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Abstract: Rolling bearings are key components of the drivetrain in wind turbines, and their health is critical to
wind turbine operation. In practical diagnosis tasks, the vibration signal is usually interspersed with many
disturbing components, and the variation of operating conditions leads to unbalanced data distribution among
different conditions. Although intelligent diagnosis methods based on deep learning have been intensively
studied, it is still challenging to diagnose rolling bearing faults with small amounts of samples. To address the
above issue, we introduce the deep residual joint transfer strategy method for the cross-condition fault diagnosis
of rolling bearings. One-dimensional vibration signals are pre-processed by overlapping feature extraction
techniques to fully extract fault characteristics. The deep residual network is trained in training tasks with
sufficient samples, for fault pattern classification. Subsequently, three transfer strategies are used to explore the
generalizability and adaptability of the pre-trained models to the data distribution in target tasks. Among them,
the feature transferability between different tasks is explored by model transfer, and it is validated that
minimizing data differences of tasks through a dual-stream adaptation structure helps to enhance generalization
of the models to the target tasks. In the experiments of rolling bearing faults with unbalanced data conditions,
localized faults of motor bearings and planet bearings are successfully identified, and good fault classification
results are achieved, which provide guidance for the cross-condition fault diagnosis of rolling bearings with
small amounts of training data.

Keywords: fault diagnosis; feature transferability; rolling bearing; transfer strategy; wind turbine

I. INTRODUCTION
Rolling bearings play a vital role in the transmission system
of wind turbines. Rolling bearing faults are likely to result in
unexpected downtime and economic loss [1–3]. Therefore,
rolling bearing fault diagnosis is important to the steady
operation of wind turbines.

As vibration signals contain diverse components, such
as rotational frequencies and their harmonics, noise, or even
different signal coupling, extracting fault information from
vibration signals has become the typical approach for fault
diagnosis of rotating machinery. Some researchers have
effectively explored the fault mechanism of rotating
machinery using signal analysis techniques. For example,
Feng et al. [4,5] calculated the fault feature frequencies of
damaged components in planetary gearboxes, thus identi-
fying the gearbox faults. Jain et al. [6] built a dynamics
model of planet gear system by the planet bearing fault
mechanism for analyzing the frequency domain character-
istics of vibration response. However, traditional methods
largely rely on the prior knowledge about research objects
to extract obvious fault features, such as eigenvalue and
fault feature frequency of signals. Therefore, extracting the
hidden weak fault features from lots of signals is highly
challenging. With the application of intelligent diagnosis
technology, such as machine learning, the fault information
of monitoring data can be automatically mined and pro-
cessed, thereby avoiding the deficiency of traditional meth-
ods [7–10]. Driven by the network structures and training
algorithms, deep learning methods [11–14] based on

sufficient labeled data have been extensively investigated
in the intelligent diagnosis of rotating machinery. Jiao et al
[14] established multivariate encoder information dataset
by blending multiple encoder data to effectively diagnose
different fault categories of planetary gearboxes. Xu and
Souza et al [15,16] improved the deep network by shallow
algorithm structures for health identification of bearings and
thus classified different fault types by the constructed
classification module. Verstraete et al [17] performed a
featureless learning method for digging out fault features of
rolling bearing datasets, thus addressing the uncertainty and
bias during the feature learning. Although deep learning
methods have achieved excellent results in identifying
faults of mechanical equipment, they are still highly con-
troversial. The above-mentioned methods usually presume
that feature distribution of test sample sets is the equivalent
to that of training sample sets, and train deep networks on
monitoring data with abundant health label information.
However, the available fault data in engineering applica-
tions are much less than normal data, that is, the lack of
faulty training samples, which makes the generalization of
trained models insufficient in target tasks.

