. [7], and
it is based on the kurtosis of the envelope spectrum am-
plitudes of the narrowband envelope signals calculated in
the frequency domain rather than the computation of the
kurtosis of the filtered time domain signal. Secondly, Ali
Moshrefzadeh and Alessandro Fasana [8] developed the
Autogram, which enhances the conventional Kurtogram by
computing kurtosis of unbiased autocorrelation of the
squared envelope of the demodulated signal. Motivated
by ideas in the thermodynamics field, where transients are
seen as departures from a state of equilibrium, Jerome
Antoni [9] proposed measuring the negentropy of the
squared envelope (SE) and the squared envelope spectrum
(SES) of the signal. As a result, the SE Infogram and the
SES Infogram were defined, respectively. In addition, the
Infogram combines the advantages of the Kurtogram’s
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focus on impulsiveness and the Protrugram’s focus on
cyclostationarity.

In recent years, some new indicators, such as the
Gini index [10], stability index [11], and CV index [12],
have been introduced into machinery fault diagnosis due to
their high robustness under low SNR or non-Gaussian noise
background.

The Gini index was originally introduced in economics
and used to measure the income inequality of a nation and
was first introduced for the feature extraction of the machin-
ery fault diagnosis in 2017 [10]. Since then, the Gini index
is widely applied in this field to solve the gear and bearing
fault diagnosis [13,14,15]. The stability index is proposed
based on the α-stable distribution, which is an extended
form of the classical normal distribution, and it has been
successfully used for non-Gaussian noise data pre-proces-
sing [11]. The CV index, which is based on a well-known
20-60-20 Rule in the field of management, was used for
copper ore crusher-bearing fault diagnosis by Justyna
Hebda-Sobkowicz [12] et al. in 2020. In short, the 20-60-
20 Rule can be clarified as if a large normal random sample is
divided into three sets with different states: one correspond-
ing to the worst (smallest) 20% outcomes, one corresponding
to the middle 60% outcomes, and one corresponding to the
best (largest) 20% outcomes; then, the variances on appro-
priate subsets are approximately the same.

The CV index is sensitive to periodic impulses, and it
has a good effect on mechanical system fault diagnosis.
However, when the measured signal includes multiple
vibration components with different amplitudes, the CV
index-based method would select the resonance frequency
band with a high amplitude, while the resonance frequency
band corresponding to a smaller amplitude would be
ignored. This phenomenon is very common for gearbox
signals, in which relatively weak bearing fault features are
often submerged in complex gear vibration [16,17].

As such, inspired by the CV index, a novel index, named
CVR, is first proposed in this paper. Since it takes the
impulsiveness and energy characteristic of the signal into
consideration, the CVR index is sensitive to fault-related
impulses with small amplitudes. Secondly, the CVRgram is
developed for adaptively determining the optimal filtering
parameters. Finally, the CVRgram-basedmethod is proposed
for detecting bearing faults under strong gear meshing
interference. The proposed method is blind, as it does not
require certain knowledge about the target fault.

The remaining parts of this paper are organized as
follows: The principle of the CV index is introduced in
Section II. In Section III, the novel CVR index and
CVRgram are introduced. In Section IV, the proposed
CVRgram-based method is presented. In Section V, a simu-
lated faulty bearing signal under strong noise interference is
constructed to verify the performance of the proposed
method. In Section VI, a faulty bearing signal measured
from the gearbox is used to further validate the proposed
method. Finally, the Conclusions are drawn in Section VII.

II. REVIEW OF CV INDEX
AND MOTIVATION

A. REVIEW OF CV INDEX

The CV is an outstanding index with high robustness under
the interference of random impulse noise, and it can be used

to distinguish fault-related resonance frequency bands from
other frequency bands.

In practical applications, except for the Gaussian noise,
other fundamental frequencies may exist in the captured
signal obtained from healthy machines. In general, the
signal is first decomposed into multiple sub-signals with
the application of the frequency band selection method.
Since the fault-induced impulses are well preserved in the
fault-related-resonance frequency bands, the amplitudes of
corresponding sub-signals deviate from normal distribution
significantly. While the fundamental frequencies are weak-
ened in other sub-signals, the amplitudes of these sub-
signals may not deviate much from the normal distribution.
As such, the CV index is effective to locate the resonant
frequency band excited by the fault-related periodic
impulses.

The details of the CV index are introduced as follows:
A set of Gaussian random variables is denoted as
Y∼Nðμ,σÞ, in which μ and σ stand for the mean and
standard deviation of the variable, respectively. ϕμ,σ and
Φμ,σ represent the density function and distribution function
of Y , respectively. Let q be the quantile, for any level
0 < q < 0.5, the left, middle, and right quantile partitioning
of Y can be expressed as:

8<
:

Lq = ð−∞,Φ−1
μ,σðqÞ�

Mq = ðΦ−1
μ,σðqÞ,Φ−1

μ,σð1 − qÞ�
Rq = ðΦ−1

μ,σð1 − qÞ,þ∞�
(1)

where Φ−1
μ,σ is the inverse of Φμ,σ , Φ−1

μ,σðdÞ represent the d-
quantile of Y .

