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Abstract: Effective fault diagnosis of planetary gearboxes is critical for ensuring the safety and dependability of
mechanical drive systems. Nevertheless, variable conditions and inadequate fault data bring huge challenges to its
practical fault diagnosis. Taking this into account, this study presents a new intelligent fault diagnosis (IFD)
approach for planetary gearbox using a transferable deep Q network (TDQN) that merges deep reinforcement
learning (DRL) and transfer learning (TL). First, a DRL environment simulation is designed by a predefined
classification Markov decision process. Then, leveraging varied-size convolutions and residual learning,
a multiscale residual convolutional neural network agent for TDQN is created to automatically learn meaningful
features directly from vibration signals while avoiding model degradation. Next, a large source dataset is obtained
from complex conditions, and this agent learns an IFD policy via autonomous interaction with the data
environment. Finally, a parameter-based TL strategy is adopted to retrain the model on target datasets with
variable conditions and small training data, which is conducted by fine-tuning the model parameters gained from
the source task to accomplish target tasks. The results show that this TDQN outperforms not only state-of-the-art
methods in a source task with an accuracy of 98.53% but also in two target tasks with 99.63% and 98.37%,
respectively.
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ABBREVIATIONS
A Action space
CMDP Classification Markov decision process
CNN Convolutional neural network
DBN Deep belief network
DL Deep learning
DQN Deep Q network
DRL Deep reinforcement learning
Ds Source domain
Dt Target domain
IFD Intelligent fault diagnosis
Main-Net Current network
MDP Markov decision process
MK-ResCNN Multiscale kernel-based residual CNN
MRCNN Multiscale residual CNN
MSCTN Multiscale convolutional transfer

network
OA Overall accuracy
P State transition probability
PGB Planetary gearbox
R Reward function
ReLU Rectified linear unit
RL Reinforcement learning
RNN Recurrent neural network
S State space
SAE Stacked autoencoder
SVM Support vector machine
Target-Net Target network

TCNN Transferable CNN
TDQN Transferable deep Q network
TL Transfer learning
WDCNN CNN with wide first-layer kernels
WT Wavelet transform
γ Discount factor

I. INTRODUCTION
Planetary gearbox (PGB), as a vital life-limited transmis-
sion component, has been broadly used in mechanical
equipment, such as wind turbines, ships, and helicopters.
However, it is prone to various failures such as gear cracks,
tooth breakage, and bearing damage due to harsh working
conditions [1,2]. Such failures that directly affect the reli-
ability of equipment may cause huge financial losses and
even casualties [3]. Hence, it is vital to investigate advanced
fault diagnosis methods to detect PGB failures effectively.

With the fast growth of artificial intelligence, intelli-
gent fault diagnosis (IFD) has piqued the interest of industry
and academia [2,4]. Traditional IFD methods that combine
shallow models (e.g., support vector machine (SVM)) with
feature extractors (e.g., wavelet transform (WT)) are diffi-
cult to meet current IFD requirements. Recently, deep
learning (DL) techniques, such as deep belief network
(DBN) [5], recurrent neural network (RNN) [6], and con-
volutional neural network (CNN) [3], have overcome the
limits of traditional shallow models and have been applied
in the IFD field. In particular, CNN, which has the merits of
locality, shift-invariance, and hierarchical representations,
is popularly favored by researchers [2,7,8]. Zhang et al.
proposed a CNN with wide first-layer kernels (WDCNN)Corresponding author: Ruqiang Yan (e-mail: yanruqiang@xjtu.edu.cn).
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for bearing fault diagnosis with good anti-noise and
adaptation, obtaining accuracy near 100% [7]. Azamfar
et al. presented an IFD model for PGB based on 2D CNN
and multi-sensor data that beats SVM, decision tree, etc.,
[8]. Liu et al. designed a multiscale kernel-based residual
CNN (MK-ResCNN) to realize fault diagnosis of rotating
motors with an accuracy of 94.47% [9]. Although these
CNN-based methods have achieved good results, there
are still inherent limits such as static learning way and
lacking decision-making ability [10,11], which restrict
the generalization ability and intelligence level of fault
diagnosis.

Deep reinforcement learning (DRL) [12], which unites
DL perception with reinforcement learning (RL) decision-
making ability, offers a novel idea for IFD and may tackle
the limitations mentioned above. In the DRL, an agent can
autonomously learn the knowledge or policy by dynamic
self-exploration and reward returned from the environment.
Similar to the human cognitive process, DRL has strong
generality and intelligence level, and thus, it is deemed the
future of general artificial intelligence [13]. Until now, DRL
has been used successfully in the field of games, robotics,
and automatic driving [12,14]. Recently, researchers have
attempted to use DRL algorithms to address machinery fault
diagnosis problems. Ding et al. created a stacked autoen-
coder (SAE)-based deep Q network (DQN) for IFD of
rotating machinery, which illustrated the feasibility and
effectiveness of the DRL for fault diagnosis [10]. Wang
et al. presented a fault diagnostic framework for PGB using
time-frequency representation and a 2D CNN-based DQN,
which achieved better generalization than regular CNN
[15]. Wang et al. proposed a DRL-based bearing fault
diagnosis model using the actor-critic algorithm-based
1D CNN, which obtained more accurate results than
SVM and CNN [16]. Despite achieving excellent perfor-
mance, these approaches are primarily used for fault diag-
nosis in stationary working conditions and rely on sufficient
training data with the same distribution. It means that each
time a new diagnosis task appears, a large quantity of data
is required to train the model from scratch, resulting in high
computational costs. It is likewise unrealistic to collect
enough fault samples for model training each time. In
addition, since PGB typically works under variable condi-
tions that result in data collected with significant internal
variability, deep-rich features need to be extracted for fault
diagnosis. Unfortunately, the above DRL models with
ordinary CNN can only capture fixed-scale fault features
and may encounter a degradation problem as the model
deepens [9], making it challenging to meet IFD needs under
complex variable conditions. These shortcomings hinder
the wide use of current DRL-based IFD methods in variable
conditions with small training data.

