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Abstract: Rolling bearing is the key part of mechanical system. Accurate prediction of bearing life can reduce
maintenance costs, improve availability, and prevent catastrophic consequences, aiming at solving the problem of
the nonlinear, random and small sample problems faced by rolling bearings in actual operating conditions. In this
work, the nonlinear Wiener process with random effect and unbiased estimation of unknown parameters is used to
predict the remaining useful life of rolling bearings. Firstly, random effects and nonlinear parameters are added to
the traditional Wiener process, and a parameter unbiased estimation method is used to estimate the positional
parameters of the constructed Wiener model. Finally, the model is validated using a common set of bearing
datasets. Experimental results show that compared with the traditional maximum likelihood function estimation
method, the parameter unbiased estimation method can effectively improve the accuracy and stability of the
parameter estimation results. The model has a good fitting effect, which can accurately predict the remaining
useful life of rolling bearing.
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I. INTRODUCTION
In modern production machinery, rolling bearing is an
important bearing moving part in mechanical systems
and plays an important role in the safe and stable operation
of mechanical equipment. Carrying out research on the
remaining useful life (RUL), prediction of rolling bearing
and monitoring the health status of rolling bearing in real
time has significant practical application value and impor-
tant research significance for ensuring the safe and reliable
operation of equipment and improving the maintenance
efficiency of equipment [1]. Moreover, the high-precision
life prediction results can reduce the downtime of mechani-
cal products and provide a theoretical basis for the research
of preventive maintenance strategies for mechanical
products [2].

Limited by the requirement of comprehensive and
complete physical failure mechanism, it is difficult to
realize the life prediction method of mechanical products
based on the physical failure model. The data-driven life
prediction method is more economical and feasible [3]. In
data-driven life prediction methods, intelligent algorithms
represented by deep learning are similar to “black boxes,”
with unclear mathematical properties and physical mean-
ings, and poor interpretability. The accuracy of life predic-
tion result of intelligent algorithm is directly related to the
sample size and sample quality used for model training,
especially for some highly reliable and long-life equipment
[4]. Data-driven methods based on mathematical statistics

include stochastic processes such as Wiener process [5],
gamma process [6], and inverse Gaussian process [7] and
have been proven appropriate to model degradation with
inherent random effect. Stochastic processes have great
mathematical properties for characterizing reversible deg-
radation signals [8] and are used in a wide range of
applications, including electronic devices [9,10], mechani-
cal structures [11], and electromechanical systems [12].
Stochastic process model can offer trade-offs between
complexity, cost, precision, and applicability, since it pos-
sesses favorable mathematical characteristics, reasonable
physical interpretations, and wide applicability. Therefore,
the data-driven method based on mathematical statistics is
the key method to solve the problem of rolling bearing life
prediction.

With the development of modern industry, the com-
prehensiveness of equipment and the variability of the
working environment are getting higher and higher. The
failure mode of equipment has diversified, and the perfor-
mance of equipment has correspondingly appeared random
and nonlinear degradation. As one of the statistically driven
methods of stochastic processes, the Wiener model has the
advantages of simple structure and easy adaptive expansion
[13]. It can use random feature and nonlinear function terms
to express random effects and nonlinearities in the degra-
dation process of mechanical equipment. In 1993, Doksum
and Hoyland first used the Wiener model to describe the
degradation process of devices [14]. TSAI et al. constructed
the device life distribution of the Wiener process based on
the principle that the device first reached the threshold as the
principle of the remaining service life [15]. Yan et al.
combined the Wiener process with Bayesian method toCorresponding author: Chao Zhang (e-mail: zhanghero@imust.edu.cn).
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enable online updates of the product degradation process
using historical O&M data from the device and real-time
observation data [16]. Zhao et al. consider that the basic
linear Wiener model has a large error in describing the
nonlinear degradation process of the aero engine [17]. The
exhaust temperature margin is used as a performance index
to construct the nonlinear drift Wiener process to improve
the accuracy of life prediction. Liu et al. constructed a
Wiener model with a random error term, taking into account
individual differences in devices as well as measurement
errors [18]. Li et al. successfully used the Wiener model to
describe the degradation process of rolling bearing by using
the parametric maximum likelihood estimation method
[19]. Wang et al. verified that the drift coefficient of Wiener
model correlates with the diffusion coefficient and com-
bined the Kalman filtering method with the parametric
maximum likelihood estimation method to achieve bearing
life prediction [20]. The above methods have approached
the construction process of the Wiener model, but when
estimating the parameters of the model, most of them use
the maximum likelihood estimation method. Although the
maximum likelihood estimation method is relatively simple
and convenient to implement for the analytical form of
parameter estimation, but the accuracy of the parameter
estimation result is still directly related to the sample size.
Similar to the high reliability mechanical equipment of
rolling bearings, the amount of fault data that can be
used for life prediction research is not much. Small sample
datasets can have an impact on the accuracy of bearing life
predictions.