When a set of variables conforms to the normal
distribution and the partitioning ratio close to 20%, 60%,
and 20%, namely q≈ 0.2, the conditional variances of each
subset are equal, and the following equation can be ob-
tained,

σ2Lq = σ2Mq
= σ2Rq

(2)

where Lq, Mq, and Rq represent the subsets of the sample,
σ2Lq , σ

2
Mq
, and σ2Rq

represent the conditional variance of
subsets Lq, Mq, and Rq, respectively.

It should be noted that the 20%-60%-20% ratio is the
unique quantile (three sets) partitioning satisfying Eq. (2),
corresponding partitioning is presented in Fig. 1(a).

In short, Eq. (2) can be described as follows: when a
large normal random sample is divided into three sets with
different states, one corresponding to the worst (smallest)
20% outcomes, one corresponding to the middle 60%
outcomes, and one corresponding to the best (largest)
20% outcomes; as a result, the conditional variances of
the three sets roughly equal to each other.

Since the unique ratio satisfying Eq. (2) is equal to
20%, 60%, and 20%, this property can be used to construct
a statistic. A statistical framework introduced in [18] was
briefly summarized, namely for a given random sample
ðY1,Y2, : : : ,YnÞ from Y , a test statistic N is constructed as
follows,

N =
1
ρ

�σ2Lq − σ2Mq

σ2
þ
σ2Rq

− σ2Mq

σ2

�
� ffiffiffi

n
p

(3)

where q=0.2; ρ ∈ R is a constant; σ2 is the sample variance;
and σ2A is set A conditional sample variance.

Eq. (3) could be described as: by comparing the
conditional variances with the conditional central variance,
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it can be verified whether the sample comes from Gaussian
distribution. If the sample coincides with normal distribution,
the value ofN should be approximately equal to 0 [18].When
the sample ðY1,Y2, : : : ,YnÞ comes from heavy-tailed distri-
bution, the statistic N achieves a positive value due to high
values of conditional tail variances on sets Lq and Rq. In
general, the statisticN could be regarded as the measure of tail
fatness, namely the fatter the tails, the bigger the value of N.

It is relatively easy to calculate the value of N for a
given sample. For example, the steps to calculate σ2Lq can be
described as follows: (a) order the sample; (b) subsample
the first [q × n] observations; (c) calculate the standard
sample variance for the subsample.

B. MOTIVATION FOR APPLICATION
OF CV INDEX

Since the CV index has high robustness under non-Gauss-
ian noise, the CV-based method has been successfully
applied to copper ore crushers in the mining industry [12].

However, when vibration signals include multiple
vibration components, the resonance frequency band,
whose amplitude is dominant, can be captured by the CV
index. In other words, CV index cannot work well for
detecting the relatively weak bearing fault-related fre-
quency bands when strong interference exists. For example,
when the gearbox bearing has a local fault, its resonance
frequency amplitudes are relatively weak compared with
the gear meshing harmonics, and the CV-based method
only locates gear meshing harmonic related frequency
band, while the frequency band associated with bearing
faults is submerged.

III. CVRGRAM

A. THEORY OF CVR INDEX

For improving the CV index, the CVR index is defined by
introducing the RMS. The CVR index inherits the advan-
tages of high robustness of the CV index to non-Gaussian
noise and can highlight the resonance frequency band
excited by bearings under strong harmonics interference.
The details of the CVR index are introduced as follows.

According to [19] Remark 3, the Gaussian population
could be divided into three, five, and seven sets with certain
quantiles for creating a dispersion balance.

The data are divided into 5 groups in this paper to
calculate the CV index. For five quantile conditioning
subsets, the unique set of quantiles guaranteeing conditional

variance equality is 0.027/0.243/0.460/0.243/0.027. The
partitioning is as follows,8>>>><

>>>>:

A1 = ð−∞,Φ−1
μ,σð0.027Þ�

A2 = ðΦ−1
μ,σð0.027Þ,Φ−1

μ,σð0.270Þ�
A3 = ðΦ−1

μ,σð0.270Þ,Φ−1
μ,σð0.730Þ�

A4 = ðΦ−1
μ,σð0.730Þ,Φ−1

μ,σð0.973Þ�
A5 = ðΦ−1

μ,σð0.973Þ,þ∞�

(4)

Then, the following equation can be obtained,

σ2A1
= σ2A2

= σ2A3
= σ2A4

= σ2A5
(5)

When Eq. (5) is satisfied, a balanced distribution for the
conditional population is achieved. The graphical illustra-
tion of the five partitioning is presented in Fig. 1(b).

For reducing the strong non-Gaussian noise, three
subsets are used to construct an indicator. In this case,
the rest of the sets which might relate to non-Gaussian
components with high amplitudes are not taken into
consideration.

For the samples ðY1,Y2, : : : ,YnÞ, a statistic that takes
sample conditional variances on sets A2, A3, and A4 into
account is constructed as,

N5 =
�
σ2A2

− σ2A3

σ2
þ σ2A4

− σ2A3

σ2

�
� ffiffiffi

n
p

(6)

where σ2is the sample variance, and σ2A is the conditional
sample variance of set A.