Therefore, transfer learning methods [18] were intro-
duced to the cross-condition fault diagnosis of rotating
machines. Transfer learning is intuitively divided into
multiple categories depending on the learning style [19],
with feature transfer learning receiving the most extensive
research. Some researchers [20,21] have presented to incor-
porate transfer learning into the training of deep networks or
to transfer models with strong generalization among differ-
ent diagnostic tasks, thereby resolving the problems of few
labeled samples and vibration data diversity in bearing
diagnosis tasks. The diagnostic performance of theseCorresponding author: Zhipeng Feng (e-mail: fengzp@ustb.edu.cn).
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methods may exhibit instability due to insufficient training
samples and large feature differences among different tasks.
The tight internal structure of bearings increases the diffi-
culty of feature extraction, which leads to the inability to
adequately extract fault information for bridging the data
differences among different conditions. Thus, some domain
adaptation methods based on metric distance are applied to
the cross-condition fault diagnosis of rotating equipment.
He et al [22,23] utilized maximum mean discrepancy
(MMD) metric to calculate the data difference among
training and target tasks for fault diagnosis of machinery.
Sun et al [24] adapted deep correlation alignment
(D-CORAL) to calculate the data discrepancy (CORAL loss)
instead of MMD loss. Other researchers utilized some
distance metrics and divergences, such as Wasserstein dis-
tance [25] and Kullback–Leibler divergence, to gauge the
data differences between different tasks. The speed or load of
rotating equipment in engineering applications changes fre-
quently, resulting in widely varying data distributions in
different conditions. Therefore, when the data discrepancy is
too large or the metric distance is inappropriate, negative
transfer effects can occur in the cross-condition transfer
diagnosis. According to this, we explored the feature trans-
ferability between different diagnosis tasks by freezing and
fine-tuning the parameters and compared the effects of
different metric distances on transfer tasks.

In engineering applications, the collected normal sig-
nals are usually much more than the fault signals, resulting
in the lack of fault data and data imbalance during the
network training. Therefore, this paper proposes a method
combining deep residual networks and transfer diagnosis
strategy to accomplish the cross-condition diagnosis for
rolling bearing faults. Sufficient training samples are uti-
lized in the source task to improve the generalization ability
of network models, and the fault information is hierar-
chically compiled into weight parameters of network layers.
The trained models are utilized in the new diagnosis task of
bearings by means of feature transfer. Moreover, a transfer
strategy is proposed to evaluate the data distribution
between different tasks using MMD distance. Compared
with traditional deep learning method, this method is able to
effectively mine the fine-grained feature information for
fault diagnosis of target tasks, rather than taking advantage
of numerous labeled samples with same data distribution to
train the network. The major contributions of this paper are
categorized into two areas:

(1) A transfer framework is designed on the basis of pre-
trained models in the source domain, and the weights
of models are recompiled to adapt to target tasks, thus
exploring the feature transferability among different
conditions using different transfer strategies.

(2) A dual-stream feature adaptation strategy is proposed
on the basis of fine-tuning the weights. This method
gauges the distribution distance among different tasks
to evaluate the data differences of tasks, thus bridging
the gap of data distribution among different diagnos-
tic tasks, which can enhance the generalization of
models to target tasks.

The rest of this paper is organized as follows. Section II
describes a brief research background. We propose a deep
transfer learning framework for bearing fault diagnosis in
Section III. Section IV introduces experimental setting and
displays the experimental results. Lastly, conclusions are
derived in Section V.

II. RESEARCH BACKGROUND
A. DIAGNOSTIC TASK DESCRIPTION

Vibration signal from different conditions exhibits diverse
data characteristic distribution. Conventional supervised
deep learning demands adequate labeled fault samples to
boost the diagnostic performance of network models, and
separate models have to be constructed for different
diagnostic tasks. Bearing fault diagnosis in engineering
applications can hardly meet the above requirements.
Moreover, vibration signals of bearings are interspersed
with high-frequency noise and other disturbing compo-
nents, and the frequent changes in operating conditions
lead to increased data discrepancies among signals. There-
fore, we introduce transfer diagnosis methods for the
cross-condition fault diagnosis of bearings. Domain is
used to delineate data with different feature distributions,
that is, source domain DS and target domain DT , where
the probability distribution PðxÞ is the indicator to distin-
guish the two domains. In the transfer cases, the probabil-
ity distributions within both domains are dissimilar
(PSðxÞ ≠ PTðxÞ). The training aim of the source domain
is to uncover a mapping condition in similar tasks that
enables automatic learning of feature information in the
target task. The core of transfer learning is to mine feature
similarities between different diagnostic tasks and lever-
age the characteristics in labeled tasks DS = fxSi ,ySi gn to
complete the diagnosis of the unlabeled tasksDT = fxTj gm,
among which the data probability distribution between
diagnostic tasks is different.