Therefore, in order to further improve the accuracy of
the Wiener model in the application of equipment residual
service life prediction, a rolling bearing RUL prediction
method combined with the stochastic nonlinear Wiener
model and the parameter unbiased estimation method is
proposed. The method takes into account the randomness,
nonlinearity, and small sample characteristics of the bearing
in the degradation process and considers the effect of
random effects in the nonlinear Wiener process. In addition,
an unbiased parameter estimation method suitable for
Wiener model is proposed to reduce the influence of small
sample characteristics on the accuracy of life prediction
results and then realize the RUL prediction of rolling
bearing.

II. NONLINEAR WIENER MODEL
CONSTRUCTION CONSIDERING

RANDOM EFFECTS
Wiener process, also named Brown operating process, is
well suited to describe monotonic or non-monotonic device
performance degradation process. It is widely used in
mathematical statistical model [21], where the traditional
Wiener process can be defined as a continuous-time sto-
chastic process fXðtÞ, t ≥ 0g.

where x(0) = 0, XðtÞ is the amount of change at the
moment of t, has a stationary, independent increment
independent of the beginning of time. For each t> 0,
XðtÞ follows a normal distribution with a mean of 0 and
a variance of σ2t. If σ = 1, the process is called the standard
Wiener process. It is always a randommotion with the mean
of zero near the beginning. This phenomenon is obviously
inconsistent with the actual situation. Therefore, consider-
ing the number of drift systems λ and the diffusion

coefficient β that characterize the degradation rate of the
device, there is a tendency for the standard Wiener process
to move away from the initial position, where the drift
coefficient λ is linear, and the Wiener process can be
expressed as Eq. (1):

XðtÞ = Xð0Þ þ λt þ βBðtÞ (1)

where Xð0Þ is the initial variation and BðtÞ is the standard
Brownian motion. For the unary Wiener process expressed
in Eq. (1), if the failure threshold of the device is set to
hðh > 0Þ, the RUL of the device is defined as the time when
the amount of equipment degradation first reaches or ex-
ceeds h during its performance degradation process, which
is expressed as Eq. (2):

T = infft∶XðtÞ ≥ hjXð0Þ ≤ hg (2)

In the formula, hðh > 0Þ is the failure threshold of the
equipment, which is usually formulated by relevant indus-
try standards or expert experience. Correspondingly, the
RUL Lk at time point tk can be expressed as Eq. (3):

Lk = infflk∶Xðtk þ lkÞ ≥ hjXðtkÞ ≤ hg (3)

where lk represents the current time point tk is the time
distance from the device failure. Then, the device life
distribution and probability density functions that obey
the Wiener process can be expressed as Eq. (4):

FðtÞ = Φ
�
λt − h

β
ffiffi
t

p
�
þ exp

�
2λh

β2

�
Φ
�
−λt − h

β
ffiffi
t

p
�

f ðtÞ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβ2t3

p exp

�
−
ðh − λtÞ2
2β2t

�
(4)

where the probability density function f ðtÞ can describe the
possibility of the output value of random variable t near a
certain value point. The cumulative distribution function
FðtÞ is an integral representation of f ðtÞ, which can fully
describe the probability distribution of random variable t.