The statistic N5 could be used to measure the degree
that the sample deviates from the normal distribution.
Namely, the informative frequency band can be located
by statistic N5. However, based on statistic N5, only the
frequency band with dominant amplitude can be obtained,
and the weak resonance frequency excited by bearing
would be ignored. As such, an energy factor, which is
RMS, is introduced into the CV index.

For the signal xðtÞ, its RMS is defined as,

RMSðxðtÞÞ = hjxðtÞj2i12 (7)

For improving stability, the Hilbert envelope is applied
to the signal to eliminate distractions. As a result, the shape
of fault-relating impulses becomes clearer. The envelope
signal is calculated as [20]

xhðtÞ = HilbertðxðtÞÞ = 1
π

ðþ∞

−∞

xðτÞ
t − τ

dτ (8)

where xheðtÞ represents the Hilbert envelope of signalxðtÞ.

(b)(a)
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Fig. 1. Density function of the standard normal distribution with different quantiles.
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xaðtÞ = absðxhðtÞÞ (9)

where absð·Þ is used to calculate the module, xaðtÞ repre-
sents the amplitude signal of xhðtÞ.

Based on the above envelope process, a series of
extreme values can be obtained. Then, the RMS of extreme
values instead of all the data is calculated to describe the
energy characteristic of the signal. The RMS of the extreme
values is calculated as follows,

RMSev = RMSðf indpeaksðxaðtÞÞÞ (10)

where f indpeaksð·Þ is the function for finding the same
number of extreme values of the envelope curve of sub-
signals, RMSev represents the RMS of the selected extreme
values. The process of obtaining the extreme values for
calculating the RMS is shown in Fig. 2.

Hence, the CVR index is constructed as,

CVRðxðtÞÞ = 1
RMSev

� N5ðxðtÞÞ (11)

Based on the above analysis, a new CVR index is
constructed, in which the RMSev acts as an energy factor,
and the index is sensitive to the energy characteristic and
periodicity of the signal. The CVR index can be used to
locate the bearing fault-related resonance frequency band
under strong interference.

Similarly to what has been proposed in [21], a hypoth-
esis test is defined as follows:

H0:“The vibration signal does not contain a fault at the
frequency fcf0”

H1:“The vibration signal contains a fault at the
frequency fcf0”

where fcf0 represents the fault characteristic frequency.
Reject the null hypothesis H0 if “The vibration signal

contains a fault at the frequency fcf0 if relatively prominent
peaks can be found at the frequency fcf0 and its harmonics
on the envelope spectrum.”

In this paper, the proposed CVRgram-based method
aims to make the FCF and its harmonics-related spectral
lines more obvious on the envelope spectrum. Since the
proposed method cannot be quantified, there is no fixed
threshold, and the diagnosis depends on experience.

B. CVRgram CALCULATION

Based on the CVR index, the CVRgram is constructed in
this subsection. The principle of the CVRgram is to search

for the optimal center frequency/bandwidth parameters in
the entire frequency band plane for locating the bearing
fault-related resonance frequency bands. The main steps for
constructing the CVRgram are as follows.

(a) Let hðnÞ be a low-pass prototype filter with a cut-off
frequency f c = 1

8 þ ε,ε ≥ 0. The normalized fre-
quency is adopted here, namely the sampling fre-
quency is 1. Then, two quasi-analytic low-pass and
high-pass analysis filters h0ðnÞ and h1ðnÞ from hðnÞ
are constructed, in the frequency bands [0,1/4] and
[1/4,1/2], respectively:

h0ðnÞ = hðnÞejπn4

= hðnÞ½cos
�
πn

4

�
þ j sin

�
πn

4

�
(12)

h1ðnÞ = hðnÞej3πn
4

= hðnÞ½cos
�
3πn
4

�
þ j sin

�
3πn
4

�
(13)

Let filters h0ðnÞ and h1ðnÞ perform the elementary low-
pass and high-pass decomposition, with band-pass ranges
[0,1/4] and [1/4,1/2], respectively. cikðnÞis used to represent
the sequence of coefficients issued from the ith filter with
i = 0,1,2, : : : ,2k − 1, at the kth level in the decomposition
tree, k = 0,1,2, : : : , after filtration with h0ðnÞ and h1ðnÞ and
down-sampling by factor 2, this sequence offsprings two
new sequences c2ikþ1ðnÞ and c2iþ1

kþ1 ðnÞ at level k+1. At each
level, the number of filtered sequences is increased by a
factor of 2, but their respective length is also decreased by
the same factor so that overall the total amount of data
remains the same. The recursive algorithm of the dual-sub-
band decomposition is as follows,

c2ikþ1ðnÞ = h0ðmÞ � cik (14)

c2iþ1
kþ1 ðnÞ = h1ðmÞ � cik (15)

where * represents convolution, k is the decomposition
level (k = 0, 1, : : : ), i is the coefficient sequence of filter
(i = 0, : : : ,2k−1).

The coefficients cikðnÞ can be interpreted as the com-
plex envelope of signal x(n) positioned on the central
frequency,

f i =
2iþ 1

2−k−2
(16)

and with bandwidth (frequency resolution),

Δf k = 2−k−1 (17)

Based on the above algorithm, tree filter banks are
generated, which sample the (frequency/frequency resolu-
tion) plane through a dyadic grid. However, this sampling is
too coarse in some applications where the narrowband
transients need to be detected. Hence, a three-sub-band
decomposition method is integrated on the basis of the dual-
sub-band decomposition with negligible extra computing
cost [6].

