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Abstract: As the fundamental and key technique to ensure the safe and reliable operation of vital systems,
prognostics with an emphasis on the remaining useful life (RUL) prediction has attracted great attention in the last
decades. In this paper, we briefly discuss the general idea and advances of various prognostics and RUL prediction
methods for machinery, mainly including data-driven methods, physics-based methods, hybrid methods, etc. Based
on the observations from the state of the art, we provide comprehensive discussions on the possible opportunities and
challenges of prognostics and RUL prediction of machinery so as to steer the future development.
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I. INTRODUCTION
This paper reflects the important aspects in the field of
prognostics and remaining useful life (RUL) prediction of
machinery. Opportunities and challenges, as well as future
directions are discussed. Section II on overview of prog-
nostics research and future research opportunities was
completed by Professor Nagi Gebraeel from Georgia Insti-
tute of Technology. Section III on opportunities and chal-
lenges in RUL prediction of machinery was written by
Professor Yaguo Lei and Dr. Naipeng Li from Xi’an
Jiaotong University. Section IV on opportunities and chal-
lenges in statistical data-driven prognostics was presented
by Professor Xiaosheng Si from Rocket Force University of
Engineering. Section V on prediction of RUL: future
directions was written by Professor Enrico Zio from PSL
Research University and Politecnico di Milano.

II. OVERVIEW OF PROGNOSTICS
RESEARCHAND FUTURERESEARCH

OPPORTUNITIES
A. OVERVIEW

There is a plethora of work centered on prognostics and
estimating remaining lifetime. Much of the work

conducted over the past two to three decades has been
recorded in several comprehensive survey papers such as
[1–4]. These papers provide multiple perspectives on how
to classify the current literature in prognostics and remain-
ing life predictions. Figure 1 attempts to provide a simple
overarching taxonomy of existing works in prognostics.
Our taxonomy is more or less consistent with the tradi-
tional categorization of modeling approaches into model-
based frameworks, data-driven models, and hybrid
approaches that combine the two. We provide two addi-
tional dimensions. The first deals with the modeling
assumptions about the environmental and/or operational
covariates and their impact on remaining life predictions.
The second focuses on data dimensionality starting with
univariate and multivariate time series and moving on to
profile and image data.

B. METHODOLOGIES USED DEVELOPING
PROGNOSTIC MODELS

1) MODEL-BASED PROGNOSTICS. Model-based ap-
proaches assume the existence of a mathematical model
that exploits physical knowledge of a system to derive
phenomenological equations that characterize system deg-
radation. In this context, prognostics are typically split into
two sequential problems: a state-estimation problem where
system health is assessed based on data observations, and a
prediction problem that utilizes filtering techniques, such as
Kalman filter, unscented Kalman filter, and particle filter to
simulate the state distribution forward in time to RUL [4–6].
Model-based prognostics have been successfully imple-
mented in diverse applications ranging from batteries
[5,7,8] to various types of rotating machinery [9,10].
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Model-based prognostics offer some key benefits. They
often show good prediction accuracy when the model de-
gradation parameters are estimated accurately. They can also
estimate RUL conditional on the future operational and/or
environmental conditions by modeling incorporating them
as external inputs to the state-space equations. However, the
model-based approach relies almost exclusively on the
existence and the estimation of a parametric mathematical
representation of the system dynamics and its degradation
process. This is often hard to derive for complex systems and
also difficult to generalize. The propagation of the system
state forward in time can also become computationally
prohibitive, especially for systems with high-dimensional
state-space representation. Additionally, a substantial
amount of data is required for parameter estimation.

2) DATA-DRIVEN PROGNOSTICS. Data-driven ap-
proaches attempt to learn certain patterns and statistical
characteristics present in historical data that can be indica-
tive of the component’s state of health. These patterns and
trends can be utilized to estimate the component’s RUL.
RUL estimation is generally performed through multivari-
ate pattern matching or by extrapolating the current state of
health to a predefined threshold [4]. In contrast to model-
based approaches, data-driven approaches generally do not
require specific domain knowledge and expertise, or com-
plex phenomenological models that describe a system’s
physics. This makes them a popular choice when modeling
complex systems for which creating a physical model might
be extremely difficult, or even impossible.

Data-driven prognostic models can be loosely classified
into two types: statistical-based approaches and machine
learning (ML)-/artificial intelligence (AI)-based frameworks.
Statistical approaches generally attempt to learn existing
techniques between the variables in the data (such as the
relationship between a degradation signal and operating time)
and utilize those relationships to make predictions about
future behavior [3]. Regression-based models and Markov

processes are two of the most predominant techniques that
rely on statistical/probabilistic frameworks for modeling
degradation. These techniques are based on mapping the
state of health of a component (treated as the dependent
variable) to a set of independent variables (e.g., time, usage,
environment, etc.). The mapping is then used to predict how
the state of health of the systemwill behave to certain changes
in the independent variables. A large portion of the literature
in this space tries to predict RUL by estimating the time it
takes to cross some predefined critical degradation threshold
[3,4]. Many Markov-based techniques usually define some
hidden Markov model with a finite number of states and an
observed process that depends on the hidden one [1]. This
approach is suited for applications where degradation states
are not directly observable, yet the data still depend on the
degradation state [3].

ML and AI are very powerful tools when it comes to
data-driven prognostic models [3]. They are usually very
generalizable and can be quite effective when the data are
abundant and curated properly. Another benefit of ML-/AI-
based appears clearly when modeling high-dimensional data
such as spectral and image data. Such applications need
careful feature extraction to extract informative features that
are correlated with the underlying physical degradation.
There are numerous feature extraction methods and
techniques, some commonly used tools include principal
component analysis (PCA), functional-PCA, wavelets, con-
volutional neural networks (CNNs), and variational auto-
encoder. It is noteworthy to mention that the accuracy of
many RUL predictions is highly dependent on the efficacy
of the feature extraction process. Additionally, the effective-
ness of ML/AI models relies on the availability of large
volumes of properly curated data – something that is often a
major challenge in many industrial applications.