Currently, transfer learning (TL) can well overcome
the difficulties of training models from scratch under in-
sufficient samples and sample distribution differences, and
various TL strategies have been used for fault diagnosis
[7,17,18]. Shao et al. proposed a deep TL model for
machine fault diagnosis that combined WT images and a
pre-trained CNN, achieving over 99.60% accuracy and
speeding up the training [18]. He et al. presented a deep
transfer multi-wavelet autoencoder to diagnose gearbox
faults with small target training samples [19]. Chen et al.
suggested a transferable CNN (TCNN) for rotary machin-
ery fault diagnosis that used prior knowledge to enhance
the target domain performance in the absence of adequate

training data [20]. Although these methods have the limita-
tions of traditional DL methods, they perform excellently in
fault diagnosis tasks under variable working conditions.
This prompts us to further explore the fusion of DRL and
TL for PGB fault diagnosis.

In this work, we provide a DRL method using a trans-
ferable deep Q network (TDQN) for PGB fault diagnosis
under varying conditions with small training data. Specifi-
cally, a multiscale residual CNN (MRCNN)-based DQN
fault diagnosis model is developed to learn the diagnostic
policy from a complex source task via dynamic interaction
with the data environment. The well-trained DRL model
is then fine-tuned by using small target training samples
through a parameter TL strategy to realize fault diagnosis
under variable conditions. The main contributions of this
paper are listed below.

(1) In the DRL framework, a new MRCNN agent for the
DQN algorithm is presented to capture rich multiscale
features from vibration signals without handcrafted
features. The diagnostic policy is learned in a weak
feedback dynamic interaction via a classification
Markov decision process (CMDP), which enhances
the generalization ability.

(2) By incorporating parameter TL, the proposed TDQN
can well realize PGB fault diagnosis under variable
conditions with small target training samples. It is
promising to promote the actual IFD application of
DRL.

(3) This method is first verified by a complex source task,
and then, its transferability is evaluated by two dif-
ferent target working conditions. Compared with
existing methods, the results show the superiority
of the proposed method.

The remainder of this paper is arranged as follows.
Section II briefly reviews the relevant theories. Section III
gives the diagnostic framework based on the TDQN.
Section IV describes datasets and experimental details.
Section V shows results and analysis. Section VI draws
some conclusions.

II. RELATED THEORIES
Since our work is mainly based on the DQN algorithm and
parameter TL, thus we first briefly review the DQN model.
Following that, the fundamentals associated with parameter
TL are introduced.

A. BRIEF INTRODUCTION OF DQN

RL is based on a Markov decision process (MDP), denoted
by a tuple {S, A, P, R, γ}, where S, A, P, R, and γ are the state
space, action space, transition probability, reward, and
discount factor, respectively. In RL, the agent learns a
policy π through dynamic interaction with the environment,
where π is the probability mapping from a state s∈S to an
action a∈A. Typically, the policy is evaluated by the state-
action value function Qπ (s, a) as follows:

Qπðs,aÞ = Eπ

�
Rt =

XT
t 0=1

γt
0−1rt 0

���st = s,at = a,π

�
(1)

where Eπ(·) denotes the expectation under the policy π, Rt

signs the cumulative reward, and T is the end-time step.
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The optimal policy π* guides the agent to select an optimal
action at a state, and it is expressed as

π∗ = arg maxa∈AQπðs,aÞ: (2)

Unfortunately, Eq. (1) is difficult to calculate in prac-
tice. For this, Mnih et al. [12] proposed the DQN algorithm,
which used deep neural networks (DNN) to estimate the
state-action value, represented as Q(s, a; θ) ≈ Q(s, a). Here,
DNN is called Q network, θ is its parameters. The DQN
algorithm is illustrated in Fig. 1, where two key techniques
are used to ensure training stability. One is the experience re-
play mechanism, which stores interaction data e = (s, a, r, s′)
between agent and environment in experience replaymemory
ε, and then, mini-batch experience trajectories are randomly
sampled from replaymemory ε for updating the network. The
other is to estimate target state values by setting an additional
target network (Target-Net), which is updated by copying
the weights of the current network (Main-Net) every delayed
C step. Notably, the network updating is constrained by the
mean-square error (MSE) loss.

LðθiÞ = Ee∼ε

h�
r þ γmax

a 0
Qðs 0,a 0; θ−i Þ − Qðs,a; θiÞ

�
2
i

(3)

where Qðs,a; θiÞ is the Main-Net, Qðs 0,a 0; θ−i Þ is the Target-
Net, and yi = r þ γmax

a 0
Qðs 0,a 0; θ−Þ is the target Q value.

Ultimately, the stochastic gradient descent technique is used
to update the network parameters.

∇θi LðθiÞ = Ee∼ε½ðYi − Qðs,a; θiÞÞ∇Qðs,a; θiÞ� (4)

In addition, the ϵ-greedy strategy [12,13] is used to
balance the exploration and exploitation during interactive
learning. Based on DQN, this work will develop a new
framework for gearbox fault diagnosis.

