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Abstract:Wind turbine planetary gearboxes usually work under time-varying conditions, leading to nonstationary
vibration signals. These signals often consist of multiple time-varying components with close instantaneous
frequencies. Therefore, high-quality time-frequency analysis (TFA) is needed to extract the time-frequency
feature from such nonstationary signals for fault diagnosis. However, it is difficult to obtain high-quality time-
frequency representations (TFRs) through conventional TFA methods due to low resolution and time-frequency
blurs. To address this issue, we propose a new TFA method termed the proportion-extracting synchrosqueezing
chirplet transform (PESCT). Firstly, the proportion-extracting chirplet transform is employed to generate high-
resolution underlying TFRs. Then, the energy concentration of the underlying TFRs is enhanced via the
synchrosqueezing transform. Finally, wind turbine planetary gearbox fault can be diagnosed by analysis of
the dominant time-varying components revealed by the concentrated TFRs with high resolution. The proposed
PESCT is suitable for achieving high-quality TFRs for complicated nonstationary signals. Numerical and
experimental analyses validate the effectiveness of the PESCT in characterizing the nonstationary signals
from wind turbine planetary gearboxes.
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I. INTRODUCTION
Planetary gearboxes are vital units in the drivelines of a
wind turbine, and their running status directly affects the
efficiency of the whole wind turbine system [1]. As they are
prone to failures due to time-varying and tough operational
environments, a lot of the cost of wind turbine maintenance
involves planetary gearboxes [2]. Fortunately, conducting
condition monitoring and fault diagnosis helps to avoid
serious damage and unscheduled downtime and further
reduce maintenance costs. The measured vibration signals
carry rich information that contributes to recognizing the
running status [3–5]. Thus, it is significant for such signals
to develop an effective analysis method.

Wind turbines often operate under time-varying con-
ditions, and the collected vibration signals from planetary
gearboxes are composed of multiple time-varying and
close-spaced components, which puts forward higher re-
quirements for time-frequency analysis (TFA) methods.
The vibration is excited by manufacturing errors, installing
errors, gear meshing, rotating part failures, and so on.
Hence, the collected nonstationary vibration signals feature
multiple time-varying components [6]. The instantaneous
frequencies (IFs) of these constituent components corre-
spond to the characteristic frequencies (rotating frequency,
fault characteristic frequency, and their harmonics or com-
binations) of the rotating parts, and they are often close to
adjacent ones in the frequency domain. TFA has attracted
considerable interest in processing nonstationary signals
for revealing time-varying features of the constituent

components [7]. For the multicomponent nonstationary
signals, the frequency resolution of TFA methods must
be less than the minimum intervals between constituent
components, or the time-frequency representations (TFRs)
get blurred. The blurry TFRs lead to difficulties in identi-
fying the dominant components, estimating the running
status, and locating faulty parts. Thus, we are left to high-
resolution TFA methods.

Conventional TFA methods have extensive applica-
tions in nonstationary signal analysis, but they are insuffi-
cient to accurately reveal time-frequency signatures of the
nonstationary signals with close-spaced IFs. For the linear
time-frequency transforms, such as the short-time Fourier
transform (STFT) and the continuous wavelet transform
(CWT), their time-frequency resolutions depend on the
predetermined parameters and cannot be arbitrarily
improved due to the constraint of theHeisenberg uncertainty
principle. Once the minimum IF intervals between the
constituent components are smaller than the frequency
resolution, the blurs occur in the STFT spectrogram and
the CWT scalogram. In the TFRs obtained by bilinear
transforms, such as the Wigner–Ville distribution, the
cross-term interferences between adjacent components
reduce their readability [8]. To improve the readability of
the TFRs generated by the CWT, Daubechies et al. [9]
proposed the wavelet synchrosqueezed transform (WSST).
Oberlin et al. [10] extended the synchrosqueezed transform
(SST) to the STFT framework and proposed the Fourier
synchrosqueezed transform (FSST). Besides, other variants
are proposed in [11–13]. The FSST and the WSST enhance
the energy concentration of the TFRs obtained via the STFT
and the CWT, but their time-frequency resolutions highly
rely on the underlying TFRs [14,15]. However, the STFTCorresponding author: Zhipeng Feng (email: fengzp@ustb.edu.cn).
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and the CWT fail to discern the close-spaced components
because of the limited resolution, thereby leading to blurs
both in the underlying TFRs and postprocessing ones [16].
By separating constituent components via theVold–Kalman
filter, the time-frequency blurs can be removed. To improve
the readability of the postprocessing TFRs fundamentally, it
is essential to employ high-resolution TFRs as the underly-
ing TFRs.