Interpretability is often a key limitation in many data-
driven frameworks. Most statistical and ML-based models
generally lack physical interpretability [3]. This poses

Fig. 1. Classification of prognostic models.
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serious challenges in building trust between human opera-
tors and predictions generated by these models.

3) HYBRID PROGNOSTICS MODELS. Hybrid ap-
proaches are usually a combination of model-based and
data-driven approaches. A review on hybrid prognostics is
presented in [11]. One common approach in hybrid prognos-
tics algorithms is the use of data-driven methods (e.g., neural
network [NN], long short-term memory network LSTM,
radial basis function network RBF) to create a mapping
from sensor measurements to the state space and then using
a state-space model to model the evolution of the degradation
state [12,13]. Such approaches are more comprehensive and
combine the benefits of both frameworks. However, they are
still deeply rooted in building customized models that are
relatively application specific. The creation of a truly general-
ized hybrid modeling framework is still an illusive endeavor.

C. PROGNOSTIC MODELS AND
COVARIATES

Generally speaking, harsh environments tend to accelerate
the degradation mechanisms that occur prior to failure as
compared to milder environments. Yet, as noted by [14], the
vast majority of conventional failure models assume that
prevailing environmental conditions are temporally invari-
ant or have no effect on deterioration and failure processes.
The limited number of failure models that do consider
environmental effects generally belong to one of two
groups: (1) hazard rate function models that treat environ-
mental conditions as model covariates [15–17] and (2) sto-
chastic wear and/or shock models in which the wear and/
or shock intensities are modulated by the environment
(cf. [18,19]). However, even these models have certain
features that limit their applicability. First, the hazard rate
function is only useful for making inferences about a large
population of components, but not about specific compo-
nents as it cannot be easily observed or measured for
individual components [20]. The second group of models
is useful for deriving analytical lifetime distributions (or
their transforms) and assessing, probabilistically, the full or
residual lifetime of the component. However, these models
treat failure as a random event and do not provide informa-
tion about the evolution of the physical degradation process
that occurs prior to failure [21].
1) TIME-VARYING PROGNOSTIC MODELS. Few models
have studied predicting RUL under time-varying environ-
mental and operating conditions; examples include load-
dependent degradation models such as batteries [8,22,23]
and bearings [24–26]. [27] proposed a methodology for
modeling degradation signals from components functioning
under dynamically evolving environment conditions where
in-situ sensor signals related to the degradation process as
well as the future environment conditions were utilized when
predicting the components RUL. Themodel assumed that the
time-dependent degradation rate where a component's deg-
radation signal increases (or decreases) is affected by the
severity of the environmental condition. These conditions are
assumed to evolve as a continuous-time Markov chain. [26]
extended this work by considering a state-space modeling
frameworkwhere changes in the degradation rate are part of a
state transition function, and jumps in the degradation signals
due to environmental changes are part of a measurement
function. The separate analysis of these two factors made it
possible to distinguish the unique contribution of these two

aspects resulting in reducing the false alarms and improving
the prediction accuracy. Additional works that considered a
similar setup include [28–30].

D. DIMENSIONALITY OF DEGRADATION
DATA

Popular prognostics modeling frameworks involve model-
ing how degradation signals evolve over time and using that
information by estimating the time remaining for the signal
to cross a predefined failure threshold. Typically, a degra-
dation signal is computed from specific features obtained
from the raw sensor data. Most prognostic models devel-
oped in the literature are designed to model a univariate
signal representing a time series of degradation-based data
evolving over time.

1) MULTIVARIATE DEGRADATION SIGNALS. Multi-
sensor application often involved complex equipment that
typically undergomultifaceted degradation processes. Using
multiple sensors can potentially capture different aspects of
the complicated degradation processes that usually involve
different failure modes. Overall, the data in such cases are
much richer and can lead to more accurate failure predic-
tions. One of the key aspects in this setting is how to
systematically combine information from multiple sensors
from the same equipment, otherwise known as fusion. [1]
provides a review of multi-sensor data fusion approaches
and classifies the techniques based on the level at which
fusion is performed: data, feature, and decision levels.

Data-level fusion directly integrates information of the
raw data from multiple sensors. Feature-level fusion com-
bines feature information extracted from the raw data.
Decision-level fusion focuses on integrating different diag-
nostic or prognostic results. A large portion of the fusion
literature utilizes AI approaches, such as NN and fuzzy
logic. However, most of these models have been used for
fault detection and diagnostics, much less prognostics. A
few examples of recent prognostic models for multi-sensor
applications can be found in [31–34]. Some of the ap-
proaches relies on computing an aggregate composite
health index [31]. Typically, a univariate aggregate signal
is constructed by taking a weighted combination of various
degradation signals from individual sensors. In other cases,
the data fusion is performed through a state-space modeling
framework that is used to represent the overall degradation
state of a system [32,33]. Work developed by [34] was
among the first to formally leverage the covariance structure
governing a multivariate stream of degradation signals.
Other multivariate degradation models rely on clustering
analysis where historical data are divided into different
subsets that characterize the health states at different deg-
radation levels [35,35–37].