B. PARAMETER TL STRATEGY

Variable conditions cause changes in the distribution across
the training and testing data. The disparity in data distribution
will have a great influence on the model performance
[21,22]. With auxiliary training data, parameter transfer as
an effective TL tool can well address domain mismatch
problems, especially with the support of a fine-tuning
algorithm [18,19,21]. More specifically, it fine-tunes a well-
trained model with small auxiliary training data to make this
model fit for new tasks. Via parameter transfer, knowledge
learned in the source domain (Ds) can be transferred to the
target domain (Dt) and used to fulfill target tasks. Notably,

while having different data distributions, Ds andDt exist in a
certain association. Generally,Ds has sufficient training data,
whereas Dt has a little amount of training data. Parameter
transfer mainly consists of two ordinal steps: 1) Ds is used to
pre-train a source model; 2) Weight parameters of the well-
trained source model are copied to the target model as its
initial parameters, and then, the target model is fine-tuned by
using small data from Dt. Accordingly, deep models can be
trained faster andmore easily through parameter transfer than
by learning from scratch [18].

Therefore, this work introduces parameter transfer
to enhance DQN and created a TDQN model to realize
PGB fault diagnosis under variable conditions with small
training data. The IFD framework is illustrated in section III
specifically.

III. METHODOLOGY
This section begins with the creation of a CMDP, which is
a base for DRL environment simulation. On this premise,
a newMRCNN for the DRL agent is developed. Finally, an
IFD framework based on TDQN is provided.

A. CMDP DEFINITION

The first step in using DRL is to describe the task by MDP.
Essentially speaking, fault diagnosis is a classification task;
thus, a new CMDP is created to formalize it, inspired by
[15,23]. Let a training dataset is D = {(x1, l1), (x2, l2), : : : ,
(xn, ln)}, where xi is the ith sample and li is the ith label related
to xi. A CMDP likewise contains a tuple {S, A, P, R, γ},
and related elements in this work are illustrated as follows:

S: It is made up of sample states produced by the
training dataset D. Initial environment state s1 is asso-
ciated with the sample x1. Likewise, state st at time step
t matches the sample xt. Each time the environment is
initialized, the order of the samples in dataset D is
randomly shuffled.

A: It comprises all classification actions allowing for
agent taking, and action at is associated with a label lt.
For a classification task, A = {0, 1, : : : , K−1}, where K
is categories.

P: The state transition probability p(st + 1|st, at) is
deterministic, which means that the agent receives
the next state st + 1 from the environment in the sample
order of dataset D.

R: A reward rt is environment feedback that assesses
the success or failure of the agent’s classification action
and aids the agent in learning the optimal classification
strategy [15]. Hence, we stipulate that if the agent
correctly selects a recognition action matching the
reference label, the environment returns a positive
reward R((st, at), at = lt) = +1, or else, the environment
gives a negative reward R((st, at), at≠ lt) = −1.
γ: It belongs to the range [0,1] and is to balance the
immediate and future rewards. Since the classification
agent is obsessed with instant rewards, γ is often small.

Based on the above CMDP, a data environment simu-
lation can be created for dynamic interaction [24]. Once the
agent selects a failed action during the interaction, the
environment ends the episode and restarts a round of
interactive learning. The goal of the agent is to find an
optimum policy π*θ, which assists the agent in performing

Fig. 1. The basic flow of the DQN algorithm.
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optimal recognition action given states. Because the agent
structure is critical to the sensing environment state, a new
MRCNN will be proposed.

B. MRCNN STRUCTURE

Vibration signals obtained from variable conditions have
high complexity and internal variability. To effectively
diagnose PGB faults, rich features from raw signals must
be captured. Therefore, this work proposes a new MRCNN
structure as the network of the DQN agent (Fig. 1). Via
multiscale convolutions and residual learning, MRCNN
automatically learns abstract and rich fault features directly
from complicated raw signals. It is a complete end-to-end
workflow that does not rely on manual features. Figure 2
depicts the overall architecture of MRCNN, where the sym-
bols “L,” “Ci,” “Conv,” “MaxP,” “GAP,” and “Res-B1-2”

refer to sample length, branch channel number, convolu-
tional layer, max-pooling layer, global average pooling, and
residual blocks, respectively. Overall, MRCNNmainly has a
multiscale fusion (MSF) layer, a MaxP layer, and residual
units. The following are the specifics.

(1) MSF Layer: Generally, a fixed wide-kernel convolu-
tion is used in the first layer of CNN to extract low-
frequency features directly from raw vibration signals
for fault diagnosis [7,9]. However, fixed single-scale
filters cannot fully learn discrepant features directly
from raw signals, and signal information may be
underutilized, resulting in a loss in overall model
diagnostic performance, especially for fault diagnosis
under complicated variable conditions. Given this, in
MRCNN, the first stage of the MSF layer is designed
to capture rich discriminant features from input sig-
nals via three various filter sizes. For the input

Xin∈RL×1, the first multiscale output of the MSF
layer is given by

XI
MSF

= Concat
�
Convk=25,64,112ðXinÞ

�
: (5)

where Convk denotes a 1D convolutional layer with a
kernel size of k, and Concat represents the concate-
nation operation along the channel axis. The output of
Convk is calculated by

Xk = σðWk ∗ Xin þ bkÞ: (6)

where “*” is the convolution operation, Wk and bk
denote the weight and bias term, respectively, and σ(·)
is the activation function, which is often the rectified
linear unit (ReLU) [25].