Unlike the above-mentioned TFA methods, parame-
terized TFA methods can achieve high-resolution TFRs
[17]. The chirplet transform is capable of handling mono-
component signals or multicomponent signals with the
same linear variation rates [18]. For the nonlinear fre-
quency-modulated signals, Yang et al. [19] designed mul-
tiple kernel functions and proposed a general parameterized
time-frequency transform (GPTFT) framework. However,
although the CT and the GPTFT can generate high-resolu-
tion and accurate TFRs, they are not suitable for nonsta-
tionary multicomponent signals with different variation
rates [20–22]. To compensate for this deficiency, we pro-
posed the proportion-extracting chirplet transform (PECT)
in [23]. The PECT can produce high-quality TFRs for the
nonstationary signals with proportional IFs. But the time-
frequency energy inevitably disperses around the time-
frequency ridges due to the inner product nature. Thus,
further enhancements to the PECT are needed.

Aiming at generating high-quality TFRs for the non-
stationary signals from planetary gearboxes, we propose the
proportion-extracting synchrosqueezing chirplet transform
(PESCT) in this paper. On the one hand, we utilize the
PECT to produce high-resolution and smear-free underly-
ing TFRs. On the other hand, the time-frequency coeffi-
cients of the underlying TFRs are reassigned along the
frequency direction by extending SST to the PECT frame-
work. This makes the proposed PESCT first produce more
accurate underlying TFRs with higher resolution and then
concentrate the dispersed energy, thereby generating high-
quality TFRs with fine readability. Thus, the PESCT has a
satisfactory performance in analyzing the nonstationary
signals from planetary gearboxes. Unlike the TFA methods
proposed in [16], the PESCT extracts the time-frequency
coefficients with high precision in the time-frequency
domain.

This paper is organized as follows. Section II gives the
background and the details of the proposed PESCT. Simu-
lated verification is carried out in Section III. Section IV
applies the PESCT to characterize wind turbine planetary
gearbox nonstationary signals. Finally, Section V presents
the conclusions.

II. PROPORTION-EXTRACTING
SYNCHROSQUEEZING CHIRPLET

TRANSFORM
A. PROPORTION-EXTRACTING CHIRPLET
TRANSFORM

The PECT extends the GPTFT to multicomponent signal
analyses by introducing proportion-extracting operators.
For a measured vibration signal xðtÞ corresponding time-
varying rotational frequency f rðtÞ, the PECT contains two
successive steps to calculate time-frequency coefficients.
The first step is to construct proportion-kernelled functionseκiðτÞ and proportion-extracting operator PEOiðt, f Þ as:

eκiðτÞ = ½ð2i − 1Þμ=2� × κrðτÞ, (1)

PEOiðt, f Þ =
�
1, jf − eκ 0

i ðτÞjτ=tj < μf rðtÞ=2
0, jf − eκ 0

i ðτÞjτ=tj ≥ μf rðtÞ=2 , (2)

where eκ 0
i ðτÞ denotes the first-order derivatives with respect

to τ, μ determines the step size to discretize the continuous
interval ½0,Omax�,

Omax = f s=f2 ×max½ f rðtÞ�g, (3)

f s is the sampling frequency, κrðtÞ is approximated via

κrðτÞ =
Xn
i=1

cl,i
i
ðτ − tlÞi þ γl, τ ∈ ½tl,tlþ1�, (4)

cl,i denotes the polynomial coefficient, and�
γ1 = 0, l = 1
γl = γl−1 −

P
n
i=1

cl,i
i ðtl−1 − tlÞi, l > 1 : (5)

The second step is to calculate sub-TFRs with well-
matched kernel functions and reconstruct the TFR TPðt, f Þ
of the signal xðtÞ by:

TPðt, f Þ =
X
i=1

TG½t, f ;eκiðτÞ� · PEOiðt, f Þ, (6)

where TG½t, f ;eκiðτÞ� is calculated by:

TG½t, f ;eκiðτÞ� =
ðþ∞

−∞
zsðτ,tÞw�

σðτ − tÞe−2πjf τdτ, (7)

j =
ffiffiffiffiffiffi
−1

p
, wσ is the Gaussian window function with a

standard deviation σ, and � denotes the complex conjugate.
zsðτ,tÞ is shifted and rotated by ΦR

i ðτÞ and ΦS
i ðτ,tÞ as:

zsðτ,tÞ = xðτÞΦR
i ðτÞΦS

i ðτ,tÞ, (8)

and �
ΦR

i ðτÞ = e½−2πjκ
∼
iðτÞ�

ΦS
i ðτ,tÞ¼e½2πjτκ

∼ 0
i ðτÞjτ=t �

: (9)

Compared with the GPTFT, the PECT can characterize
the multicomponent nonstationary signals with different
variation rates. The obtained TFRs are free of time-
frequency blurs and achieve high resolutions. However,
their time-frequency energy inevitably spreads around time-
frequency ridges, since the PECT is to calculate the inner
product between the windowed signal and the basis func-
tion. Thus, the PECT needs to be further enhanced to
generate both high-resolution and concentrated TFRs.

B. PROPORTION-EXTRACTING
SYNCHROSQUEEZING CHIRPLET
TRANSFORM

To generate a smear-free and concentrated TFR, the FSST
and the WSST assume that the constituent components are
separated in the time-frequency domain. However, the
STFT and the CWT cannot provide high-quality underlying
TFRs for the nonstationary multicomponent signals with
close-spaced IFs. Considering the merits of the PECT in
achieving high-resolution underlying TFRs and the SST in
sharpening underlying TFRs, we extend the SST to the
PECT framework and propose the PESCT as (Fig. 1):
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SSTTP
ðt, f 0Þ = 1

w�
σð0Þ

ð
TPðt, f Þδ½f 0 −bf ðt, f Þ�df , (10)

where

δ½f 0 −bf ðt, f Þ� = �
1, f 0 = bf ðt, f Þ
0, f 0 ≠ bf ðt, f Þ : (11)

and bf ðt, f Þ is estimated by;

bf ðt, f Þ = 1
2π

×
∂
�
arg

�
TPðt, f Þ

��
∂t

: (12)

The proposed PESCT has satisfactory performance in
characterizing the frequency contents and associated am-
plitudes of the nonstationary signals with proportional IFs.
This is because: (1) the frequency rotating operators address
the spectral overlapping issues, and we can select a longer
short-time window to ensure sufficient frequency resolu-
tion; (2) the frequency shifting operators guarantee the high
time resolution; (3) the proportion-extracting operator re-
moves the time-frequency blurs; and (4) the postprocessing
procedure in the PESCT gathers the diffused time-
frequency energy. As the time-frequency resolution and
the energy concentration are improved simultaneously, the
proposed PESCT obtains high-quality TFRs.

III. NUMERICAL VALIDATION
In this section, we employ a simulated signal to evaluate the
effectiveness of the proposed PESCT. The simulated signal
is formulated as:

xðtÞ =
X5
i=1

Ai½1 − A cosð2πfMtÞ�

× cos

�ð
2πOif rðtÞdt

	
þ nðtÞ, (13)

where A= 0.1, fMðtÞ = 0.05 Hz, t = ð1,2, : : : ,2560Þ=256,
f r = 16 − 8 sinð2πfMt + 0.9Þ, n(t) stands for the white
Gaussian noise with a signal-to-noise ratio of 5 dB, and
Table I lists the values of other parameters in the simulated
signal model.

The waveform of the simulated signal is shown in
Fig. 2(a). Figure 3 displays the analysis results using the

conventional methods and the proposed PESCT. The
STFT, the CWT, and the spline chirplet transform (SCT)
fail to distinguish the 3rd, 4th, and 5th components due to
the limited resolution (see Fig. 3(a), (e), and (i)). In the
corresponding postprocessing TFRs via the SST, the energy
concentration and readability are highly enhanced, but the
two TFRs are blurry. Thanks to the high time-frequency
resolution, the PECT discerns the three close-spaced
components, but the dispersed time-frequency energy
downgrades the readability. Benefitting from the high time-
frequency resolution and concentrated energy, the TFR
generated by the PESCT accurately captures the time-
varying features of all constituent components (see
Fig. 3(m), (n)). Figure 4 shows the rényi entropy to quantify
the energy concentration of the obtained TFRs. Although
the TFRs via the FSST and the WSST have smaller rényi
entropy, the time-frequency blurs downgrade their read-
ability. The proposed PESCT provides a more concentrated
TFR than the PECT, and it achieves high time-frequency
resolution. Thus, the PESCT is feasible for generating high-
quality TFRs for complicated nonstationary signals.