2) IMAGE-BASED DEGRADATION SIGNALS. Imaging is
one of the fastest growing technologies for condition
monitoring and industrial asset management. Conventional
approaches that utilize random coefficients models, Brow-
nian motion, gamma process, and functional data analysis
to model how degradation signals evolve over time are not
suitable for characterizing the spatio-temporal correlations
that exist in image data. One of the key challenges with
modeling image data revolve around the analytical and
computational challenges associated with modeling high-
dimensional data streams. The high dimensionality arises
from the fact that a single image streams may consist of a
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large sequence of images (observed across the life cycle of
an equipment) coupled with the large numbers of pixels
embedded in each image. Another challenge is the complex
spatial–temporal structures within these image streams.
Pixels are spatially correlated within a single image and
temporally correlated across sequential images. In recent
work by [38], degradation-based image data streams were
modeled as a spatio-temporal process. [39] proposed two
deep-learning methods for estimating time-to-failure in
industrial systems using image sensor data. The authors
utilized CNN and autoencoder to collect useful information
from images, which are high dimensional, and then train a
LSTM-based regression model to predict time-to-failure.
[40] developed a methodology to predict residual useful
lifetime of a system based on a sequence of degradation
images. The methodology has two main steps. First, it
projects the image tensors onto a low-dimensional space.
Next, the projected tensors are regressed against time-to-
failure via penalized location-scale tensor regression.
The coefficient tensor is decomposed using CANDE-
COMP/PARAFAC (CP) and Tucker decompositions,
thereby enabling parameter estimation in a high-dimen-
sional setting. [41] trained different NNs (deep neural
network DNN, LSTM, and CNN) to capture the correlation
between the degradation image stream and its remaining
lifetime. They additionally implemented a multiple
weighted time window policy to increase the prediction
accuracy of the NN. This policy takes into account not only
the most recent monitoring data but previous observations
as well. The proposed image stream-based regressors are
validated by using two datasets of degradation infrared
images, showing that the LSTM achieves the best perfor-
mance on the accuracy.

E. SOME OPEN QUESTIONS IN
PROGNOSTICS

There have been significant research advances in the field of
prognostics and predictive modeling. Given these ad-
vances, there are still some open topics that still require
more exploration and research. Below are some topics that
the authors believe are understudied, yet seem to be impor-
tant to advancing the field of prognostics.

1) PROGNOSTICS OF SYSTEMS WITH INTERDEPEN-
DENT DEGRADATION PROCESSES. Predicting the re-
maining lifetime of multi-component systems requires an
accurate evaluation of the degradation states of its constituent
components. More importantly and perhaps significantly,
more challenging is the need to characterize failure and
degradation interactions among the critical components of
the system. Characterizing these interdependencies is indeed
very difficult, so much so that many reliability prediction
models have circumvented this challenge by assuming that
component lifetimes (within a given system) are indepen-
dent. Although such assumptions help to obtain mathemati-
cally tractable models, they remain unrealistic, especially for
applications where dependencies are indeed present.

Most conventional models that study component
dependencies can be divided into two main groups. The
first group encompasses models that study how the failure
of one component affects the failure rate of other compo-
nents [42,43]. The second group focuses on models that
employ a more statistical approach by developing multi-
variate distributions of system component lifetimes,

especially in the context of shocks and load sharing sce-
narios [44]. Other models have studied economic and
stochastic dependence in the context of opportunistic main-
tenance. A review of optimal maintenance of multi-
component systems can be found in [45]. The paper states
that interactions between components complicate the
modeling and optimization of maintenance but offer an
opportunity to group maintenance which may save costs.

From the viewpoint of this paper, one of the under-
studied topics in prognostics has to do with predicting RUL
of systems comprised of components with interdependent
degradation processes. One of the key questions is how
specific levels of degradation in one component affect
the degradation rates of other components in the system.
The characteristics of these interactions may vary from one
system to another. Some interactions may be triggered by
specific degradation levels where others can be more subtle
and evolve continuously over time. Consequently, the abil-
ity to formally characterize these interdependencies and
account for their behavior over time and perhaps even
over different levels of component degradation would be
worth investigating. Additionally, predicting the RUL of
each component independently versus the RUL of the
system is rich topics of research. Model-based approaches
might prove more successful than data-driven ones in
performing prognosis on systems with multiple interacting
components due to their ability to fully capture the underly-
ing physics phenomena of the system and the interactions
between the components. However, such models would be
extremely challenging, if not impossible, to generate for the
complex systems in consideration.

2) PROGNOSTICS AND DATA SPARSITY. Many prog-
nostic models have been developed on the premise that the
degradation signals are observed with high fidelity at
frequent time steps. In reality, however, degradation ob-
servations often contain outliers as well as missing and
corrupt data that result from the harsh industrial environ-
ments that equipment operate in. For example, there are
numerous issues with data communication, network con-
nectivity, read/write, storage formats, etc. Developing
models that are robust to high levels of missing and corrupt
data is needed for accurate predictions of RUL.

Another important topic related to data sparsity is the
lack of failure time data. In many practical applications,
components and systems are repaired preventively before
any catastrophic failure. In fact, catastrophic failures are so
rare in industry because many critical equipment that
require prognostics often operate in a risk-averse ecosys-
tem. As a result, many practical applications only have
partial degradation signals with “censored” failure times.
What makes this problem even more challenging is that
most of these partial degradation signals are of different
lengths and do not conform to a fixed threshold, since
replacement and repairs are not triggered by a predefined
threshold. These settings present a unique challenge for
ML-based prognostics models that rely on supervised
learning (labeled failure times) that utilize large volumes of
data [46]. Some recent works have approached this problem
from the perspective of few-shot learning [47,48]. How-
ever, this topic is still one of the open problems that has not
yet been formally investigated.

While recently there have been many works that
attempt to develop prognostic models for a wide array of
applications using varying techniques, there are still some
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areas that have not been fully explored yet. One such area is
the prognosis of systemswithmultiple interacting, gradually
degrading components. This is because when the compo-
nents interact, the degradation of one component can sig-
nificantly affect the rate of degradation of the others, either
increasing or decreasing their individual RULs. This leads to
the utilization of the current state of health to extrapolate the
degradation trajectory of the system to predict its RUL
becoming a much more challenging task. Therefore, while
there are works such as [49] where the authors successfully
utilize data-driven approaches to diagnose the state of health
of such systems, performing system prognosis utilizing
similar approaches remains a largely unexplored area.