Features of three filter scales are extracted preliminary
from raw signals using Eq. (5). Next, the second stage of the
MSF layer adopts a 1D multiscale module inspired by the
2D Inception architecture [26] to further refine multiscale
features from the previous layer. Convolutional kernels
with 1 × 1, 3 × 1, and 5 × 1 sizes are mostly used in this
stage. Concretely, its output is realized by four parallel
branches, as shown in Fig. 2, and these multiscale features
are concatenated as the input of the next stage. The output of
the MSF layer is described by

XII
MSF =

2
664
σðXI

MSF ∗W1×1 þ b1×1Þ
σðσðXI

MSF ∗W1×1 þ b1×1Þ ∗W3×1 þ b3×1Þ
σðσðXI

MSF ∗W1×1 þ b1×1Þ ∗W5×1 þ b5×1Þ
σðMaxPðXI

MSFÞ ∗W1×1 þ b1×1Þ

3
775:

(7)

(2) MaxP Layer: Following the MSF layer, a max pool-
ing layer is used as a down-sampling operation to
reduce feature size and computation cost while
increasing the generalization. The output of the
MaxP layer is denoted as

XMaxP = max
ðj−1ÞWpþ1≤k≤jWp

n
XII
MSFðkÞ

o
: (8)

where XII
MSFðkÞ indicates the kth value in each feature

vector, Wp means the pooling window. Notably, an
overlapping MaxP layer in which a pooling window
is greater than a pooling stride is used as a feature
reduction operation in MRCNN.

(3) Res-B1-2 unit: Complex working situations make
PGB fault identification more challenging; thus,
deep features should be retrieved to improve the
performance. Nevertheless, as the network deepens,
the model performance may degrade, making model
training difficult. Residual learning [27] can well
solve this issue; thus, it is embedded in the proposed
MRCNN structure to facilitate model training [9]. As
depicted in Res-B1 of Fig. 2, the core of residual
learning is the residual subblock.

Based on the residual learning concept [27], Res-B1

employs a shortcut connection that connects input XMaxP to
stacked weight layers. The Res-B1 output is obtained by

XRes-B1
= FðXMaxPÞ þ XMaxP, (9)

F = W2σðW1XMaxPÞ: (10)

where W1 and W2 are the weights, and F(XMaxP) is the
residual mapping, which often adopts two stacked Conv
layers. F(XMaxP) and XMaxPmust have identical dimensionsFig. 2. The MRCNN structure for the DQN agent.
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since they are fused by element-wise addition. Otherwise, a
linear projection is used to match the output size. For
example, a 1 × 1 convolution along the shortcut connection
is used to expand the dimension for the input XRes-B1 in the
second residual block (Res-B2). The output of the residual
block Res-B2 can be written as

XRes-B2
= FðXRes-B1

,W iÞ þWsXRes-B1
: (11)

where Wi is the weight layer and Ws is a linear projection.

As a result, MRCNN adopts two sequential residual
blocks to extract deep features for PGB fault diagnosis.
After that, a GAP layer is adopted for feature aggregation,
and a K-size fully connected layer outputs Q values linearly.
Based on the above layers, an MRCNN is designed as the
Main-Net and Target-Net network structure of DQN
(Fig. 1). Finally, Algorithm 1 exhibits the agent interaction
learning process according to the created CMDP and the
DQN flow (Fig. 1).

C. TDQN-BASED DIAGNOSTIC
FRAMEWORK

As shown in Fig. 3, a new TDQN-based framework for
PGB fault diagnosis is constructed according toAlgorithm 1
and the parameter transfer strategy. Specifically, this frame-
work covers five main steps listed below.

Step 1: Data acquisition and division. Vibration signals of
health types collected from different conditions are

segmented and normalized into the range [−1, 1]. The
datasets of the source domain (Ds) and target domains
(Dt) are created, and the quantity of training and testing
samples between them is confirmed.

Step 2:Model building. The data environment simulation is
created according to the defined CMDP, and the agent
structure of the TDQN model based on an MRCNN is
developed. Details are depicted in Fig. 2.

Step 3: Model learning. According to the reward mecha-
nism, the agent autonomously learns the diagnostic policy
from the source domain Ds via interaction with the data
environment, as illustrated in Algorithm 1.

Step 4:Model transfer. The model parameters learned from
Ds are transferred and used to realize target tasks (Dt).
Exactly, the well-trained TDQN model is fine-tuned on a
small training dataset of Dt by only retraining Res-B1-2,
GAP, and the output layer via Algorithm 1, whereas low-
level multiscale layers are frozen.

Step 5: Fault diagnosis. The fine-tuned TDQN is used to
realize fault diagnosis on the testing dataset of Dt, and then,
the recognition results are further analyzed.

IV. EXPERIMENT AND DATA
DESCRIPTION

This section first assesses the proposed framework on a
multi-speed source dataset (Ds). Subsequently, two target
datasets (Dt) are collected to verify the effectiveness of this
method in two different scenarios. Data descriptions are
offered first, followed by experimental details and compar-
ative methods.

A. SOURCE DOMAIN DATASET

PGB often operates under complex variable conditions.
Thus, a source domain dataset (D1

s ) is collected from the
drivetrain dynamics simulator (DDS) under variable speed
conditions. Figure 4 depicts the experimental bench, which
consists primarily of a driving motor, a speed controller, a
PGB, a parallel gearbox, and a brake. During the experi-
ments, vibration data are acquired using PCB 608A11
accelerometers installed at the radial input end of PGB,
with a sampling rate of 5120 Hz. Moreover, a speed con-
troller is used to adjust the rotational speed of the driving
motor, which ranges from 0 to 2400 r/min, and the details
are depicted in Fig. 5. Nine health types are physically
simulated in PGB [15], including one healthy state (HEA),
four gear faults (i.e., CTF, MTF, RTF, and SWF), and four
bearing faults (i.e., BWF, CWF, IRF, and ORF), as shown
in Table I. For each health type, vibration signals are
collected under a speed ranging from 0 to 2400 r/min
and a load of 0 N.m. In the above settings, ten tests were
performed for each PGB health type to acquire abundant
vibration data.