B. FEATURE LEARNING

When in excess of a certain depth of layers in the network,
the training effectiveness of deep convolutional neural
networks (CNNs) will degrade in the absence of training
samples. Because the gradient accumulates during the
backpropagation, the gradient vanishing/exploding issue
may occur. Therefore, the residual network (ResNet)
structures with multiple residual blocks [26] are proposed.
The residual block structure diagram is shown in Fig. 1.
From the structure diagram, the underlying mapping HðxÞ
is the sum of the mapping Fðx,wÞ and input x. The learning
goal is no longer a stand-alone outcome, but rather a
differential value between the mapping HðxÞ and the
value x. The residual block changes the training goal of
networks, and the mapping HðxÞ does not vanish when
Fðx,wÞ is close to 0. The outputGðxÞ is the activation value
of the mapping HðxÞ through the Rectified Linear Unit.

F(x,w)

Feature value, x

Activation, G(x)

Identity 
mapping

ReLU

Convolutional 
layer

Convolutional 
layer

ReLU
H(x)=F(x,w) + x

Shortcut 
connection 

Fig. 1. The residual block structure diagram.
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The convolutional layers complete the convolution
operation by sliding feature extraction filters on signal
matrices.

Convolutional values are further processed by the acti-
vation unit to obtain a series of feature maps. The operational
formulation of convolution process is given by:

Xl
j = f

�X
i

Xl−1
i � ωl

ij þ blj

�
(1)

where X denotes the value of each neuron in network layers;
ωmeans the weight parameters of convolutional kernels; b is
the bias; and f ð·Þ is the nonlinear activation function:

f ðxÞ = maxð0, lgð1þ exÞÞ (2)

Activation features obtained after convolution opera-
tion are still high-dimensional matrices. To remove redun-
dant features and decrease the computation amount, the
dimensionality of activation features is reduced via the
down-sampling layers, but feature scale invariance is main-
tained to a certain extent. Therefore, the max-pooling
method is followed to diminish dimension of feature matri-
ces. The expression of the maximum pooling process is
described as:

xlþ1
j ðiÞ = max

ði−1ÞWþ1≤t≤iW
xljðtÞ (3)

where xð·Þ indicates the feature value;W is a local region for
pooling operations.

After several convolution operations for feature extrac-
tion, the final result in the convolution layer is still the
multidimensional features. Therefore, few fully connected
layers and a classification layer are stitched together after
the convolution layers to flatten and classify the multidi-
mensional features. In the final classification layer, the
output is the probability value associated with fault classes,
namely the activated value of the weighted sum among

feature values. The softmax activation function is repre-
sented as:

p = softmaxðwkxk−1 þ bkÞ (4)

where p is the probability value associated with fault
classes.

III. DEEP TRANSFER DIAGNOSTIC
FRAMEWORK DESIGN

The CNN constitutes a hierarchical feature representation
system through the weights and biases of a large number of
neurons, thereby obtaining the powerful feature extraction
function. By training the network, fault features and cate-
gory information are effectively compiled into model
parameters. The CNN structure can usually be regarded
as two structures: the feature extraction structure (convolu-
tion block) and the classification structure (classifier). The
convolutional layers and pooling layers complete feature
learning and feature representation in source domains and
compile the learned features into weight parameters (red
dashed region in Fig. 2). Additionally, the fully connection
layers and classification layer classify the extracted fea-
tures, and the operation process is treated as a classifier
(blue dashed region in Fig. 2). In the transfer framework, the
trained parametric model in source tasks has certain gener-
alization for the target task, thus transferring the trained
models as the initial model in target task. Whereafter, the
parameters within the model are recompiled using few
samples similar to the target task, thus completing the
feature learning in the target task. The fault diagnosis
framework of bearings based on deep feature transferability
is shown in Fig. 2.