The principle of the three-sub-band decomposition is
similar to that of the dual-sub-band decomposition. By
designing three quasi-analytical band-pass filters g0ðnÞ,
g1ðnÞ, g2ðnÞ, the band-pass ranges [0,1/6], [1/6,1/3], and
[1/3,1/2] are obtained, respectively. Finally, the three-sub-
band decomposition result is inserted into the two-sub-band

Extreme values

Signal Hilbert envelope

Fig. 2. The diagram of extremal value solution.
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ones based on the number sorted by sub-bands at each level
(from least to most), as illustrated in Fig. 3. To satisfy the
sampling theory, Lv0 range from 0 to 1/2×sampling fre-
quency, Lv1, Lv2, Lv3, : : : divide Lv0 into two, four, eight,
: : : equal parts, respectively. Similarly, Lv1.6, Lv2.6, and
Lv3.6 : : : divide Lv0 into three, six, twelve, : : : equal
parts, respectively.

(b) Calculate the CVR value of each sub-band signal.
The CVR value of each sub-band signal at the
center frequency f i and the bandwidth Δf k can be
calculated as

CVRðf i,Δf kÞ =
CVðf i,Δf kÞ

RMSevðf i,Δf kÞ
(18)

(c) Find the frequency band with the largest CVR value
on the CVRgram. The parameters of this frequency
band correspond to the target center frequency and
bandwidth parameters. The band-pass filter designed
with this parameter can be used to extract bearing
fault-related resonance frequency bands under strong
interference. The schematic diagram of the CV and
CVR index is presented in Fig. 3. When the gearbox
bearing has a local fault, the CV value is the largest in
the gear-related frequency band, while the largest
CVR index value is acquired in the bearing fault-
related resonance frequency band. Namely, under the
strong gear meshing interference, the CV-based
method would select a gear meshing-related fre-
quency band, while the CVRgram-based method
can effectively locate the bearing fault-related reso-
nance frequency band.

(d) CVRgram decomposition guideline in a certain range.
The higher the degree of band refinement, the more
accurate the filtering parameters obtained; however,
when exceeding a certain limit, with the increase of
filter bank level, the bandwidth of the higher level
becomes too narrow, resulting in insufficient fault
information in the sub-band. Therefore, too many
levels of filter banks would lead to a waste of
computing resources, and it is necessary to set a
threshold for calculating the levels of filter banks
in the CVRgram.

Through experimental comparison, it is concluded that
when the bandwidth of the filter is 3-5 times bigger than the

fault characteristic frequency (FCF), the filtered signal
contains enough fault features [7].

Based on the above analysis, the CVRgram decompo-
sition guideline is shown as,

f bmin ≈ C · f r · FCCi = C · f r ·
D

d

�
1−

�
d

D

�
2
cos2α

�
(19)

where f bmin represents the minimum bandwidth of the filter,
C ∈ ½3,5�denotes a constant, f r represents the rotational
frequency of bearing, and FCCi is the fault characteristic
coefficient (FCC) of the ball, D is the pitch diameter of the
bearing, d is the diameter of the rolling elements, α is the
contact angle of the bearing. In engineering applications,
the rotational frequency of the gearbox is easy to obtain,
namely bearing rotational frequency f r can be determined.
In addition, the FCC of the ball FCCi is the smallest among
bearing FCCs, and the corresponding minimum bandwidth
of the filter is suitable for bearing other fault types. There-
fore, we can estimate the minimum bandwidth to determine
the number of decomposition layers of the tree filter bank.

IV. CVRgram-BASED BEARING
FAULT DIAGNOSIS METHOD

For effectively detecting bearing fault type under strong
gear meshing interference, the CVRgram-related bearing
fault diagnosis method is proposed in this section. The flow
chart of the CVRgram-based bearing fault diagnosis
method is shown in Fig. 4, and its main steps are shown
as follows.

(a) Process the bearing vibration signal using the
CVRgram. As a result, the optimal filtering parame-
ters are obtained.

(b) Design an optimal filter based on the optimal filtering
parameters, and the filtered signal, which includes
abundant bearing fault information, is obtained.

(c) Calculate the envelope spectrum of the filtered signal.
In the envelope spectrum, the spectral lines related to
the bearing fault are dominant.

(d) Detect bearing fault type based on the envelope
spectrum and bearing FCF, which are calculated
using the rotating frequency and fault characteristic
coefficient.

The main contributions of this paper are as follows:
(i) The CVR index is proposed, and it can be used to extract
weak bearing fault-related features under strong meshing

Lv0

Lv1

Lv1.6

Lv2

Lv2.6

Lv3

f

1/21/4 3/81/80

CVR index 
CV index

Fig. 3. Paving of the (frequency/ frequency resolution) plane in
case of a 1/3-binary tree.

Raw signal

1/3-binary tree 
integration strategy

Band1
(cf,bw)1

Band2
(cf,bw)2

Bandn
(cf,bw)n

...

CVR2CVR1 CVRn
...