Collected vibration signals are segmented into samples
using a sliding window with a step of 1024 data points, and
each sample comprises 2048 data points. Finally, a source
dataset D1

s is created with 2550 samples per type, totaling
22,950 samples in nine categories. During the test, we
adopt five-fold cross validation as an evaluation strategy.

Algorithm 1: Interaction Learning Process

1: Initialize replay buffer with the maximal capacity N;

2: Initialize Main-Net and Target-Net with weights θ and θ−,
respectively;

3: Initialize ϵ-greedy strategy, learning rate, mini-batch size,
terminal flag, etc.;

4: for episode= 1, M do

5: Initialize data environment, randomly shuffle training dataset;

6: for t= 0, T-1 do

7: Observe the current state st from the data environment;

8: Select action at by the ϵ-greedy strategy: Randomly select at
with the probability ϵ, or by maximizing Q value, that is,
argmax Q(st, at; θ);

9: Environment returns agent a reward rt based on the reward
strategy;

10: Transition to next an environment state st+1 by the order of
samples;

11: Store transition trajectory (st, at, rt, st+1) in replay buffer;

12: if the current replay buffer capacity reaches a certain number
do

13: Sample randommini-batch experience data from the replay
buffer;

14: Conduct a gradient descent procedure using the RAdam
[28] on eq. (4) to update the weight parameters θ of the
Main-Net;

15: EveryC delayed step, update Target-Net by copying θ−= θ;

16: end for

17: end for

18: return The parameter θ* on the Main-Net for optimal action
policy πθ

*.
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The whole dataset D1
s is randomly and equally divided into

five sub-sample sets, so each validation experiment has one
sub-sample set containing 4590 samples for testing, while
the remaining four sub-sample sets are utilized to train the
model. The details of the source domain dataset are listed in
Table I.

B. TARGET DOMAIN DATASETS

Target domain datasets are also gathered from the aforesaid
DDS platform but in two different situations: one from
the same speed but different loads between two cases and
the other from two different speed-load cases, thereby
creating two target sub-datasets D1

t and D2
t , as illustrated

in Table II.
Three running conditions on the DDS test rig are emu-

lated by controlling the motor speed and brake: 1800 rpm-
3.66 N.m, 1800 rpm-10.98 N.m, and 1200 rpm-0 N.m,
respectively. Fault configurations and sensor settings are
the same as the source domain. Vibration signals are seg-
mented into samples in a non-overlapping way, and each
sample comprises 2048 data points. Target sub-dataset D1

t is
obtained from twoworking conditions with the same speed of
1800 r/min but differing loads of 3.66 N.m and 10.98 N.m.
For the dataset D1

t , each health type has 60 training samples
and 500 testing samples, and they are acquired evenly from
both running conditions. Similarly, a target dataset D2

t con-
sists of two different speed loads, 1800 rpm-3.66 N.m and
1200 rpm-0 N.m. Its settings are similar to the dataset D1

t .
More details can be found in Table II.

Fig. 4. Experimental system: (a) DDS platform; (b) PGB inner structure.

Fig. 5. The change of rotating speed.

Fig. 3. The overall framework of TDQN for PGB fault diagnosis.
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Further, the feasibility and transferability of the TDQN
model are evaluated on the above source dataset D1

s and
target datasets D1

t and D2
t . The implementation specifics of

this method and certain comparison methods are given in
the next section.

C. EXPERIMENTAL CONFIGURATIONS AND
COMPARISONS

The parameter details of the TDQN method are set as
follows.

In the first multiscale layer of MRCNN, three 1D
convolutions with kernel sizes of 25 × 1, 64 × 1, and
112 × 1, respectively, are conducted on input vibration
signal. Each branch of the MSF layer has 32 filters. The
output channel of Res-B1-2 units is 128 and 256, respec-
tively. Detailed structure is depicted in Fig. 2. Notably, all
convolutions use an exponential linear unit (ELU) activa-
tion function [29], and the convolutional filling way is
“SAME.” In the CMDP, the discount factor γ is set as 0.1
by considering the low correlation between samples, im-
plying that the agent cares more about the immediate re-
ward during autonomous learning. RAdam optimizer with

a learning rate of 1e-3 is used to update Main-Net, and the
delayed updating step of Target-Net is 100. The capacity of
the experience replay buffer is 100000, and the interaction
steps between the agent and environment are 140000 in the
source domain. Besides, a linear annealing policy is used to
update a greedy parameter ϵ from 1 to 0.1 for a total of
100000 steps, and the batch size is 128.

To validate the superiority of TDQN, it is compared
with other methods that are run on the same datasets.
The primary parameters of these methods are listed as
follows:

• SVM [4]: 28 time and frequency domain features (e.g.,
mean, crest factor, kurtosis, etc.) are extracted manu-
ally and SVM is used as a classifier.

• WDCNN [7]: The network is a slightly modified version
of WDCNN, where the dropout technique is adopted in
the final fully connected layer to avoid overfitting.

• TCNN [20]: A transferable CNN, its structure is a
variant of WDCNN, and it uses a fine-tuning transfer
strategy to retrain the model on the target domain.