After a series of feature extraction in the forward
propagation process, the feature information learned from
many samples is transformed into the probability distribu-
tion across the relevant label. To optimize the weight
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Fig. 2. Schematic diagram of deep transfer framework.
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parameters, the error between the true and predicted labels
is measured through the cross-entropy loss function during
the backpropagation:

L = −
XN
i=1

yðiÞ logbyðiÞ þ ð1 − yðiÞÞ logð1 −byðiÞÞ (5)

where L denotes the cross-entropy loss; y and by indicate the
true and predicted label of category; and N is the total
sample category.

In each category of the source domain, there are
enough samples to train the basic network. The inherent
characteristics of each fault are compiled into the weight
parameters of the network. For a specified network struc-
ture, to obtain the optimal network model from large-scale
source samplesDS = fxSi ,ySi gn, the optimization problem in
the training process is expressed as:

argmin
w

X
i

Lðysi , f ðxsi ,wÞÞ (6)

w = fwlgnl=1 (7)

where ysi and f ðxsi ,wÞ denote the true and predicted labels of
category in source domain, respectively; w denotes the
parameter collection.

The task of Eq. (6) is to minimize the loss between the
predicted and true values of the fault category. Adaptive
moment estimation (Adam) algorithm dynamically adjusts
the adaptive learning rate of each parameter with moment
estimation of the gradient, thereby optimizing the model
parameters. The optimization process is summarized as:

gt = ∇wGtðwÞ (8)

αt =
α ·

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βt2

p
1 − βt1

(9)

wt←wt−1 − αt · mt=ð
ffiffiffiffi
vt

p
+ bεÞ (10)

where t denotes the number of update steps; GtðwÞ denotes
the gradient with respect to w; α denotes the learning rate; β
denotes the moment attenuation coefficients; mt and vt
denote the moments of the gradient gt, respectively; andbε is a hyper-parameter.

For the cross-condition diagnosis task of bearings, the
pre-trained model of source tasks is used to initialize the
network parameters for target tasks. To make the pre-
trained model suitable for new target tasks, some samples
fxTj , yTj gl similar to the target task are chosen to further
recompile the partial weight parameters of networks, and
the optimization process can be expressed as:

argmin
w 0

X
i

Lðyti, f ðxti,w 0ÞÞ (11)

where w 0 represents the parameter collection of the target
domain.

Due to the lack of fault samples, the trained model of
source tasks is loaded directly into the unknown tasks,
which increases the risk of over-fitting on the target task.
Assuming that fine-tuning samples of the target task are far
less than samples to be tested, over-fitting may also appear
during the fine-tuning process. To avoid this issue, it is vital
to improve the generalization of pre-trained models for
target diagnosis tasks. The feature transferability of bear-
ings in different diagnostic tasks is investigated through
three strategies with different transfer ways. The transfer
processes are shown in Fig. 3.

We propose three transfer strategies to further discuss
the advantages and disadvantages of this method, which are
described in detail as follows:

Strategy 1: The source model is directly transferred to
target tasks. The parameters of convolution blocks are
frozen, and the parameters of the classifier are

(a) Strategy 1 (b) Strategy 2

(c) Strategy 3

Input
Convolution blocks Classifier

Input
Convolution blocks Classifier

Source
input

Convolution blocks
Classifier

LMMD

Source 
output

Target  
output

Frozen

Fine-tuning
Target 
input

Fig. 3. The transfer process of three strategies.
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recompiled according to the target task, thus reducing
the number of training parameters.

Strategy 2: Unlike strategy 1, the trained model of
ResNet is transferred to the target task as initial param-
eters of the network, and few samples similar to the
target task are utilized to recompile the whole parame-
ters to suit the diagnostic task.