3) COMPONENTS THAT EXHIBIT INTERMITTENT
FAULTS. Another area that has not been fully explored
yet is the prognosis of components that exhibit intermittent
faults. Intermittent faults are faults that occur randomly
during the component’s operation and then disappear shortly
after without the need for any repair activities. An example of
such fault is a valve that randomly gets stuck in a certain
position during its operation and then returns back to the
operational state without any intervention. Such components
do not exhibit the traditional degradation signal where the
occurrence of a certain fault marks the start of degradation,
and then a sensor reading monotonically and gradually
changes over time to reflect the worsening of said fault.
Instead, degradation in these components manifests as a
gradual increase in the frequency or the intensity of the
intermittent faults. It must also be noted that the intermittent
faults might not be obviously visible in the sensor data,
which introduces another challenge in analyzing it. There are
a few examples in literature where the authors successfully
utilize either model-based or data-driven approaches to
perform prognosis on components that exhibit intermittent
faults. Examples include [50] where the authors utilize an
extreme learning machine to predict the RUL of an electrical
connector in vibration environments, [34] where the authors
utilized a Bond graph to preform prognosis on an electric
scooter, and [51,52] where the authors utilize a linear model
to predict the remaining time until a threshold on the
proportion of time that a component spends at a faulty state
is crossed. While all of these approaches, and many others,
have proven successful in their individual applications, they
all share the same limitation: lack of generalizability. This is
because most of the current works utilize specific knowledge
and information about the components under study to build
their prognosis technique, making them only applicable to a
certain component or a class of components. To eliminate the
need to create a new approach for each individual compo-
nents or class of components, there should exist a prognosis
approach that is generalizable so that it can be utilized for a
wide variety of components that exhibit intermittent faults.
Such approach would need to be data-driven instead of
model based to maximize the generalizability and to ensure
applicability to highly complex components.

4) PROGNOSTICS-BASED DECISION MODELS. The
final goal of prognostics algorithms is to provide insights
to decision makers, thereby helping them make condition-
based decisions regarding system operations, maintenance
scheduling, and even spare parts logistics. Existing prog-
nostics algorithms, however, are usually designed and
tested without considering their use in decision-making.
These prognostics algorithms are trained to maximize pre-
diction accuracy, whichmight not necessarily guarantee their

effectiveness when integrated with decision optimization
models [53]. In this regards, the development of decision
models that can leverage RUL predictions is one of the future
directions that need to be examined and explored carefully.

III. OPPORTUNITIES AND
CHALLENGES IN RUL

PREDICTION OF MACHINERY
A. A BRIEF INTRODUCTION

Operational maintenance plays a major role in keeping the
safety and reliability of machinery. With the development of
the sensor technology and Internet of Things (IoTs), condi-
tion-basedmaintenance (CBM) has become themost popular
and effective maintenance strategy in industrial practice [54].
The basic idea of CBM is to estimate the health state of
machinery by capturing on-line monitoring signals using
different kinds of sensors, such as vibration signals, tem-
peratures, motor currents, and acoustic emissions, and con-
duct maintenance schedule based on real-time monitoring
results. To prepare spare components in advance and sched-
ule a precise time of repair, industrial managers need to know
the RUL of the machinery in-service at its early degradation
stage. RUL prediction aims to forecast the time left before the
machinery reaches the final failure.

RUL prediction is actually a tough issue in most indus-
trial scenarios, since the damage, degradation, and failure of
machinery are usually affected by various uncertainty re-
sources, such as the operational conditions, the quality of the
product, the working environment, and the service task. It is
really difficult to forecast the future degradation trend based
on historical observations and provide an accurate RUL
prediction result. To deal with this tough issue, lots of
research work have been conducted in recent years.

In terms of technical processes, RUL prediction can be
divided into the following four steps. The first step is to
capture condition monitoring signals which reflect the deg-
radation behavior of machinery. The second step is
to construct health indicators (HIs) from monitoring signals
to quantify the degradation severity. The failure criterion is
generally defined based on a specified failure threshold of
corresponding HIs. The third step is to divide the health
stages according to the varying degradation trends of HIs.
The purpose of this step is to identify some important time
stamps including the first degradation time, the first pre-
dicting time [55], the stage switching time, etc. The last step
is to conduct RUL prediction at degradation stages by
mapping different models and the degradation data. More
details about the technical processes can be found in the
systematic review paper regarding to RUL prediction [28].

In terms of modeling theories, prognostic methods can
be broadly classified into physics model-based methods,
data-driven methods, and their hybrid methods. Physics
model-based methods describe degradation processes of
machinery by constructing functional models on the basis
of the failure mechanisms or the first principle of damage. In
real practice, it is actually a big challenge to construct a
high-precision physical model to describe the degradation
behavior of machinery. With the increase of complexity
and integration of mechanical systems, the damage of each
component will interact with each other. It becomes more
and more difficult to understand the physics of damage
and formulate the degradation behavior of machinery.

Prognostics and Remaining Useful Life Prediction of Machinery 5

JDMD Vol. 2, No. 1, 2023



Conversely, data-driven prognostic methods have been
developed broadly with the advancement of condition
monitoring technology.

Data-driven prognostic methods mainly include statisti-
cal data-driven methods and ML)-based methods [28,56]. A
systematic review about the basic idea and major processes
of statistical data-driven methods has been provided in the
review paper [56]. As a kind of prognostic methods devel-
oped from statistical theory, they are superior in describing
the stochastic characteristics of degradation processes and
quantifying the uncertainty of prediction results. Some
research works have been conducted to deal with different
kinds of uncertainty resources, including the unit-to-unit
variability [57], the temporal variability [58,59], the
measurement noises [60], the time-varying operational con-
ditions [55,61,62], etc. Themajor idea of uncertainty descrip-
tion is to describe the uncertainty resources by introducing
random parameters into the degradation model. Then, the
model parameters are estimated according to real-time con-
dition monitoring data. The uncertainty of the degradation
process is further transmitted into the probability density
function of the predicted RUL. It is of crucial importance to
analyze the dominant uncertainty resource in particular cases
and quantify its contribution to the RUL prediction result.
For example, both measurement noises and time-varying
operational conditions can introduce amplitude fluctuation
in the condition monitoring data. However, the mechanisms
of these two factors are absolutely different with each other.
To be specific, the measurement noises are caused by the
inherent characteristic of data acquisition systems and the
interference of environment. They are generally presented as
random fluctuation and assumed to be normally distributed.
The fluctuation caused by the operation conditions is highly
correlated with the condition profiles, which can be reduced
by using a kind of baseline condition transformation strategy
[55]. As a result, the degradation trend of the health state can
be highlighted while the impact of operational conditions can
be ruled out, which is helpful for improving the precision and
reliability of prediction result.