Filter the signal 
via CVRgram

Calculate the envelope 
spectrum of  filtered signal

Feature extraction

Fig. 4. Schematic description of the CVRgram procedure.
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interference and has high robustness under the interference
of the random impulse noise. (ii) Based on the CVR index, a
CVRgram-based bearing fault diagnosis method is devel-
oped, and the method can be used to adaptively determine
the optimal filtering parameters under strong interference.

V. SIMULATION ANALYSIS
In this section, the simulation signal of fault bearing with a
constant rotating speed under strong gear meshing interfer-
ence is constructed for verifying the effectiveness of the
proposed method. Furthermore, the Kurtogram and
CVgram-based methods are used as a comparison to high-
light the performance of the CVRgram-based method. This
section contains two parts: A. simulation signal is con-
structed and the effectiveness of the CVR-based method is
verified, and B. comparison analysis is presented.

A. SIMULATION MODEL AND ANALYSIS
RESULTS

In this subsection, a simulation model, which represents
the vibration coming from an outer race fault bearing in
a gearbox, is presented. The simulation model contains
three main components: the sine harmonics (SgearðtÞ) gen-
erated by gear meshing, the cyclic impulses (SbearingðtÞ)
related to the bearing local damage, and the white Gaussian
noise (nðtÞ). The mathematical expressions are shown in
Eqs. (20)-(22).

SðtÞ = SbearingðtÞ þ SgearðtÞ þ nðtÞ (20)

where SðtÞ is the integrated simulation signal, SgearðtÞ and
SbearingðtÞ represent components related to gear meshing
and fault bearing respectively, nðtÞ is the Gaussian noise.

The vibration signal model of healthy gear is calculated
as [22]

SgearðtÞ =
XM

m=0

Am cosð2πmf mðtÞ þ ϕmÞ (21)

where Am represent the amplitude of meshing harmonics,
and there were set to 40,30, and 20, respectively. f m is the
meshing frequency of the gear, and it is 244 Hz in this
paper. ϕm represents the initial phase angle of the gear and is
set to 0.

The vibration signal model of fault bearing is defined
as [23]

SbearingðtÞ=
XN

i=1

Ao�e−βðt−iT−τiÞ �cosð2πf cðt− iT−τiÞþϕωÞ

�uðt− iT−τiÞ (22)

where β and τi represent the attenuation coefficient and slip
coefficient of the rolling element, respectively. For simpli-
fication, we set β=1200 and τi = 0.01. ϕω is set to 0, which
represents the initial phase angle of the bearing. Ao and T
represent the amplitude and period of the periodic impulses
caused by bearing fault, respectively. f c is the frequency of
the bearing fault-related resonance, which is only related to
the bearing.

In this paper, the length of the simulated signal is 3 s and
the sampling frequency is 24,000 Hz, and relevant parame-
ters are listed in Table I. The time domain waveform of
the simulated signal and corresponding envelope spectrum
are shown in Fig. 5(a) and (b), respectively. In Fig. 5(b),
the prominent peaks can be found at 246 Hz and 492 Hz,
which are gear meshing frequency and its harmonics, and the
bearing FCF cannot be identified.

The simulated signal is processed using the CVRgram-
based method, and the results are shown in Fig. 6. The
CVRgram of the simulated signal is presented in Fig. 6(a),
from which a band with the center frequency of 8250 Hz
and the bandwidth of 1500 Hz is selected. Based on the
optimal filtering parameters determined by CVRgram, the
band-pass filtering algorithm is applied to the simulated
signal. Then, the envelope spectrum of the filtered signal is
calculated, as shown in Fig. 6(b), from which it can be
found that the spectral lines representing the outer race FCF
(40 Hz) and its harmonics can be identified.

(a) (b)

: Meshing frequency 
harmonics

Fig. 5. Simulated signal. (a) Time domain waveform, (b) Envelope spectrum.

Table I. Parameters of the simulation model

Meaning Value

Sampling frequency, Fs 24,000 Hz

Center frequency, f c 8000 Hz

FCF of the outer race 40 Hz

The amplitude of impulses, Ao 15

Rotational frequency, f r 11.2 Hz

Number of gear teeth, Z 22

Meshing frequency, f m 246.4 Hz

The amplitude of meshing harmonics, Am 40/30/20

SNR −10 dB
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It can be concluded that the CVRgram-based method is
effective to locate the bearing fault-related frequency band
under strong gear meshing interference.

B. COMPARISON ANALYSIS

The Kurtogram has been widely used in bearing fault
diagnosis, and the CVgram-based method has been used
in bearing fault diagnosis with high robustness under non-
Gaussian noise. Hence, the above two methods are used to
verify the superiority of the CVRgram-based method in this
subsection.

Firstly, the CVgram analysis results are shown in
Fig. 7. The CVgram is presented in Fig. 7(a), from which
the maximum CV value corresponds to the frequency band
with a center frequency of 750 Hz and a bandwidth of

1500 Hz. The envelope spectrum of the filtered signal is
displayed in Fig. 7(b), in which only gear meshing fre-
quency-related spectral lines can be identified.

Based on the above analysis, when the signal contains
gear meshing components with high energy and bearing
fault impulsive components with relatively weak energy,
the CVgram-based method cannot work well for bearing
fault feature extraction.