Strategy 3: This strategy utilizes the dual-stream struc-
ture to train an effective model for the target task by
measuring the distance between feature distributions in
different diagnostic tasks. We utilize the standard
metric [27,28] (MMD) to minimize the feature error
among samples in different tasks. The loss function is
defined as:

L = LCðXL, yÞ þ λMMD2ðXS,XTÞ (12)

where LC is the loss of the source task; λ is a hyper-
parameter; and MMD denotes the distribution distance
among different samples. The expression of MMD is as
follows:

MMDðXS,XTÞ = kExs∈XS
½ϕðxsÞ� − Ext∈XT

½ϕðxtÞ�k (13)

where ϕð·Þ represents the data point operation.
The main steps of the transfer process are shown in

Algorithm 1.

IV. EXPERIMENTAL VALIDATION
A. EXPERIMENT SETUP

Planetary gearboxes are the most common variable speed
mechanism used in wind turbines. Therefore, as shown in
Fig. 4, we construct a test rig of one-staged planetary
gearbox to simulate the scenario in wind turbines, where
the planetary gearbox is used as a speed increaser. In Fig. 4,
an induction motor (driving motor) drives the planetary
gearbox through a coupling, and the sun gear shaft of the
gearbox is linked to an AC generator, thus dissipating the
generated energy through a resistor bank within the gener-
ator. Also, an encoder and a torque sensor are successively
connected between the gearbox and the generator. The
detailed parameters of the planetary gearbox are given in
Tables I and II. Three sets of planet bearing faults, that is,
inner race fault (IRF), outer race fault (ORF), and rolling
element fault, are set up in the experiment. These fault types
are all localized damage and are displayed in Fig. 5.

B. DATASETS

The first diagnostic dataset comprises of bearing fault data
from Case Western Reserve University (CWRU) [29]. This
bearing dataset is recognized as a world-wide standard
dataset. The bearing signal acquisition platform is shown
in Fig. 6. This platform is made up of a drive motor, a torque
transducer, a dynamometer, and the corresponding control
electrical device. We choose four health statuses in the

a

Driving motor One-staged 
planetary gearbox Encoder

Torque sensor

Generator

Fig. 4. Test rig of one-staged planetary gearbox.

Algorithm 1: Transfer process

Input: A source task with labels DS = fxSi ,ySi gn, and a target domain without labels DT = fxTj gm.
Output: The network model after fine-tuning.

begin

1: Initialize the model parameters of network.

2: Set up the adaptation layers of network.

3: Utilize the source data to obtain pre-trained models with different generalization abilities.

If strategy 1 or 2:

4: Fine-tune the parameters of the pre-trained model with a few samples to fit the target task.

If strategy 3:

4: Measure the distance between source and target samples by MMD on the adaptation layers.

5: Calculate the loss between the predicted and the true labels.

6: Use the calculated loss to optimize the network parameters.

7: Until the loss converges in the target task.
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bearing fault dataset for experimental analysis, including
healthy operation conditions (normal condition (NC), IRF,
ORF, and ball fault). Drive end bearing faults are used as
targets for analysis, where the sampling rate is 12000 Hz.
And we also select different fault diameters for transfer
diagnosis, that is, 0.007 inches and 0.014 inches. The
dataset settings are shown in Table III. Specifically, data
from the load zone centered at 6:00 direction are analyzed in
the ORF. In addition, the four motor loads (0HP, 1HP, 2HP,
3HP) correspond to motor speeds of 1797 rpm (M1),
1772 rpm (M2), 1750 rpm (M3), and 1730 rpm (M4) at
the fault diameter of 0.007 inches. Similarly, the motor
speeds corresponding to the motor loads are noted as
N1 (1797 rpm), N2 (1772 rpm), N3 (1750 rpm), and N4

(1730 rpm) in the condition of 0.014 inches fault diameter.
According to the speeds and fault diameters, the transfer
tasks of this dataset are shown in Table IV.