ML-based RUL prediction methods introduce the
advanced techniques of ML into the area of RUL predic-
tion. They attempt to learn the degradation patterns from
available observations automatically without depending on
the first principle of degradation or expert knowledge.
Therefore, this kind of approaches is more suitable to
deal with prognostic issues where no prior knowledge is
available. The basic requirement is that sufficient data need
to be provided for model training. However, it is a tough
requirement for the task of RUL prediction, since the
collection of whole-life degradation data is time consum-
ing, and it is sometimes impossible in cases where serious
failure is not allowed. The interpretability is also a major
concern in the application of ML-based approaches. ML
models generally care more about the mapping relationship
between the input data and output data. They do not care
about the inherent interpretability of the relation. Because of
the lack of transparency, they are always named as “black
boxes”. However, in industrial scenarios, the interpretabil-
ity of prediction result is significant for maintenance deci-
sion. It is difficult to convince operators to accept the
prediction result if it is uninterpretable.

The development history ML-based RUL prediction
is highly influenced by the advances in ML techniques.
The early techniques introduced into RUL prediction
include the artificial neural network, neural fuzzy system,

support vector machine, K-nearest neighbor, Gaussian
process regression, etc. They are named as traditional
ML techniques hereafter for simplicity. Nowadays, with
the advances of deep learning (DL) techniques, such as
CNNs, recurrent neural networks (RNNs), and Bayesian
deep learning, it has attracted more and more attention in
this research field. Traditional ML-based prognostic meth-
ods generally work together with a feature extraction
process. A set of features are first extracted from condition
monitoring data. Then, the features are input into the ML
models to conduct the RUL prediction task. DL techniques
have the capability of analyzing high-dimensional data and
extracting features automatically from data. Thus, they can
realize the “end-to-end” RUL prediction, that is, input the
original data into the model and output the RUL result
directly. According to data processing strategies, ML-based
RUL prediction approaches can be roughly classified into
the following three categories.

(1) Constructing a fusion HI for RUL prediction. A HI
with obvious monotonic and stable degradation trend
is helpful to facilitate the RUL prediction process.
Some researchers [63,64] attempt to construct a
good HI by employing ML techniques. This strategy
utilities the high capability of ML techniques in non-
linear relationmapping to construct HIs from condition
monitoring data for RUL prediction. The major task is
to map the high-dimensional original data into a one-
dimensional HI sequence which is able to represent the
degradation process of machinery. To ensure the high
quality of the HIs, the construction process is generally
guided by some evaluation criteria such as the mono-
tonicity, trendability, and robustness. New criteria can
also be developed and involved into the model accord-
ing to different requirements of prediction tasks.

(2) Predicting the degradation process using the strategy of
time series forecasting. In this strategy, the ML tech-
niques are used to learn the recurrent relationship
between the time series data of HIs, which can be
formulated using the generalized expression xiþ1 =
f ðxi, xi−1, · · · , xi−pÞ, where fð·Þ represents the map-
ping relationship function, ðxi, xi−1, · · · , xi−pÞ is the
input of the model that is the HI observations of
previous time steps, and xiþ1 is the output of the model
that is the HI value in the next time step. The RUL can
be predicted by inputting the predicted HI values step
by step until exceeding a specified failure threshold.

(3) Predicting the RUL using a straightforward mapping
strategy toward RUL. Different from the time series
prediction, this strategy maps the relationship between
current health states to the RUL values. The input
variables can be original data or HIs extracted from
them, which represent the current health state of the
system. The output is the RUL value or its ratio to the
total lifetime. This strategy can achieve the RUL
prediction directly. It is more straightforward than
the previous one in terms of procedure. However, it
puts forward higher requirements for the nonlinear
mapping capacity of the prognostic model.

B. OPPORTUNITIES AND CHALLENGES

There is no doubt that great advancements have been
achieved in the RUL prediction of machinery. However,
most research is conducted in the laboratory environment
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wherein the working parameters are controllable. The real
practice scenarios are generally more complicated than
laboratory environment. Current academic research in
RUL prediction is still far from practical application. To
promote the development of RUL prediction technique in
industrial practice, there are still lots of big challenges in the
future research. Some suggested research directions are
provided as follows.

(1) Self-data-driven prognostic approaches

It is seen from the above introduction that most data-
driven prognostic approaches need sufficient whole-life
degradation data to train models. Although data acquisition
becomes more easier with the advances of sensor techni-
ques, it is still a tough issue to capture high-quality and
-quantity whole-life degradation data in industrial practice.
The first reason is that the life time of an industrial system is
generally many years. It is time-consuming and high cost to
capture condition monitoring data during the whole life of
the system. The next reason is that, for some systems with
high requirement on safety, such as aircraft, aerospace
plane, and nuclear power equipment, they are not allowed
to operate under serious fault stages. We can only capture
partial degradation data for this kind of systems. Even if the
whole-life data of several failed units are captured, it is
unable to promise the similarity of the degradation pattern
between the training units and the test unit. The degradation
behaviors of industrial systems are influenced by many
uncertainty resources, leading to the unit-to-unit variability
of the degradation pattern among different units. It highly
restricts the applicability and flexibility of training data-
dependent prediction approaches. An effective strategy to
deal with this issue is to predict the RUL of a system driven
by its own condition monitoring data without depending on
training data from failure events, which is also defined as
self-data-driven RUL prediction [55]. To facilitate the self-
data-driven prognostic process, a model base involving
various degradation models needs to be prepared in
advance. During the online prediction process, an optimal
model is selected according to the degradation character-
istics of the in-service unit, and the model parameters are
updated according to the real-time data. The major chal-
lenges in self-data-driven prognostics may include: (1) how
to construct a diversified model base and (2) how to select a
suitable model adaptively according to the degradation
pattern of the in-service unit.