Similar to the CVgram-based method, a low-frequency
band that contains gear meshing frequency is located by the
Kurtogram. The Kurtogram is presented in Fig. 8(a), in
which a frequency band with a center frequency of 2 k Hz
and a bandwidth of 4 k Hz has the maximum kurtosis.
Based on the optimal filtering parameters determined by the
Kurtogram, a band-pass filter is designed to process the
signal, and the envelope spectrum of the filtered signal is

(a) (b)

:FCF harmonics

Fig. 6. Analysis results using the CVRgram-based method. (a) CVRgram, (b) Envelope spectrum of the filtered signal.

(a) (b)

:Meshing frequency 
harmonics

Fig. 7. Analysis results using the CVgram-based method. (a) CVgram, (b) Envelope spectrum of the filtered signal.

(a) (b)
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:Meshing frequency 
harmonics

Fig. 8. Analysis results using the Kurtogram-based method. (a) Kurtogram, (b) Envelope spectrum of the filtered signal.
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shown in Fig. 8(b). From the envelope spectrum, only gear
meshing harmonics can be captured.

When processing gearbox bearing fault signal, the
demodulation band obtained by the Kurtogram and
CVgram algorithm are related to the gear meshing, while
the CVRgram would locate the resonance frequency band
excited by bearing fault. Hence, the proposed method has a
much better ability to detect bearing faults under gear
meshing interference.

To further quantify the robustness of the proposed
method against the gear mesh interference under different
signal-to-noise ratios, three cases with different amplitudes
of gear meshing frequency are built to simulate the different
SNR circumstances.

Then, a novel indicator named amplitude of envelope
spectrum ratio (AESR) is constructed based on the theory
that the better the filtering result, the clearer the FCF in the
envelope spectrum. Here, three cases with different ampli-
tudes of gear meshing frequency are built to simulate the
different SNR circumstances. Hence, the ratio of the am-
plitudes of the FCF to the sum of the amplitudes of all other
components in the envelope spectrum can be used to
evaluate the superiority of the methods. Namely, the higher
value of the AESR, the much better performance of the
method. The AESR is defined as,

AESR =
P

M
1 AFCFP
AES

(23)

where M ≤ 3, AFCF denotes the amplitudes of the FCF,
and AES is the amplitudes of all other components in the
envelope spectrum.

The AESR indicator of the envelope spectra under
different amplitudes of gear meshing frequency is shown in
Table II. The AESR is calculated by the CVRgram,
CVgram, Kurtogram, and Protrugram-based methods,
respectively, as shown in Fig. 9, from which it is found
that the CVRgram-based method has the biggest AESR
value. It means the filtering effect achieved by the proposed
method is the best.

VI. EXPERIMENTAL ANALYSIS
The effectiveness of the CVRgram-based method for bear-
ing fault feature extraction under strong gear meshing
interference is further validated using the experiment signal,
which is captured from the gearbox test bench at Soochow
University. The experiment setup is shown in Fig. 10. A
through crack fault with a width of 0.4 mm was cut on the
bearing outer race to simulate a local defect, and the
installation position of the faulty bearing is shown in
Fig. 10. The power generated by the DC motor passes
through a gearbox and a set of supporting bearings and
finally arrives the experimental gearbox. To reduce the
influence of the transmission path, an acceleration sensor
is mounted on top of the faulty bearing to measure its
vibration signal. The data acquisition system mainly con-
sisted of a signal acquisition instrument with model
INV3018C and a computer. The model of the experimental
bearings is 30206, and the detailed parameters of the faulty
bearing and gearbox are listed in Tables III and IV, respec-
tively. The motor speed is 1480 r/min, and the sampling
frequency is 25.6 kHz.

The FCF of the outer race and inner race of the bearing
is shown in Eq (24) and Eq (25), respectively,

FCFO = FCCo � f r =
z

2

�
1 −

d

D
cosα

�
(24)

FCFi = FCCi � f r =
z

2

�
1þ d

D
cosα

�
(25)

where f r is the rotation frequency of the driving shaft, D is
the pitch diameter of the bearing, d is the diameter of the
rolling elements, α is the contact angle of the bearing, and
the number of rolling elements is z. FCCo and FCCi are
FCCs of the outer race and inner race, respectively. It is
assumed that there is no sliding between the rolling ele-
ments and the inner and outer rings.

Based on Eqs. (24) and (25), the FCF of the bearing
outer race and inner race in this experiment is calculated as
174.3 Hz and 213.4 Hz.

To verify the effectiveness of the proposed method,
two types of fault cases are separately carried out. One case
is that the localized fault appears in the outer race of the
rolling bearing, and another is that the localized fault
appears in the inner race. In both cases, the duration of
the signal is 2.5 s.

Case 1 Case 2 Case 3
0

1 CVRgram CVgram Kurtogram Protrugram

Fig. 9. AESR values calculated by CVRgram, CVgram,
Kurtogram, and Protrugram-based methods under different cases

Coupling

DC motor

Sensor

Outer ring

Experimental gearbox

Defect
Driving gearDriven gear

Faulty bearing
Experimental gearbox

Loading device

Fig. 10. Experiment setup.