The second diagnostic dataset consists of multiple
planet bearing vibration signals. The experiments are car-
ried out under different bearing fault conditions, including
NC when all planet bearings are healthy, IRF where only
one planet bearing has faulty inner race, ORF where only
one planet bearing has faulty outer race, and rolling element
fault (REF) where only one planet bearing has one faulty
rolling element. In the constant working condition, each
health condition is respectively experimented at different
motor speeds: 360 rpm (B1), 480 rpm (B2), and 600 rpm
(B3). Depending on the internal structure of the planetary
gearbox, we collect vibration signals from the top surface of
the gearbox shell using accelerometers, thus minimizing
energy loss, as seen at acquisition point in Fig. 4. To obtain
enough fault information, we set the sampling rate to
20480 Hz during the signal acquisition. The vibration
signals are segmented using overlapping slices to obtain

the corresponding sample datasets. In particular, to obtain
the high-quality signal dataset with uniform data distribu-
tion, the signal distributed in the 15s∼45 s period (the
overall time period of 60 s) is divided into sample dataset.
Each sub-sample contains 10240 discrete points, which
reflects the characteristic information within signals over
0.5-second time span. Accordingly, the transfer diagnosis
tasks of planet bearing faults are listed as shown in Table V.

C. EXPERIMENTAL ANALYSIS SYSTEM

All experiments adopted end-to-end diagnosis procedure on
deep diagnostic framework to enhance the diagnostic adapt-
ability of this method. Increasing the network depth by
simply stacking convolutional layers can drastically degrade
the diagnostic performance of the network, while causing
vanishing gradient during the training process. Compared
with other deep networks, the ResNets are able to utilize
multiple residual blocks to maintain good feature extraction
performance. To avoid the risk of over-fitting and gradient
disappearance or explosion, ResNet18 is used to learn feature
informationwithin signals. The batch normalization is able to
dramatically increase the training speed of networks, making
the training loss more quickly converge. Especially for
strategies 1 and 2, we selected 15% of target data as fine-
tuned samples to recompile the pre-trained model weights
from the source task. In strategy 3, we extract feature
information in both the source and target tasks and measure
the distribution differences between the features using
MMD. In addition, we adopt the correlation alignment
(CORAL) algorithm and the adversarial algorithm (DANN)
as comparison methods for comparing MMD in strategy 3

Table I. Number of gear teeth

Sun Planet Ring

36 35 (3) 108

Note: The number of planet gears in parenthesis.

Table II. Configuration parameters of planet bearings

Diameter of
rollers (mm)

Diameter of
pitch circle

(mm)
Number
of rollers

Contact
angle (°)

3.5 19.5 10 0

(a) Inner race fault (b) Outer race fault        (c) rolling element fault 

Fig. 5. The damaged planet bearings.

Drive motor Torque transducer Dynamometer 

Fig. 6. Signal acquisition platform.
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framework, respectively. All experiments are implemented
in the Pytorch1.3 framework. We performed five experimen-
tal analyses with random initial parameters for each task and
calculated the average of results to assess the diagnostic
performance, thus ensuring the reliability of the experiment.

D. RESULTS

The generalization ability of pre-trained models in the small
sample set is essential for different diagnostic tasks. In
general, improving the generalizability of networks to target
tasks with small sample set is determined by two aspects:
fault category and sample size. Therefore, the diagnostic
cases for motor bearings and planet bearings are separately
constructed in the proposed transfer framework.

1) RESULTS OF CWRU BEARING DATASETS. Table VI
lists the detailed diagnostic results for six transfer cases. It
can be seen that strategy 1 has the worst classification result,
as fine-tuning the classifier parameters by similar data
cannot bridge the feature distribution differences among
different tasks very well. Compared with the results
(i.e., 73.2%, 77.8%) of the traditional method, the pre-
trained model of source dataset (i.e., 72.3%, 74.9%) cannot
effectively learn features of target tasks, which leads to
negative transfer. The main method of strategy 2 is to
recompile all parameters of the trained model through
similar samples, and the classification results have been
greatly improved compared with strategy 1. However,
when the pre-trained model is fine-tuned between different
conditions, the classification results (94.6% and 87.3%)
showed large differences. Compared with strategy 1 and
strategy 2, strategy 3 (with average result of 98.4%) can
utilize the similarity of data to effectively minimize the data
differences between the source and target domains, result-
ing in better classification results. As can be found in

Table IV. Transfer tasks of motor bearings

Transfer
task

Motor speed
(rpm)