However, for bearings, even the same type of bearing
produced in the same batch cannot guarantee that the
degradation process is completely consistent, and the linear
drift coefficient cannot meet the different randomness needs
of individual bearings. Therefore, a drift coefficient λ with
random effects is necessary for the Wiener process, which
can be expressed as Eq. (5):

XðtÞ = Xð0Þ þ λt þ βBðtÞ, λ∼Nðμ,σ2Þ (5)

where drift coefficient λ follows the normal distribution
with mean μ and variance σ2. Correspondingly, bearing life
distribution with random effects and probability density
function can be expressed as Eq. (6):

FðtÞ = Φ
�

μt − hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2t2 þ β2t

p �
þ exp

�
2μh

β2
þ 2σ2h2

β4

�
×Φ

�
2σ2ht þ β2ðμt þ hÞ
β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2t2 þ β2t

p �

f ðtÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2

2πt3ðσ2t þ β2Þ

s
exp

�
−

ðh − μtÞ2
2tðσ2t þ β2Þ

�
(6)

In addition to the randomness of the actual degradation
process of the bearing, it also has the nonlinear character-
istics common to mechanical equipment products. In order
to further improve the similarity between the Wiener pro-
cess and the bearing degradation process, the nonlinear
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Wiener process can be expressed as Eq. (7):

XðtÞ = Xð0Þ þ λΛðt; θÞ þ βBðtÞ (7)

where λ∼Nðμλ,σ2λÞ, Λðt; θÞ is a monotonous continuous
nonlinear function, where θ represents the nonlinearity of
the degenerative process. Obviously, if λðt; θÞ = λ, the
nonlinear Wiener process will become the traditional linear
drift Wiener process, which is general.

III. ESTIMATION UNKNOWN
PARAMETERS OF THE

DEGRADATION PROCESS
A. PARAMETER ESTIMATION OF
TRADITIONAL LINEAR WIENER PROCESS

As a mathematical statistics method in the field of life
prediction, Wiener process has its advantages of simple
structure and strong explanatory ability. In order to show
the advantages of the unknown parameter unbiased estima-
tion method used in this paper, firstly, we introduce the
maximum likelihood function method commonly used in
statistical model parameter estimation briefly. More com-
monly used linear Wiener process expression is shown in
Eq. (1), whose prior model parameter is Θ = fμ,σ2,β2g.

To use the maximum likelihood function to estimate
the unknown parameters of the model, Researcher needs to
build the log likelihood function of the degenerate model.
The full life cycle data of n same design bearings have been
completed before the RUL prediction of the rolling bearings
is made. The bearing degradation data measured at time ti,j
for the ith bearing can be expressed as Eq. (8):

xi,j = λiti,j þ βBðti,jÞ, i ∈ ½1,n�, j ∈ ½1,mi� (8)

where λi is the average drift coefficient of the ith bearing and
mi is the failure time point of the ith bearing. Correspond-
ingly, the test time vector for the ith bearing and its
performance degradation data vector can be expressed as
Eq. (9):

xi = ðxi,1,xi,2, : : : ,xi,mi
ÞT ti = ðti,1,ti,2, : : : ,ti,mi

ÞT (9)

Then, the performance degradation data of n training
bearings can be expressed as x = ðx1,x2, : : : xnÞT where xi
follows a multidimensional normal distribution with the
mean μt and the variance Σ 0, where Σ 0 = σ2ttT þ β2γ 0. The
difference in degradation data for the same bearing at
different points in time is expressed as Eq. (10):

Δxi,j = xi,j − xi,j−1 = λΔtj þ βBðΔti,jÞ (10)

where Δti,j = ti,j − ti,j−1, j ∈ ½1,mi�. According to Eq. (7), it
can be obtained as Eq. (11):

Δxi = ðΔxi,1,Δxi,2, : : : ,Δxi,mi
ÞT

Δti = ðΔti,1,Δti,2, : : : ,Δti,mi
ÞT

Δx = ðΔxT1 ,ΔxT2 , : : : ,ΔxTn ÞT (11)

Then, Δxi follows a multidimensional normal distribu-
tion with the mean μΔti and the variance Σi, where
Σi = σ2ΔtiΔtiT þ β2γi, γi = diagðΔti,1,Δti,2, : : : ,Δti,mi

Þ.
The log likelihood function of argument Θ = fμ,σ2,β2g
of the prior model of the linear Wiener process can be
expressed as Eq. (12):

ln LðΘjXÞ = −
1
2
ln 2π

Xn
i=1

mi −
n

2
ln jΣij

−
1
2

Xn
i=1

ðΔxi − μΔti,mi
ÞTΣ−1
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= −
1
2
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2
ln ðβ2Þmi−1
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2
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Þ − 1
2
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Xmi
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1
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"
1
2
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i=1