(2) Dataset accumulation and publication

As mentioned above, whole-life degradation data are
the basic resource for RUL prediction. It is time consuming
to accumulate degradation data under normal operational
conditions. Therefore, accelerated degradation tests are
often employed to accumulate whole-life degradation
data. Some research institutes have published prognostic
datasets on websites, which are free to download for
academic researchers. For example, the prognostic data
repository of NASA has collected and published many
accelerated degradation datasets including some typical
mechanical and electrical components and systems [65].
In addition, some international societies such as the Prog-
nostics and Health Management (PHM) society and the
Institute of Electrical and Electronics Engineers (IEEE)
reliability society often organize prognostic challenges in
international conferences, which provide valuable datasets
and competition opportunities for researchers. Some scho-
lars [66] also voluntarily share their datasets to promote the

development of prognostic research. Thanks to these pub-
lished datasets, researchers can develop various prognostic
approaches and compare their approaches with existing
ones using the same benchmark datasets. This is significant
for the development of the prognostic theories and meth-
odologies. However, most of existing accelerated degrada-
tion datasets are generated in the laboratory environment
that are totally different from the industrial scenarios. The
degradation behaviors of systems in real industrial cases
suffer from more complicated uncertainties, including the
time-varying operational conditions and the interference
from outside environment. Therefore, researchers are
encouraged to conduct more degradation tests under realis-
tic operational conditions and publish the degradation
dataset. In addition, we also appeal to the companies to
accumulate and share the degradation datasets of their real
industrial equipment. It would not only promote the devel-
opment of prognostic research but also help to advertise and
update their products. Both researchers and companies can
benefit from the voluntary data share.

(3) RUL prediction of machinery with complex degrada-
tion behaviors

Generally speaking, there are two different kinds of
prognostic strategies. The first strategy is to forecast the
future degradation trend of machinery based on its historical
degradation trajectory. This strategy requires that the
machinery must share the same degradation pattern during
the whole lifetime. Otherwise, the prediction result will
deviate far from the actual curve. The second strategy is to
predict the RUL of an in-service unit using a prognostic
model trained by a group of failure units. This strategy
requires that the test unit must have the similar degradation
pattern with training units. These above two strategies both
require that the degradation pattern of machinery is simple
enough to be derived from historical observations. We also
find so many demonstration cases in literature with perfect
gradual degradation trends. These demonstration cases are
generally ideal cases selected from experimental degrada-
tion tests. In most industrial cases, however, the degradation
behavior of machinery is complex or even irregular. The
prognostic models will suffer from various strange degra-
dation cases in real practice. It is a big challenge to keep the
robust and stable performance of the prognostic models in
the RUL prediction of complex degradation behaviors in
industrial practice.

IV. OPPORTUNITIES AND
CHALLENGES IN STATISTICAL
DATA-DRIVEN PROGNOSTICS

A. A BRIEF INTRODUCTION ON
STATISTICAL DATA-DRIVEN PROGNOSTICS

In engineering practice, particularly lots of systems are
designed to perform particular missions and required to
operate safely during their whole life cycle. However, no
matter how reliable they are, the deterioration of their
quality and performance due to aging, varying loads, and
operating environments will gradually impair them and
finally result in their ultimate failures. Such systems are
also known as the stochastic degrading systems. PHM has
emerged as an essential and efficient approach for improv-
ing the operating safety and reducing the operational costs
for such stochastic degrading systems [67]. In the PHM
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framework, prognostics with an emphasis on the RUL
prediction have long been recognized as the fundamental
and key technique to implement the health management of
stochastic degrading systems [68,28].

Driven by the desire to ensure the safe and reliable
operation of stochastic degrading systems, especially for
vital systems, various methods to achieve prognostics have
been developed. In general, prognostic methods for sto-
chastic degrading systems can be broadly divided into
physics model-based methods, data-driven methods, and
their fusion. With advances in sensing and condition moni-
toring techniques, the monitoring data of the system’s
performance degradation process can be more easily ob-
tained. As a result, the data-driven prognostic methods have
become the emerging topic in the PHM field. In the past
15 years, extensive efforts have been made to developing
various data-driven prognostics methods. Data-driven prog-
nostic approaches mainly include ML and statistical data-
driven approaches [28,69]. Due to advantages in reflecting
the uncertainty and randomness of the degradation process
and providing the probability distribution of the RUL to
quantify the prediction uncertainty, significant advances
have been witnessed in statistical data-driven prognostic
approaches since this kind of methods can provide a natural
description of the random failure of the practical system.
Therefore, we focus mainly on the statistical data-driven
approaches in the following discussions.

The basic idea of statistical data-driven prognostic
approaches for stochastic degrading systems is as follows:
Based on the monitoring data of degrading systems, the
RUL of the system can be predicted based on stochastic
models by fitting the evolution law of the system perfor-
mance degradation variable and extrapolating it to the
failure threshold. Generally, there are three key components
to achieve statistical data-driven prognostics, respectively,
described as follows:

(1) Stochastic degradation modeling. The performance
deterioration of degrading systems will be inevitable
due to mutual effects of various random factors
including aging, loads, and varying environments.
The deterioration process is accumulated over the
operating time and will lead to the final failures of
these systems. Therefore, the degradation variable of
the system will randomly evolve during the system
operating process. As such, adopting stochastic mod-
els to characterize such randomly evolving process is
a natural choice.