Health status
Source
task

Target
task

Speed
transfer

M1–M2 1797 1772

M2–M3 1772 1750 Normal condition
(NC)

M3–M4 1750 1730 Inner race fault
(IRF)

Fault
transfer

M1–N1 1797 1797 Outer race fault
(ORF)

M2–N2 1772 1772 Ball fault (BF)

M3–N3 1750 1750

Table V. Transfer tasks of planet bearings

Transfer
task

Motor speed
(rpm)

Health status
Source
task

Target
task

B1–B2 360 480

B1–B3 360 600 Normal condition (NC)

B2–B1 480 360 Inner race fault (IRF)

B2–B3 480 600 Outer race fault (ORF)

B3–B1 600 360 Rolling element fault
(REF)

B3–B2 600 480

Table VI. Diagnosis results of different strategies in motor bearing dataset

ResNet18 Strategy 1 Strategy 2 Strategy 3 CORAL DANN

M1−M2 72.2 76.7 87.3 98.6 98.9 98.3

M2−M3 73.2 72.3 88.3 99.9 99.3 99.3

M3−M4 77.8 74.9 91.8 98.4 98.6 97.5

M1−N1 39.1 35.8 92.7 97.3 92.8 93.3

M2−N2 37.7 31.0 94.6 99.2 91.3 89.6

M3−N3 40.1 38.2 90.9 99.7 93.4 90.4

Average 56.7 54.8 90.9 98.9 95.7 94.7

Table III. Dataset settings

Fault diameter
Motor

load (HP)
Approx. motor
speed (rpm) Inner race Ball

Outer race
(centered @6:00)

0.007” 0 1797 IR007_0 B007_0 OR007@6_0

1 1772 IR007_1 B007_1 OR007@6_1

2 1750 IR007_2 B007_2 OR007@6_2

3 1730 IR007_3 B007_3 OR007@6_3

0.014” 0 1797 IR014_0 B014_0 OR014@6_0

1 1772 IR014_1 B014_1 OR014@6_1

2 1750 IR014_2 B014_2 OR014@6_2

3 1730 IR014_3 B014_3 OR014@6_3

Deep Residual Joint Transfer Strategy for Cross-Condition 57

JDMD Vol. 2, No. 1, 2023



Table VI, the diagnostic performance of strategy 3 is also
better than other feature assessment methods (CORAL
(95.7%), DANN (94.7%)). Meanwhile, comparing these
results reveals that evaluating the data distribution between
different tasks during the training process can effectively
compensate for the feature differences in the tasks.

We compare the predicted labels of target samples with
the true labels to present the classification results more
clearly. The transfer task M2-M3 is selected to calculate the
confusion matrix corresponding to the optimal accuracy of
each strategy. The results are shown in Fig. 7; it can be
found that different transfer strategies exhibit obvious
discrepancy under the same condition. There are a large
number of sample misclassifications in ResNet18, strategy
1, and strategy 2, whereas strategy 3 can accurately classify
samples of different health states. Fig. 8 shows the training
process of different strategies. The loss of strategy 3 reaches
convergence quickly and is lower than the other strategies.
The diagnostic accuracy is higher and more stable than
other methods. These results illustrate that strategy 3 has
better diagnostic performance and can effectively augment
the generalization of models by minimizing the feature
differences among different tasks.

2) RESULTSOF PLANET BEARING FAULT DIAGNOSIS. The
diagnosis results of planet bearing faults are shown in
Table VII. It can be found that the classification result of
strategy 2 is higher than that of traditional method and
strategy 1, but the diagnostic performance of strategy 2
(83.7%, 65.9%, 84.6%) is unsatisfactory in several trans-
fer tasks. Compared with strategy 2, the transfer ability of
strategy 3 has been significantly improved in various

transfer tasks. For example, the classification result of
strategy 3 (98.7%) is superior to other methods (84.0%,
73.3%, 94.9%) in the transfer task B2-B1. Fig. 9 displays
the training process of different methods in the task B3-B1.
It can be clearly seen that the test losses of other methods
clearly exhibit instability in comparison to strategy 3.
From Fig. 9(b), the diagnostic performance of the tradi-
tional method and strategy 1 appears to fluctuate signifi-
cantly in the cross-condition diagnostic task, indicating
that the feature information learned from source tasks
cannot effectively complete the diagnosis of the target
task, while strategy 3 exhibits the stable training process
by evaluating the feature differences between different
diagnostic tasks.