ΔxTi γ−1i Δxi −
1
2
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#

−
1
2

Xn
i=1

ti,mi

β2 þ σ2ti,mi

�
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xi,mi

ti,mi

�
2

(12)

Then, the log likelihood function shown in Eq. (10)
takes the first-order partial derivative for the unknown
parameter μ,σ2, respectively, and the result is shown in
the following equation:

∂ lnLðΘjXÞ
∂μ

= −
1

β2 þ σ2ti,mi

 Xn
i=1

xi,mi
− nμti,mi

!
∂ lnLðΘjXÞ

∂σ2
= −

nti,mi

2ðβ2 þ σ2ti,mi
Þ

þ t2i,mi

2ðβ2 þ σ2ti,mi
Þ
Xn
i=1

�
μ −

xi,mi

ti,mi

�
2

(13)

Each term in Eq. (11) is equal to 0 respectively, and the
result is Eq. (14):

μ̂ =
1
ti,mi

Xn
i=1

xi,mi
σ̂2 =

1
n

Xn
i=1

�
μ̂ −

xi,mi

ti,mi

�
2
−

β̂2

ti,mi

(14)

From Eq. (12), it is possible to obtain a maximum
likelihood estimate of parameter μ, but the estimate of σ2 is
related to β, so Eq. (12) needs to be substituted into Eq. (10),
and it can be obtained as Eq. (15):

lnLðβ2jXÞ=−
1
2
ln2π

Xn
i=1

mi−
n

2
lnðβ2Þmi−1

−
n

2
ln

�
ti,mi

n

Xn
i=1

�
μ̂−

xi,mi

ti,mi

�
2
�
−
1
2

Xn
i=1

Xmi

j=1

lnΔti,j

−
1

β2

�
1
2

Xn
i=1

ΔxTi γ−1i Δxi−
1
2

Xn
i=1

x2i,mi

ti,mi

�
−
1
2
n (15)

By equaling the first-order partial derivative of Eq. (13)
to parameter β2 to 0, we can obtain a maximum likelihood
estimate for parameter β2 as Eq. (16):

β̂2 =
1

nðmi − 1Þ
Xn
i=1

Xmi

j=1

ðΔxi,j − xi,mi
ti,mi

Δti,jÞ2
Δti,j

(16)

Once the estimated value of parameter β2 is known,
the maximum likelihood estimate of parameter σ2 is as
Eq. (17):
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σ̂2 =
1
n

Xn
i=1

�
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xi,mi

ti,mi

�
2

−
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nðmi − 1Þti,mi

Xn
i=1

Xmi

j=1

ðΔxi,j − xi,mi
ti,mi

Δti,jÞ2
Δti,j

(17)

The parameter unbiased estimation of the traditional
linear Wiener process is summarized as Eq. (18):

μ̇ =
1
n

Xn
i=1

xi,mi

ti,mi

σ̇2 =
1

n − 1

Xn
i=1

�
μ̇ −

xi,mi

ti,mi

�
2

−
1
n

Xn
i=1

Xmi

j=1

ðΔxi,j − xi,mi
ti,mi

Δti,jÞ2
ðmi − 1Þti,mi

Δti,j

β̇2 =
1
n

Xn
i=1

Xmi

j=1

ðΔxi,j − xi,mi
ti,mi

Δti,jÞ2
ðmi − 1ÞΔti,j

(18)

Through the most direct comparison between
Eqs. (12), (14), (15), and (16), it can be seen that the
unbiased estimate of parameter σ is also less than zero,
because the first term of the unbiased estimate of σ is
smaller, the corresponding probability value will be lower,
which can improve the accuracy of the parameter estimate
to a certain extent. In the overall parameter estimation
expression, it can be clearly seen that the smaller the n
value of the bearing life sample size, the greater the
difference between the result accuracy of the unbiased
estimation of the parameters and the accuracy of the result
of the biased estimate. So compared with the traditional
parameter great likelihood estimation method, the unbiased
estimation method is more suitable for bearing mechanical
products with a limited sample size.