IV. APPLICATION TO WIND TURBINE
PLANETARY GEARBOX SIGNAL

ANALYSIS
In this section, the vibration signals from a wind turbine
planetary gearbox test rig are used to validate the practica-
bility of the proposed PESCT.

A. EXPERIMENTAL SETTING

Figure 5 shows the planetary gearbox test rig. The test rig
comprises a driving motor, a fixed-shaft gearbox, two
planetary gearboxes, a brake, two accelerometers, and a
tachometer. Refer to [16] for the specific parameters of the
test rig. It mimics the wind turbine drivetrain. The rotational
frequency of the driving motor increases from 20 Hz to
40 Hz, and the rotational frequency of the brake rises from
9.72 RPM to 19.44 RPM, thereby covering the commonly

Table I. Parameters in the simulated signal model

ith 1 2 3 4 5

Ai 2.00 2.00 2.50 2.00 2.50

Oi 0.50 1.00 1.85 2.00 2.15

Fig. 2. Simulated signal: (a) waveform, (b) rotational frequency,
(c) Fourier spectrum, and (d) true IF trajectories.

Raw signals
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Proportion-extracting operator

Calculation of underlying TFR
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Fig. 1. Flowchart of PESCT.
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used cut-in and cut-out speed of wind turbines (see Fig. 6).
The vibration signals and the rotational frequency of the
driving motor are simultaneously recorded by two accel-
erometers fixed on the gearbox casing and a tachometer,
with a sampling frequency of 20k Hz. We conducted two
sets of experiments: baseline case and stage 1 sun gear wear
case (see Fig. 7). We analyze herein the vibration signal

(a) (b)

(c) (d)

(e) (f)

(h)

(i) (j)

(k) (l)

(m) (n)

(g)

Fig. 3. TFRs obtained via: (a) STFT, (b) close-up of STFT,
(c) FSST, (d) close-up of FSST, (e) CWT, (f) close-up of CWT,
(g) WSST, (h) close-up of WSST, (i) SCT, (j) close-up of SCT,
(k) PECT, (l) close-up of PECT, (m) PESCT, and (n) close-up of
PESCT.

Fig. 4. Rényi entropy.

Tachometer Fixed-shaft
gearbox

Planetary
gearbox stage 1
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Fig. 5. Wind turbine planetary gearbox test rig.
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Fig. 6. Wind turbine power curve.

Fig. 7. Stage 1 sun gear wear.
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recorded by the accelerometer fixed on the planetary gear-
box stage 1.

B. PLANETARY GEARBOX VIBRATION
SIGNAL ANALYSIS

Figure 8 displays the waveform of the baseline vibration
signal and the driving motor rotational frequency f d. The
PESCT discerns three dominant time-varying components,
that is, 2f d, fm1 − 3f ðrÞs1 , and fm1 + f ðrÞs1 (the combinations of
the stage 1 meshing frequency fm1 and sun gear rotational
frequency f ðrÞs1 ), as shown in Fig. 9. Any fault characteristic
frequency does not exist, thereby indicating that stage 1
planetary gearbox is normal.

In the stage 1 sun gear wear case, the waveform of the
measured vibration signal and the corresponding driving
motor rotational frequency are shown in Fig. 10(a) and (b).
In Fig. 11, the PESCT provides a high-resolution TFR and perceives five dominant time-varying components. Com-

pared with the TFR in the baseline case, there exist three
new components, that is, f d, time-varying sidebands
fm1 − f s1 and fm1 + 2f s1 around the stage 1 meshing fre-
quency fm1. The sidebands corresponding to the stage 1 sun
gear fault characteristic frequency are the obvious sign of
stage 1 sun gear fault.

V. CONCLUSIONS
In this paper, we propose a high-resolution TFA method
termed the PESCT by extending the SST to the PECT
framework. The proposed PESCT shows success in gener-
ating high-resolution TFRswith concentrated energy for the
nonstationary signals from a wind turbine planetary gear-
box. The proposed PESCT first employs smear-free and
high-resolution underlying TFRs generated by the PECT
and then gathers the dispersed energy via time-frequency
postprocessing. This enables the PESCT to gain superior
performances in terms of both time-frequency resolution
and energy concentration. One numerical and two experi-
mental datasets of a wind turbine planetary gearbox are
selected to evaluate the performance of the proposed
PESCT. The analysis results validate the effectiveness
and superiority of the PESCT in the analysis of nonstation-
ary signals with complicated time-frequency structures.
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