• MK-ResCNN [9]: MK-ResCNN is a multi-branch
multiscale kernel deep residual network; here its input

Table I. Descriptions of the source domain dataset (D1
s )

Type Health description Sample size Speed/load (rpm/N.m) Action label

HEA Healthy PGB 2550 [0,2400]/0 0

CTF Chipped tooth fault in gear 2550 [0,2400]/0 1

MTF Missing tooth fault in gear 2550 [0,2400]/0 2

RCF Root crack fault in gear 2550 [0,2400]/0 3

SWF Surface wear fault in gear 2550 [0,2400]/0 4

BWF Ball wear fault in bearing 2550 [0,2400]/0 5

CWF Combo wear fault in bearing 2550 [0,2400]/0 6

IRF Inner race fault in bearing 2550 [0,2400]/0 7

ORF Outer race fault in bearing 2550 [0,2400]/0 8

Table II. Descriptions of the target domain datasets D1
t AND D2

t

Dataset Dt Type Speed (rpm) Load (N.m) Training/testing sample size Action label

D1
t HEA 1800 3.66 & 10.98 30 & 30/250 & 250 0

CTF 1800 3.66 & 10.98 30 & 30/250 & 250 1

MTF 1800 3.66 & 10.98 30 & 30/250 & 250 2

RCF 1800 3.66 & 10.98 30 & 30/250 & 250 3

SWF 1800 3.66 & 10.98 30 & 30/250 & 250 4

BWF 1800 3.66 & 10.98 30 & 30/250 & 250 5

CWF 1800 3.66 & 10.98 30 & 30/250 & 250 6

IRF 1800 3.66 & 10.98 30 & 30/250 & 250 7

ORF 1800 3.66 & 10.98 30 & 30/250 & 250 8

D2
t HEA 1800 & 1200 3.66 & 0 30 & 30/250 & 250 0

CTF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 1

MTF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 2

RCF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 3

SWF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 4

BWF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 5

CWF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 6

IRF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 7

ORF 1800 & 1200 3.66 & 0 30 & 30/250 & 250 8
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is samples reshaped to a 512 × 4, and other details are
listed in [9].

• MSCNN [2]: MSCNN contains a multiscale coarse-
grained layer and multi-branch structures. Also, a
dropout operation is placed after the last fully con-
nected layer.

• MSCTN [21]: A multiscale convolutional transfer
network (MSCTN), which uses dilation convolution
to learn multiscale features. Its input is samples re-
shaped to a 512 × 4 shape and a dropout operation is
added after a GAP layer.

• MConvNet: Multiscale convolutional network
(MConvNet) whose network structure is similar to
TDQN except that the output layer activation function
is Softmax, and the training way uses supervised
learning.

• STDQN: Single-scale TDQN is similar to TDQN only
saves the branch with a kernel size of 64 in the MSF
layer first stage and replaces the second multiscale
block of the MFS layer with a 3 × 1 convolution
with a filter number of 64.

• DQN: DQN has the same network as TDQN, but it is
trained from scratch in the target domain without fine-
tuning.
When the above deep learning models are evaluated on

the source domain datasetD1
s , the batch size is also 128, and

the same RAdam optimizer is used to update models.
Additionally, 10% of training samples are randomly chosen
as a validation dataset, and an early stopping operation is
implemented to save optimal models to avoid overfitting.

All methods are coded using python in the Keras
framework and the open-source library Keras-rl [30] and
conducted on a computer with Intel® Xeon(R) CPU E5-
2603 v4@1.70GHz × 12, four GTX 1080 Ti (11GB) gra-
phics cards, and Ubuntu 16.04 operating system. Each
experiment is carried out five times, and the overall accu-
racy (OA) is adopted as an assessment indicator. The
average OA and standard deviation (STD) in source and
target tasks are reported and compared with each other.

V. EXPERIMENTAL RESULTS AND
COMPARISONS

In this section, the effectiveness of TDQN is first evaluated
on a source domain (Ds). Then, this model is migrated to
the target domain (Dt) and fine-tuned with small target
training samples to assess the model’s transferability.

Lastly, the impact of training sample size on performance
is discussed.

A. RESULTS ON SOURCE DOMAIN

To analyze the performance of these methods on the source
datasetD1

s , 5-fold cross-validation results including average
accuracy and elapsed time are recorded in Table III. From
the results, SVM has worse training and testing OA than
others. It shows that features manually extracted are hard to
describe fault characteristics. In contrast to single-scale
WDCNN, TCNN, and STDQN, multiscale models have
better performance. It means that multiscale models can
extract rich features for improving accuracy and are more
suitable for fault diagnosis in complex conditions. Espe-
cially, the testing accuracy of MConvNet, MK-ResCNN,
and TDQN reaches 96.39%, 98.28%, and 98.53%, respec-
tively. TDQN outperforms SVM, WDCNN, TCNN, etc.,
significantly. Compared with MK-ResCNN, this method
still slightly surpasses it. MConvNet has relatively high
accuracy, which further shows the effectiveness of the
multiscale network. Importantly, compared with MConv-
Net and STDQN, the testing OA of TDQN increases by
2.14% and 0.62%, respectively. Since model interaction
learning requires numerous trial-and-error steps and the
updating process needs to store empirical trajectories and
copy model parameters, DRL models often have longer
elapsed time than models directly training. As a result,
STDQN and TDQN take a long training time. TDQN, in
particular, has the longest training time, reaching about
2862 s. Moreover, the network lightweight also affects
model elapsed time. This is why TDQN is more time-
consuming than STDQN. Even so, due to the relatively
lightweight design, TDQN has a testing time of only 0.61 s,
which is faster than the MK-ResCNN.