B. UNBIASED PARAMETER ESTIMATION OF
NONLINEAR WIENER PROCESSES

Compared with the traditional linear Wiener process, the
prior model parameter of nonlinear Wiener process Eq. (5)
is Θ = fμ,σ2,β2,θg, and for the full life cycle data of n
bearings, the bearing degradation data measured by the ith
bearing at the time ti,j of its degradation process can be
expressed as Eq. (19):

xi,j = λiΛðti,j; θÞ þ βBðti,jÞ, i ∈ ½1,n�, j ∈ ½1,mi� (19)

Similarly, the degradation data difference of the same
bearing at different points in time is expressed as Eq. (20):

Δxi,j = xi,j − xi,j−1 = λΔδi,j þ βBðΔti,jÞ (20)

where Δδi,j = δi,j − δi,j−1 = Λðti,j; θÞ − Λðti,j−1; θÞ, Δti,j =
ti,j − ti,j−1, j ∈ ½1,mi�. Then, the performance degradation
data vector of the ith bearing, the test time vector, etc.
can be expressed as Eq. (21):

Δxi = ðΔxi,1,Δxi,2, : : : ,Δxi,mi
ÞT

Δti = ðΔti,1,Δti,2, : : : ,Δti,mi
ÞT

Δx = ðΔxT1 ,ΔxT2 , : : : ,ΔxTn ÞT
Δδi = ðΔδi,1,Δδi,2, : : : ,Δδi,mi

ÞT (21)

Then, Δxi follows a multidimensional normal distribu-
tion with the mean μΔδi and the variance Σ̇i, where
Σ̇i = σ2ΔδiΔδTi þ β2γ̇i, γ̇i = diagðΔti,1,Δti,2, : : : ,Δti,mi

Þ.
The log likelihood function of prior model parameter
Θ = fμ,σ2,β2,θg of a nonlinear Wiener process can be
expressed as Eq. (22):

ln LðΘjXÞ = −
1
2
ln 2π

Xn
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mi −
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2
ln jΣ̇ij

−
1
2

Xn
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i ðΔxi − μΔδiÞ (22)

Similar to Section 2.1, the estimate of the parameter is
found using the method of maximizing the value of Eq. (20)
as Eq. (23):

μ̇ðθ̇Þ=1
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n
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(23)

As can be seen from Eq. (21), in the parametric
estimation process of the nonlinear Wiener process, the
value of parametric μ,σ2,β2 is directly related to the estima-
tion of θ. If the estimation of parameter θ satisfies θ̇ = θ,
then the parameter estimation expected value for the non-
linear Wiener process is Eq. (24):

Eðμ̇Þ = μ

Eðσ̇2Þ = n − 1
n

σ2 −
β2

nΔδTi γ−1i Δδi
Eðβ̇2Þ = β2 (24)

It is clear from Eq. (22) that the estimate of parameter σ
is biased, so for a nonlinear Wiener process, the unbiased
estimation expression for its parameter value is Eq. (25):
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σ̇2ðθ̇Þ= 1
n−1

Xn
i=1

�
μ̇−
Xn
i=1

ΔxTi γ−1i Δδi
ΔδTi γ−1i Δδi

�2

−
1
n

Xn
i=1

�
Δxi−

ΔxTi γ
−1
i Δδi

ΔδTi γ
−1
i Δδi

Δδi
�
T
γ−1i

�
Δxi−

ΔxTi γ
−1
i Δδi

ΔδTi γ
−1
i Δδi

Δδi
�

ðmi−1ÞΔδTi γ−1i Δδi

β̇2ðθ̇Þ=1
n

Xn
i=1

�
Δxi−

ΔxTi γ
−1
i Δδi

ΔδTi γ
−1
i Δδi

Δδi
�
T
γ−1i

�
Δxi−

ΔxTi γ
−1
i Δδi

ΔδTi γ
−1
i Δδi

Δδi
�

ðmi−1Þ
(25)
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IV. LIFE PREDICTION MODEL FOR
ROLLING BEARINGS

Rolling bearings are widely used in the field of mechanical
engineering. Their operating conditions are usually com-
plex, and the corresponding bearing performance degrada-
tion process is difficult to generalize [22]. For the general
nonlinear Wiener process Eq. (5), the stochastic degrada-
tion process fXðtÞ, t ≥ 0g of the bearing can be defined as
Eq. (26):