As can be seen in Table VII, strategy 3 is able to
effectively bridge the discrepancy of data distribution

Fig. 8. The training process of different methods in the task M2–M3.

(a) ResNet18 (b) strategy 1 (c) strategy 2 (d) strategy 3

Fig. 7. Confusion matrixes of different methods in the task M2–M3.

Table VII. Diagnosis results of different strategies in
planet bearing dataset

ResNet18
Strategy

1
Strategy

2
Strategy

3

B1−B2 57.3 70.4 83.7 98.4

B1−B3 48.8 53.6 65.9 97.0

B2−B1 84.0 73.3 94.9 98.7

B2−B3 87.5 58.7 97.9 98.2

B3−B1 66.6 59.7 84.6 99.7

B3−B2 74.9 65.7 94.9 98.1

Average 69.9 63.6 86.9 98.4
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between different tasks in the cross-condition diagnosis task
compared to strategies 1 and 2. Specifically, the learning
rate of the optimizer in the dual-stream adaptation structure
has a significant impact on the update of weight parameters,
so we complete ablation experiments to explore the impact
of the learning rate. As shown in Table VIII, three learning
rates are set for comparison in the three transfer tasks. It is
clearly seen that the learning rate of 0.001 optimizes the
network weight parameters better. However, it can be seen
from the diagnostic results of different transfer tasks that
strategy 3 using MMD can effectively measure the feature
differences between the source and target tasks, making the
diagnostic performance of network stable. For example, the
accuracy of DANN is 34.3% in the task B3-B1 and 96.3% in
the task B2-B3, which illustrates the poor generalization of
adversarial training to different data distributions. These
results indicate that the dual-stream adaptation structure can
effectively evaluate the data distribution between the source
and target domains in the cross-condition diagnosis task of
rolling bearings, where evaluating data differences using
MMD can be widely applied in different transfer scenarios.

V. CONCLUSIONS
Rolling bearings are a common component in wind tur-
bines, and bearing faults may cause low transmission
efficiency of wind turbines. In real-world engineering
applications, the lack of fault data, the feature differences
among different conditions, and the relatively weak fault
information caused by resonance modulation cause

difficulty in extracting fault information from bearing
signals. To address the above issues, this paper proposes
a deep residual joint transfer strategy method to implement
cross-condition fault diagnosis of bearings. This method
explores the feature transferability between different tasks
by means of model transfer and recompiles the model
weights to fit the data distribution of target tasks by
different transfer strategies. Moreover, a dual-stream fea-
ture adaptation transfer strategy is constructed through the
feature adaptation layer, thus improving the generalization
of models to target tasks by gauging the data differences
between different tasks. Compared with traditional meth-
ods, this method is able to mine more fine-grained feature
information for network training, rather than using lots
of labeled samples to train the network from scratch.
Experimental results demonstrate the applicability of
this method, thereby effectively bridging the gap between
the source and target diagnostic tasks. The deep residual
joint transfer strategy method successfully diagnoses bear-
ing health conditions in different bearing fault datasets
and provides an effective method for bearing fault
diagnosis.
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Fig. 9. The training process of different methods in the task B3–B1.

Table VIII. Effect of learning rate on diagnostic results

B1–B2 B2–B3 B3–B1 Average

β =0.1 Strategy 3 53.2 63.5 38.2 51.6

CORAL 50.6 56.2 45.6 50.8

DANN 46.5 52.3 35.2 44.7

β= 0.01 Strategy 3 86.3 76.9 65.4 76.2

CORAL 78.4 75.1 59.8 71.1

DANN 70.6 65.3 65.7 67.2

β= 0.001 Strategy 3 98.4 98.2 99.7 98.8

CORAL 81.7 96.7 49.9 76.1

DANN 86.5 96.3 34.3 72.4
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