Figure 6 depicts a normalized 5-fold cross-validation
confusion matrix for the proposed TDQN. From Fig. 6,
this method has an accuracy of more than 97% for each
health type. Especially for HEA and MTF states, the
accuracies exceed 99%. It is inferred that this method
has better fault diagnosis consistency. To graphically
illustrate the model learning ability, the t-distributed sto-
chastic neighbor embedding (t-SNE) method [31] is
applied to reduce the feature dimension of high-level
GAP layers of TDQN and MConvNet from 256 to 2
and visualize the learned features, respectively, as shown
in Fig. 7. It can be seen that features learned from TDQN
have stronger clustering and separability among nine
health types than MConvNet.

Table III. Results of different methods on source dataset (D1
s )

Methods

Diagnostic accuracy (%) Average time (s)

Training OA Testing OA Training time Testing time

SVM 50.09 ± 0.10 49.27 ± 0.36 41.09 7.46

WDCNN 93.37 ± 2.37 74.46 ± 0.98 107.82 0.65

TCNN 97.79 ± 0.43 90.90 ± 0.61 421.65 0.97

MK-ResCNN 100.00 ± 0.00 98.28 ± 0.21 1036.76 2.57

MSCNN 99.91 ± 0.08 91.31 ± 0.64 204.67 0.69

MSCTN 98.64 ± 0.73 93.84 ± 0.79 202.90 0.65

MConvNet 100.00 ± 0.00 96.39 ± 0.48 231.32 0.84

STDQN 99.91 ± 0.01 97.91 ± 0.19 2361.50 0.46

TDQN 99.96 ± 0.01 98.53 ± 0.26 2861.92 0.61
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In addition, a sample from the dataset D1
s is used to

verify feature representations of the first multiscale layer of
TDQN. Figure 8 depicts reshaped feature maps from three
convolutional scales (i.e., 25, 64, and 112).

From Fig. 8, different scale kernels can capture various
time scale information, which is slightly similar to time-
frequency representation. It can be seen along the vertical
axis that small-scale kernels focus onmore local details, and
it can be seen along the horizontal axis that each wide-
kernel filter easily captures more low-frequency feature
information. Therefore, it can be concluded that the de-
signed first multiscale module in TDQN can capture more
underlying physics information directly from raw signals
than a single-scale kernel, which lays the groundwork for
high-level feature extraction in subsequent modules and is
useful to increase diagnostic performance.

Based on the analysis above, results show that the
presented TDQN can better learn meaningful discriminative
features that can effectively enhance the fault diagnosis
accuracy of PGB. The effectiveness and superiority of this
method in the source domain dataset D1

s is verified by the
analysis above.

B. TRANSFERABILITY EVALUATION ON
TARGET DOMAIN

In this section, two target datasets D1
t and D2

t , are employed
to evaluate the transferability and viability of the proposed
method under variable conditions with small target sam-
ples. The interaction steps in DRL models between the
agent and the environment are 40000, and the step for
updating parameter ϵ with a linear annealing policy from 1
to 0.1 is a total of 20,000. Due to small training samples in
the target domain, the batch size for other DL models is 10,
and the training epoch is 100. Besides them, the experi-
mental settings are the same as in the preceding section. All
methods were executed five times to obtain average evalu-
ation results, as recorded in Table IV.

From Table IV, the accuracies of the proposed method
on two target datasets are all greater than 95%. Concretely,
the testing OA of TDQN for datasetsD1

t andD2
t are 99.63%

and 98.37%. TDQN can outperform others even with
small target training samples. Among others, SVM per-
forms worst. Or rather, handcrafted features are hard to
ensure their consistency under variable conditions, resulting
in inferior accuracy. Deep models all have high training OA
of over 99%. Nevertheless, there are great differences
among them in testing sets. Especially, MSCNN likewise
performs badly, with a testing accuracy of less than 40%,
because of a lack of adequate training data. Similarly, while

Fig. 6. Normalized confusion matrix on the source domain dataset.

Fig. 7. High-layer feature visualization on the source domain: (a) MConvNet for D1
s ; (b) TDQN for D1

s .

Fig. 8. Feature extractions of a vibration signal from three scales
in Stage I: (a) Scale 1 for kernel 25; (b) Scale 2 for kernel 64;
(c) Scale 3 for kernel 112.
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MK-ResCNN and MConvNet outperform MSCNN, they
are still inferior to TDQN. In contrast to single-scale TCNN,
MSCTN performs better, with testing OA of 96.73% and
92.47% on target datasets D1

t and D2
t , respectively. This is

because that single-scale TCNN cannot well learn useful
features from the source domain, resulting in low accuracy
when the pre-trained model is transferred to target datasets.
Other methods perform better than 90% in the target testing
domain, especially for the testing OA of over 95% on the
datasetD1

t , which are better than SVM, TCNN, MConvNet,
etc., but still worse than TDQN.

Specifically, the proposed TDQN outperforms
STDQN and DQN significantly. Especially on the dataset
D2

t , the testing OA of TDQN rose by 2.15%, and 7.18%,
respectively. Additionally, the performance of all methods
on the target task D2

t is weaker than that on the target task
D1

t . It indicates that variable speed cases are more difficult
to diagnose than variable load cases because failure fre-
quency is changed. Despite this, TDQN still has an OA of
98.37%. To further demonstrate the superiority of TDQN,
its high-level GAP features are visualized and compared
with DQN, as depicted in Fig. 9.