XðtÞ = Xð0Þ þ
ð
t

0
λðt; θÞdt þ βBðtÞ (26)

where λðt; θÞ is the drift coefficient. In order to make the
summed up bearing probability density function closer to
the actual working conditions, scholars have conducted in-
depth research; usually, the nonlinear function λðt; θÞ is
expressed in the form of a power function or an exponential
function. According to the literature [23], the power func-
tion abtb−1, a∼Nðμa,σ2aÞ is selected to characterize the drift
function, where parameter a is a random parameter that
represents the individual difference of the bearing, b is the
commonality of bearing degradation, and the unknown
parameter θ in the drift parameter can be replaced by
ða,bÞ. Then, the probability density function for the degra-
dation model of the bearing to reach the failure threshold
hðh > 0Þ for the first time is Eq. (27):

f bðtÞ ≅
h − ðtb − btbÞ hσ2atðb−1Þþμaβ

2

σ2at
ð2b−1Þþβ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πt3ðσ2atð2b−1Þ þ β2Þ
q exp

 
−

ðh − μat
bÞ2

2tðσ2atð2b−1Þ þ β2Þ

!
(27)

If the performance degradation of the rolling bearing at
time tk is XðtkÞ, according to the explanation of the RUL in
Eq. (3), it can be obtained that the probability density
function of the RUL of the bearing at time tk is

f bðlkÞ ≅
h − XðtkÞ − ððlk þ tkÞb − tbk − blkðlk þ tkÞb−1Þ ðh−XðtkÞÞσ

2
aððlkþtkÞb−tbk Þþμaβ

2lk
σ2aððlkþtkÞb−tbk Þ2þβ2lkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πlk2ðσ2aððlk þ tkÞb − tbkÞ2 þ β2lkÞ
q

× exp

 
−
ððh − XðtkÞÞ − μaððlk þ tkÞb − tbkÞÞ2

2ðσ2aððlk þ tkÞb − tbkÞ2 þ β2lkÞ

! (28)

In the unknown parameter Θ = fμ,σ,β,bgof the degra-
dation model, β,b can represent the inherent randomness of
individual rolling bearings and does not change in the
process of bearing complete performance degradation.
μ,σ is used to represent the differences between individual
rolling bearings, and the parameters will constantly change
with the operation of bearings.

Therefore, the historical training data of bearings can
be used to estimate the initial value of model parameters and
determine the fixed parameters. The random parameters can
be determined by using target bearing data and Bayesian
theory. The relevant introduction of Bayesian theory can be
referred to the literature [24].

When building life predictionmodels based on historical
degradation data from rolling bearings, different combina-
tions of variables mean different models. Therefore, the
evaluation of the model is very important [25]. Nonlinear
Wiener model of bearing can be evaluated from two aspects:
maximizing the likelihood function of the model and mini-
mizing the number of unknown parameters. The general
understanding is that larger the value of the model likelihood
function, the better the fitting effect of the model. But it will
lead to an increase in the number of unknown parameters in
the model, increase the complexity of the model and the cost
of calculation time, and even lead to overfitting of the model.
Therefore, the Akaike Information Criterion (AIC) and the
mean-square error (MSE) are introduced, where the function
expression of AIC is Eq. (29):

AIC = −2 lnðLÞ þ 2k (29)

where L is the likelihood function of the model and k is the
unknown number of parameters of the model that participate
in the parameter estimation. Compared with the Bayesian
Information Criterion (BIC), the AIC criterion is more
suitable for life prediction model with limited sample size,
and its penalty factor is independent of the sample size,
which can take into account the degree of fit of the model and
the number of unknown parameters. The smaller the AIC
value, the better the fit of the model. The function expression
of the MSE is Eq. (30):

MSE =
1
n

Xn
i=1

1
mi

Xmi

j−1
ðF̂ðti,j,ΘÞ − eFðti,jÞÞ2 (30)

where F̂ðti,j,ΘÞ is an estimate of the cumulative probability
function in time ti,j with respect to Θ, while ~Fðti,jÞ is the
empirical value of the cumulative probability function at time
ti,j. MSE can be used to detect the precision of model training
results. The flow chart of this method is shown in Fig. 1.

V. CASE STUDIES
In order to further illustrate the feasibility and effectiveness
of the nonlinear Wiener process in the study of rolling
bearing RUL, the accelerated bearing degradation data

Fig. 1. Flowchart of the RUL prediction method.
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collected by the PRONOSTIA laboratory was used for
example verification. This bearing dataset is a public data
set. The parameters related to the specific data can be referred
to [26]. The experimental table is shown in Fig. 2.