(2) Parameter estimating of stochastic degradation mod-
els. Because the adopted stochastic models is selected
according to the statistical characters of the concerned
systems, the model parameters are unknown. In this
case, to perform the prognostics, the model parame-
ters of the used stochastic models should be first
estimated based on the monitoring degradation
data. The widely used methods for parameter estima-
tion include the maximum likelihood estimation
method, the Bayesian method, the expectation maxi-
mum algorithm, etc.

(3) Solving the probabilistic distribution of the RUL.
Based on the stochastic degradation modeling and
the associated parameter estimating, to solve the
probabilistic distribution of the RUL is the key
task for prognostics. Generally, the probabilistic dis-
tribution of the RUL can be solved by the distribution

of the degradation variable or by the first hitting time
of the degradation process characterized by the sto-
chastic model. The difference between the solutions
derived by the distribution of the degradation variable
or by the first hitting time of the degradation process
can be found in [69].

In current studies on statistical data-driven prognostic
approaches, the implementation processes of components
(2) and (3) are basically fixed or seldom changed. In
contrast, there are significant variants on stochastic models
for characterizing the degradation processes of systems, and
thus more discussions are deserved. Despite many variants
on stochastic models used for degradation modeling, they
can be generally described as XðtÞ = x0 þ gðt; θÞ þ εðtÞ,
where XðtÞ is the degradation variable of the system
reflecting the degradation state at time t, x0 is the initial
degradation, gðt; θÞ is the time-dependent function with
parameter vector θ to model the time-varying trend of the
degradation process, and εðtÞ is the random term to model
the temporal uncertainty or randomness of the degradation
process. According to the modeling principles for the
degradation trend gðt; θÞ, statistical data-driven prognostic
approaches can be divided into being parametric, semi-
parametric, and nonparametric models-based methods.
Based on the functional form of gðt; θÞ, statistical data-
driven prognostic approaches include linear models-based
methods and nonlinear models-based methods, where linear
models-based methods adopt linear models with time to
represent the degradation progression and nonlinear mod-
els-based methods adopt nonlinear models with time.
Besides the degradation trend modeling, modeling the
random term εðtÞ is another important aspect in prognostics
since the degradation process of the system has the inherent
randomness due to the impacts of various uncertain factors.
According to difference in modeling εðtÞ by stochastic
processes, statistical data-driven prognostic approaches
mainly include random-effect regression models, Gamma
processes, inverse Gaussian processes, Wiener processes,
and recently developed beta processes, Tweedie exponen-
tial dispersion process, Student-t processes, etc. The
detailed discussions on these statistical data-driven prog-
nostic approaches can be found in several comprehensive
review papers such as [28,70], and some technical papers
like [71–73].

B. DISCUSSIONS ON OPPORTUNITIES
AND CHALLENGES

It is observed from the above brief discussions that great
advances have been made on statistical data-driven prog-
nostic approaches and such methods are still in the stage of
fast development. Nevertheless, there are some new op-
portunities and challenges required to be aware and ad-
dressed in the future, as discussed in the following.

(1) Prognostics via stochastic degradationmodel calibration

Statistical data-driven prognostic approaches generally
adopt the stochastic model to characterize the evolving
progression of the degradation variable. In existing studies
with such methods for degradation modeling and RUL
prediction, the appropriate functional form of gðt; θÞ should
be determined in advances [74]. Then, the model parame-
ters are estimated or updated by the degradation monitoring
data of the concerned system to perform the model calibra-
tion. However, selecting the functional form of gðt; θÞ is
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itself a challenging problem. More importantly, when the
selected functional form of the degradation model is inap-
propriate, it is difficult and ineffective to calibrate the
degradation model simply by updating the model parame-
ters, and the prediction accuracy will be thus affected.
Hence, how to achieve simultaneous calibration of the
functional form and parameters of the degradation model
is an important direction holding promise to improve the
prognosis accuracy and overcome the difficulty in selecting
the functional form of gðt; θÞ.
(2) System-level prognostics with multiple degradation

variables coupling

Although significant advances in statistical data-driven
prognostic approaches have been witnessed, most of these
studies are tailored to component-level prognostics in
which an important potential prerequisite is that the health
state of the concerned component can be simply reflected by
a single performance degradation variable. The univariate
hypothesis provides great convenience and flexibility for
the degradation process modeling and RUL prediction [75].
However, this may not be practical for the system-level
prognostics. As for a complex system, its health state is
often codetermined by multiple variables related to the
system performance and the health state can rarely be
exactly described by a single performance degradation
variable. In this case, considering multiple performance
variables is a must in prognostics. However, compared with
widely studied component-level prognostics, the system-
level prognostics are much more sophisticated. The primary
challenges in system-level prognostics may include:
(1) how to model the degradation process of the system
particularly for coupled multiple performance variables;
(2) how to define the system failure in the multiple perfor-
mance variables case; and (3) how to estimate the model
parameters by the coupled degradation monitoring data of
multiple performance variables if indirect component-level
observations are utilized for system-level prognostics. All
these aspects introduce the difficulty applying component-
level prognostic methods to predict the RUL of complex
systems. Thus, new framework for system-level RUL
prediction should be developed in the future by considering
the above challenges.

(3) Fusion of DL and statistical data-driven prognostic
approaches

The success of statistical data-driven prognostic ap-
proaches is dependent heavily on the performance of the
degradation feature or the degradation trend of the moni-
tored variable. With the good degradation feature, stochas-
tic degradation models can be effectively constructed and
output the prediction RUL in probabilistic distribution
forms to quantify the prognosis uncertainty. This is also
known as the major advantage of statistical data-driven
prognostic approaches. Recently, with great advances in
Industry 4.0 and the IoTs, a large number of monitoring data
can be obtained providing abundant information on the
system’s health state and the RUL. However, statistical
data-driven prognostic approaches are difficult to directly
apply to the big data case unless the additional degradation
feature engineering is introduced. Therefore, it is not sur-
prising to observe that DL-based prognostics methods have
attracted much attention in the big data case [76]. By DL
techniques, the abstract degradation features can be auto-
matically extracted for prognostics or the end-to-end prog-
nostics can be achieved directly by mapping the original

data into the RUL to remove the feature engineering. Nev-
ertheless, the RUL corresponds to predicting the future
failure event and thus has the inherent uncertainty. Unlike
statistical data-driven prognostic approaches, DL-based
prognostics methods have the limited capability in charac-
terizing the prognosis uncertainty. As a result, fusing DL and
statistical data-driven prognostic approaches will hold great
promise to pave the way on prognostics for big data cases. A
possible avenue is to apply DL techniques to extract the
degradation feature and then model the progression of such
feature with stochastic models. To do so, the capability of
quantifying prognosis uncertainty and handling the big data
can be jointly achieved. Therefore, fusion of DL and statis-
tical data-driven prognostic approaches is an important
development direction, but the challenge lies in how to
establish the effective and explainable fusion mechanism.