Table II. Amplitudes of gear meshing and bearing fault

Component Case 1 Case 2 Case 3

Amplitude of meshing
frequency

50,40,30 40,30,20 30,20,10

Amplitude of bearing FCF 15 15 15
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A. ROLLING BEARING WITH OUTER RACE
FAULT

In this case, the proposed method is testified using the
vibration data generated by bearing outer race fault, and the
CVgram, Kurtogram, and Protrugram-based methods are
used for comparison.

The time domain waveform of the vibration signal and
corresponding envelope spectrum is presented in Fig. 11(a)
and (b), respectively. It can be seen that the rotational
frequency and its harmonics-related spectral lines are dom-
inant, and the bearing FCF is submerged.

Fig. 11(c) shows the CVRgram, from which it is found
that the maximum CVR value corresponds to the center
frequency of 7466 Hz with a bandwidth of 2133 Hz. Based
on the optimal filtering parameters determined by the
CVRgram, a band-pass filtering algorithm is applied to
the vibration signal. The envelope spectrum of the filtered
signal is shown in Fig. 11(d), it is obvious that the spectral
lines representing the FCF of the outer race (174.3 Hz) and

its harmonics are dominant, and there are no other interfer-
ence components.

For comparison, the CVgram, Kurtogram, and Protru-
gram are used to process the vibration data.

Firstly, the CVgram is presented in Fig. 12(a), in which
the maximumCV value corresponds to the center frequency
of 5133 Hz with a bandwidth of 2133 Hz. According to the
band selection result, an optimal filter is designed to process
the signal. Fig. 12(b) shows the envelope spectrum of the
filtered signal, in which spectral lines representing the
rotational frequency of the drive shaft and the driven shaft
and their harmonics are dominant, while the bearing outer
race FCF (174.3 Hz) and its harmonics are submerged in
interference components.

Then, the vibration signal is processed by the Kurto-
gram-based method, and the results are shown in Fig. 13.
The Kurtogram is displayed in Fig. 13(a), from which the
maximum kurtosis value corresponds to the ending of the
frequency band. Based on the optimal filtering parameters
determined by Kurtogram, a band-pass filtering algorithm is

(a) (b) 

(c) (d)

:FCF harmonics
:Rotation frequency

:FCF of outer race 
and its harmonics

Fig. 11. CVRgram results of vibration data of bearing with outer race fault. (a) Raw vibration signal, (b) Envelope spectrum of the raw
signal, (c) CVRgram of the raw signal, and (d) Envelope spectrum of the filtered signal.

Table III. Test gear parameters

Parameters Number of teeth Rotation frequency fs (Hz) Rotation period Ts (s) Meshing frequency fc (Hz)

Driving gear 34 24.67 0.041 839

Driven gear 42 19.98 0.05

Table IV. Test bearing parameters

Inner diameter
d (mm)

Outer diameter
D (mm)

Diameter of rolling
element d0 (mm)

Number of rolling
element

Contact
angle (°)

30 62 8 17 14.036
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applied to the signal. Fig. 13(b) is the envelope spectrum of
the filtered signal, in which we can observe that spectral
lines representing the FCF of the outer race (174.3 Hz) and
its harmonics are buried in noise.

Finally, based on the Protrugram as shown in
Fig. 14(a), the central frequency and the bandwidth of
the filter are 12267 Hz and 1066 Hz, and the target level
is 3.6. The envelope spectrum of the filtered signal is shown
in Fig. 14(b). It can be found that the rotational frequency
harmonics-related spectral lines are more dominant than the
bearing fault-related spectral lines.

In summary, when processing signals of gearbox
bearing with outer race fault, the Kurtogram, and
Protrugram-based methods cannot work well. For the
CVgram-based method, due to the CV index having strong
robustness against the noise, the CVgram would locate a
frequency band containing more gear information. Differ-
ent from comparison methods, the CVRgram can select the
bearing outer race fault-related frequency band. Hence, the
proposed method has a much better ability to detect bearing
outer race fault under gear meshing interference compared
with the CVgram, Kurtogram, and Protrugram.

(a) (b)

:FCF harmonics
:Rotation frequency 

harmonics

Fig. 12. Analysis results of outer race fault signal using CVgram-based method. (a) CVgram and (b) Envelope spectrum of the filtered
signal.

(a) (b)
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:FCF harmonics
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Fig. 13. Analysis results of outer race fault signal using Kurtogram-based method. (a) Kurtogram and (b) Envelope spectrum of the
filtered signal.

(a) (b)

:FCF harmonics
:Rotation frequency 

harmonics

Fig. 14. Analysis results of outer race fault signal using Protrugram-based method. (a) Protrugram and (b) Envelope spectrum of the
filtered signal.
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B. ROLLING BEARING WITH INNER RACE
FAULT

In this case, the CVRgram-based method is verified using
the vibration signal generated by the bearing inner race
fault. The comparative analysis with the CVgram-based
method, Kurtogram-based method, and Protrugram-based
method is also discussed.

The time domain waveform of the bearing vibration
signal with inner race fault and its envelope spectrum is
displayed in Fig. 15(a) and (b), respectively. In Fig. 15(b),
the FCF of the inner race (213.4 Hz) is buried in strong
noise, and bearing fault cannot be detected.