In this paper, seven datasets in working condition one
are selected to verify the parameter evaluation results of the
life prediction model and the accuracy of the life prediction
results. The third set of bearing data 1_3 inworking condition
one is used as the target bearing for the RUL prediction, and
the remaining six datasets of bearing are used to estimate the
unknown parameter values of the degradation model. In

order to highlight the unbiased parameter estimation method
compared with the traditional maximum likelihood function
parameter estimation method, the degradation model of the
bearing selects the nonlinear Wiener process with random
effects as shown in Eq. (28) and evaluates the degradation
model parameters of the bearing using two parameter esti-
mationmethods. The estimation results of the parameters and
the evaluation function calculation results of the model are
shown in Table I.

As can be seen from Table I, for the parameter estima-
tion results of the degradation model, the traditional maxi-
mum likelihood function method and the parameter
unbiased estimation method have little difference between
the estimation results of the unknown parameters μ, b, and
β. Especially, the estimation of parameter μ is exactly the
same. The large difference in estimation is the unknown
parameter σ, and the unbiased estimation method has a
larger estimation of parameter σ, although it cannot be
completely avoided, but it can reduce the risk of parameter
σ < 0 to a certain extent. The calculation results of AIC and
MSE, the evaluation functions of model fitting results, show
that the parameter unbiased estimation method can effec-
tively improve the accuracy of the bearing degradation
model, reduce the risk of parameters less than zero to a
certain extent, and improve the stability of model parameter
estimation. In order to verify the effectiveness and superi-
ority of the proposed method, the nonlinear Bayesian
method is set as the comparison method. The detailed

Fig. 2. PRONOSTIA test platform.

Table I. Results of fitting bearing degradation data

Parameter Estimation Method

Unknown Parameter

AIC MSEμ σ b β

Traditional maximum likelihood function 0.2375 0.0018 0.9420 0.0628 −51.36 0.0036

Parameter unbiased estimation method 0.2375 0.0023 0.9443 0.0627 −52.74 0.0034

Fig. 3. PDFs of RUL under M1 and M2.
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description of nonlinear Bayesian method can be found in
reference [27]. For simplicity, the method proposed in this
paper is referred to as M1, and the method based on
nonlinear Bayesian method is referred to as M2. We plot
the RUL distributions of the two methods at some different
time points, as shown in Fig. 3.

It can be seen from Fig. 3 that the RUL distribution
calculated by both methods can cover the actual RUL,
although the true RUL of the bearing remains mostly within
the range of the probability density function, even at the
beginning of the experiment. However, the function curve
is flat and less precise. As the monitoring time of the bearing
continues to increase, the corresponding amount of perfor-
mance degradation data also increases, and the probability
density function of the bearing becomes steeper, gradually
converging near the true remaining life, and the prediction
accuracy also becomes higher. Compared with the nonlin-
ear Bayes method, the RUL distribution of the proposed
method is more concentrated on the actual RUL, and the
PDF distribution is more slender, which indicates that our
method has higher accuracy. The more intuitive life predic-
tion is shown in Fig. 4.

In order to illustrate the estimation accuracy of the life
prediction results, Absolute Relative Error (ARE) and Root
Mean Square Error (RMSE) were used to evaluate the
accuracy of the model, as shown in Figs. 5 and 6. For

RUL prediction, the proposed method is obviously superior
to the comparison method. The method proposed in this
paper has small ARE and RMSE in most of the whole
prediction stage, which shows the superiority of the method
proposed in this paper.

VI. CONCLUSION
On the basis of the traditional Wiener process, random
effect and nonlinear feature are added, and the life predic-
tion model is built closer to the actual operating conditions
of rolling bearing. In terms of parameter estimation, this
paper uses the parameter unbiased estimation method to
estimate the unknown parameters of the model, which can
effectively reduce the risk of parameters less than zero,
and improve the accuracy and stability of the life predic-
tion model. Through the example analysis of the RUL
prediction of the PRONOSTIA bearing test platform, the
model fitting effect and performance of the thesis method
are good, and the performance degradation process of
rolling bearings can be effectively described, and the
accuracy is high.

Future work will focus on verifying the application of
the proposed life prediction method to other mechanical
components, as well as generalizations in other data-driven
models.
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