Table IV. Result comparisons on target domain (D1
t AND D2

t )

Methods

Dataset D1
t (%) Dataset D2

t (%)

Training OA Testing OA Training OA Testing OA

SVM 44.81 ± 0.00 41.49 ± 0.00 40.56 ± 0.00 30.58 ± 0.00

MSCNN 99.92 ± 0.09 39.62 ± 5.45 99.85 ± 0.22 37.25 ± 0.86

TCNN 99.89 ± 0.09 87.55 ± 2.37 100.00 ± 0.00 78.75 ± 4.14

MK-ResCNN 100.00 ± 0.00 99.15 ± 0.27 99.96 ± 0.08 86.67 ± 6.40

MSCTN 99.96 ± 0.08 96.73 ± 1.00 100.00 ± 0.00 92.47 ± 1.05

MConvNet 100.00 ± 0.00 89.56 ± 1.80 100.00 ± 0.00 75.21 ± 1.11

STDQN 100.00 ± 0.00 98.78 ± 0.22 100.00 ± 0.00 96.22 ± 0.26

DQN 100.00 ± 0.00 99.18 ± 0.16 100.00 ± 0.00 91.19 ± 1.44

TDQN 100.00 ± 0.00 99.63 ± 0.06 100.00 ± 0.00 98.37 ± 0.20

Fig. 9. High-layer feature visualization on target domain dataset: (a) DQN forD1
t ; (b) TDQN forD1

t ; (c) DQN forD2
t ; (d) TDQN forD2

t .
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From Fig. 9, feature clustering and separability of
TDQN among nine classes outperform DQN considerably.
Especially forD2

t , most of the features fromDQN are heavily
mixed and only health types HEA and CWF are well
distinguished. As a result, it is reasonable to explain that
the performance of DQN is weaker on D2

t . From Table IV,
and Fig. 9(a) and (b), even the testing accuracy of DQN on
the datasetD1

t is 99.18%, its discriminant features learned are
worse than TDQN. From Fig. 9(d), while TDQN performs
better, there is an evident intra-class gap between BWF,
CWF, IRF, and ORF. This is since the target set D2

t contains
two speed-load cases, existing in obvious diversities within
the class. Importantly, while DQN requires more samples to
learn from scratch to realize fault diagnosis, TDQN can
achieve high accuracy with small training samples, greatly
reducing computation costs. In sum, the transferability and
effectiveness of the proposed approach have been demon-
strated in the above datasets D1

t and D2
t .

C. EFFECT OF TARGET TRAINING SET SIZE
ON RESULTS

Furthermore, a comparison of five diagnosis methods (i.e.,
TCNN, MSCTN, DQN, STDQN, and TDQN) under dif-
ferent numbers of target training samples is carried out.
Experimental configurations are as same as in the previous
section B. Detailed comparisons are presented in Fig. 10.

From Fig. 10(a), the testing OA of TDQN reaches
98.20% even with only 10 target training samples, and
STDQN with the best performance is only 94.23% among
comparison methods. DQN, in particular, performs worst,
with only 65.30% accuracy. The advantages of TDQN in
the case of small target samples are further verified. Also, it

can be seen that these methods with a model transfer
perform better. The accuracy of these methods gradually
improves as the number of training samples grows. When
the training sample reaches 20, the proposed method can
achieve a 99.07% recognition rate on the dataset D1

t . At the
same time, the accuracies of TCNN, MSCTN, DQN, and
STDQN are 85.58%, 92.97%, 89.00%, and 97.09%, respec-
tively. When the quantity of training samples rises to 40,
the test accuracy of DQN reaching 98.11% exceeds that
of TCNN and MSCTN. It further shows the superiority of
the proposed method, especially TDQN. Among them, the
accuracy improvement of single-scale TCNN is relatively
slowest as the number of target training samples increases.
It may be that TCNN has a relatively great complexity,
which results in overfitting in the event of small training
data. Meanwhile, because the single-scale structure is
difficult to capture ample features in the complex source
domain, the transfer effect of the model becomes
worse.

Similarly, these conclusions are inferred from Fig. 10(b).
Compared with the target dataset D1

t , these phenomena are
more obvious in the target dataset D2

t . When the training
sample size is set to 20, for example, TDQN achieves an
accuracy of 96.18%, which is 18.62%, 9.18%, 23.79%, and
5.13% higher than TCNN, MSCTN, DQN, STDQN, and
TDQN, respectively. Furthermore, TDQN has a low standard
deviation, indicating strong stability. To sum up, in the case of
small training samples, the TDQN outperforms significantly
others. Therefore, TDQN has the huge potential to provide a
generic and reliable diagnostic framework for PGB fault
identification.

VI. CONCLUSION
This work proposes a transferable DRL framework based
on TDQN for PGB fault diagnosis under variable condi-
tions with small training data. It first creates an MRCNN
structure as a DRL agent to enhance feature learning ability
while avoiding model degradation. This agent can autono-
mously and effectively learn rich features directly from
vibration signals for fault recognition via weak feedback
interaction learning, improving the generalization perfor-
mance. Importantly, this method combines parameter TL,
which utilizes knowledge obtained from a source domain to
enhance the accuracy of the DRL model under variable
conditions with small training data. The results show that
this method is more impactful and superior to existing
methods such as SVM, TCNN, MSCTN, and others.

In future work, we will refine this method by optimizing
agent structure from a physics-informed perspective, reward
reshaping, and conjoining other TL strategies to make it
suited for more challenging scenarios (e.g., strong noise and
data imbalance). Also, we will investigate its scalability on
other equipment to enlarge the potential applications.
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