Then, the measured signal is processed by the
CVRgram, and the result is shown in Fig. 15(c). Based

on the CVRgram, it can be obtained that the target level is
3.6, the central frequency is 8000 Hz, and the bandwidth is
1067 Hz. Based on the filtering parameters determined by
CVRgram, the filtered signal is obtained, and its envelope
spectrum is shown in Fig. 15(d), in which the inner race
fault-related spectral peak can be recognized. Hence, we
can conclude that the developed technique is effective to
detect bearing inner race faults.

For comparison, the bearing vibration signal with inner
race fault is processed using the CVgram, Kurtogram, and
Protrugram, respectively.

Firstly, the demodulation band selected by the CVgram
algorithm is shown in Fig. 16(a), and the corresponding
envelope spectrum is shown in Fig. 16(b). It can be seen that
the inner race FCF-related spectral line is submerged in

(a) (b)

(c) (d)

:Rotation frequency 
harmonics

:FCF harmonics
:Rotation frequency

Fig. 15. CVRgram results of vibration data of bearing with inner race fault. (a) Raw vibration signal, (b) Envelope spectrum of the raw
signal, (c) CVRgram of the raw signal, and (d) Envelope spectrum of the filtered signal.

(a) (b)

:Rotation frequency 
harmonics

Fig. 16. Analysis results of inner race fault signal using CVgram-based method. (a) CVgram and (b) Envelope spectrum of the filtered
signal.
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background noise, and it is difficult to detect the bearing
inner race fault.

Secondly, the bearing signal is processed by the Kur-
togram algorithm, and the results are displayed in Fig. 17.
A frequency band (around 4000 Hz) is located as shown in
Fig. 17(a), and the corresponding envelope spectrum is
shown in Fig. 17(b), in which the inner race FCF-related
spectral line cannot be recognized, while the rotational
frequency harmonics are dominated. Hence, under the inter-
ference of strong noise, the Kurtogram cannot work well to

select the optimal frequency band for bearing inner race
fault diagnosis.

Then, the Protrugram is used to determine the optimal
demodulation band and perform envelope spectrum analy-
sis, the results are shown in Fig. 18. The central frequency
and the bandwidth of the filtered signal are 5600 Hz and
1600 Hz, respectively, and the target level of the Protru-
gram is 3, as shown in Fig. 18(a). The corresponding
envelope spectrum is displayed in Fig. 18(b), from which
we cannot find valuable diagnostic information.

(a) (b)

)htdi
wdna
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leveL

:Rotation frequency 
harmonics

Fig. 17. Analysis results of inner race fault signal using Kurtogram-based method. (a) Kurtogram and (b) Envelope spectrum of the
filtered signal.

(a) (b)

:Rotation frequency 
harmonics

Fig. 18. Analysis results of inner race fault signal using Protrugram-based method. (a) Protrugram and (b) Envelope spectrum of the
filtered signal.

(a) (b)

0 200 400

:Rotation frequency 
harmonics

Fig. 19. Analysis results of inner race fault signal using Infogram-based method. (a) Infogram and (b) Envelope spectrum of the filtered
signal.
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Finally, the SE Infogram is applied to the signal with
inner race fault, and the result is displayed in Fig. 19(a). It is
clear that the maximum negentropy value is found with a
center frequency of 8800 Hz and a bandwidth of 534 Hz.
Fig. 19(a) shows the envelope spectrum of the filtered
signal, and it can be found that the spectral line related
to the FCF of the inner race is buried in strong noise.

In summary, when processing vibration signals of
gearbox bearing with inner race fault, the CVgram, Kurto-
gram, and Protrugram-based methods cannot work well to
detect fault characteristics, while the CVRgram can locate
the resonance frequency band excited by bearing inner race
fault. Hence, the proposed method has a much better ability
to detect bearing inner race fault compared with the
CVgram, Kurtogram, and Protrugram.

VII. CONCLUSIONS
For addressing the issue that classic parameter index-based
filtered methods cannot work well for extracting demodu-
lation bands with low amplitude, a novel index named CVR
and CVRgram-based bearing fault diagnosis methods are
proposed in this paper. The proposed method is verified by
both simulated faulty bearing signal and experiment signal
measured from gearbox bearing. Meanwhile, comparison
results with Kurtogram, Protrugram, and CVgram are also
presented.

(a) The analysis results, related to the simulated signal
and experimental signals under strong noise interfer-
ence, show that the proposed technique can effec-
tively calculate extraction parameters of the
resonance frequency band excited by bearing fault,
which has relatively weak energy compared with the
gear vibration interference, and then, the bearing fault
type can be accurately determined.

(b) Comparison results show that the proposed technique
has a much better ability for determining the weak
demodulation frequency band and detecting bearing
fault than the Kurtogram, Protrugram, and CVgram-
based methods under strong gear interference.

Moreover, the CVRgram-based fault diagnosis method
could be extended for other rotating machinery (e.g., en-
gines and reciprocating machinery) whose vibration signals
include strong background interference. Namely, the pro-
posed method can be used to detect the resonance frequency
band excited by the mechanical part under strong noise
interference.
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