V. PREDICTION OF RUL: FUTURE
DIRECTIONS

A. INTRODUCTION

The RUL of a component or system is the time left before it
will no longer be able to perform its intended function. The
task of predicting the RUL is called prognostics. For RUL
prognostics to be adopted in practice, the question of which
predictive models to use is fundamental. Specifically, the
prediction capability of a prognostic model must be gauged
with respect to the ability to provide trustable RUL pre-
dictions, which must possess the quality characteristics
required and the confidence level necessary for allowing
to use them for taking decisions. Indeed, trust of the
predictions heavily influences the decision makers’ attitude
toward taking the risk of using the predicted RUL values to
inform their decisions. The choice of which method to use is
typically driven by the data and/or the physics-based mod-
els available, taking into account the cost–benefit consid-
erations related to the implementation of the predictive
system. A set of Prognostic Performance Indicators, mea-
suring different predictive characteristics, must be used to
guide the choice of the modeling approach.

Eventually, to arrive at taking reliability and safety
decisions based on RUL predictions in practice, it is neces-
sary to understand and quantify the impacts and benefits of
the development of a predictive system, including avoiding
unexpected catastrophic failures, reducing maintenance fre-
quency, optimizing spare parts and storage, optimizing
resources, etc. Clearly, given the increasing complexity,
integration, and informatization of modern engineering com-
ponent and systems, RUL prediction capabilities can no
longer be isolated additions in support to maintenance but
must be closely linked to the other parts of the overall system
(structural, power, electromechanical, information and com-
munication technology, control). Then, such predictive capa-
bilities must be included since the beginning in the system
conceptualization and design, to meet the overall operation
and performance requirements [77].

Up to date, the main development efforts in RUL
prediction have been devoted to the hardware (e.g., IoTs,
smart meters, etc.) and to the software for tracking the
health state of monitored equipment (e.g., data analytics,
platforms for IoT interconnection and clouding for com-
puting, etc.). On the other hand, the full deployment of
PHM in practice involves other aspects, including design
(e.g., the use of smart components may lead to different
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reliability allocation solutions), and impacts various work
units involved in maintenance decisions and actuations
(e.g., workers can use smart systems, maintenance engi-
neers can analyze big data), including the supporting
logistics (spare parts availability and warehouse manage-
ment can be driven by the RUL predictions) [78].

B. CHALLENGES

A number of challenges still remain to be overcome to
render effective the use of RUL predictions in practice.
Some of these challenges are inherent in the complexity of
the components and systems degradation processes, which
are not fully known, are dynamic, and highly nonlinear; this
makes their understanding, characterization, and modeling
quite difficult. On the other hand, the data used to develop
and calibrate the predictive models are collected in the
field and are affected by inevitable limitations including
missing data and erroneous data from malfunctioning sen-
sors, scarcity, and incompleteness of data, often unlabeled
with respect to the state of degradation of the component
or system, changing operational and environmental
conditions.

In practical applications, the RUL predictions, and the
models that provide them, must satisfy a number of
requirements to meet diverse objectives. Certainly, accu-
racy and precision are required to the level needed for
the decisions that they support: in some cases, very high
accuracy and precision are necessary to take confident
decisions (e.g., of anticipating or postponing a scheduled
maintenance based on accurate RUL predictions); in
other cases, accuracy and precision need not be so high
and may be compromised for other objectives. For exam-
ple, transparency, explainability, and interpretability of
RUL predictive models can be of particular interest for
decision making or are even demanded as a regulatory
prerequisite in safety-critical applications. Also, security
issues regarding data integrity, data confidentiality, and
authentication exist. Finally, any RUL prediction must
be accompanied by an estimate of its uncertainty, in order
to confidently take robust decisions based on such
prediction.

C. FUTURE DEVELOPMENTS

Surely, DL will continue to be developed and used to allow
incorporating feature engineering in the process of predic-
tive model training, by automatic data processing and
feature extraction: whereas encouraging results have
been obtained already in the application of DL for fault
detection and diagnostics, RUL prediction still remains a bit
of a challenge for DL in practice.

Other developments for the deployment of RUL pre-
diction in practice include:

• RNNs for time series predictive analysis, combined
also with data transformation into images so as to allow
exploiting methods of image processing (includ-
ing CNNs)

• Signal reconstruction methods (including autoenco-
ders) of unsupervised and semi-supervised learning
for degradation prediction in practical cases of unla-
beled data

• Optimal Transport methods and unsupervised adapta-
tion techniques to cope with the difference between the

test data distribution and the training data one, which is
a quite common situation in practice

• Bayesian neural networks and deep Gaussian processes
to provide the RUL predictions with estimates of their
uncertainty

• Methods for obtaining transparency and interpretability
of RUL predictions for building trust on their use for
decision making, especially in safety-critical applica-
tions. In particular, methods for injecting physical
information in learning models (e.g., Physics-Informed
Neural Networks), post-hoc sensitivity approaches,
and visualization techniques are being studied to pro-
vide interpretability from different perspectives,
including explaining the learned input-output relation
representations, explaining the individual model out-
puts, and explaining the way the output is produced by
the model.
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