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Abstract: Compound fault, as a primary failure leading to unexpected downtime of rotating machinery,
dramatically increases the difficulty in fault diagnosis. To deal with the difficulty encountered in implementing
compound fault diagnosis (CFD), researchers and engineers from industry and academia have made numerous
significant breakthroughs in recent years. Admittedly, many systematic surveys focused on fault diagnosis have
been conducted by reputable researchers. Nevertheless, previous review articles paid more attention to fault
diagnosis with several single or independent faults, resulting in that there is still lacking a comprehensive survey
on CFD. Therefore, to fulfill the above requirements, it is necessary to provide an in-depth overview of fault
diagnosis methods or algorithms for compound faults of rotating machinery and uncover potential challenges or
opportunities that would guide and inspire readers to devote their efforts to promoting fault diagnosis technology
more effective and practical. Specifically, the backgrounds, including the related definitions and a new taxonomy
of CFD methods, are detailed according to the way of implementing compound fault recognition. Then, the state-
of-the-art applications of CFD are overviewed based on relevant publications in the past decades. Finally, the
challenges and opportunities associated with implementing CFD are concluded and followed by a conclusion for
ending this survey. We believe that this review article can provide a systematic guideline of CFD from different
aspects for potential readers and seasoned researchers.
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I. INTRODUCTION
Modern mechanical machines are complex systems that
consist of hundreds or even thousands of components to
collaboratively work together for implementing target
tasks, and thus a complicated relationship is formatted
between these components, which also exerts influence
reciprocally. Meanwhile, the critical components are prone
to damage or failure because of the harsh working environ-
ment, the inappropriate operation, and the fact that ma-
chines are running in long-term serves [1,2]. In doing so, the
compound fault becomes a majority failure that occurs with
high uncertainty and low predictability in practical engi-
neering. Compound fault, also known as composite fault or
multiple faults, is the primary cause of unexpected down-
time of machines, which would, in turn, result in economic
losses and even miserable catastrophes.

Fault diagnosis technology, as a curial part of Prognos-
tics and Health Management (PHM), has become a prevalent
tool to ensure the efficiency, stability, and security of
mechanical machines in many industrial applications, which
not only protects people’s property and lives to suffer from
catastrophes but also brings strategic significance on the
transformation and upgrading of modern manufacture indus-
try. As one of the most common types encountered, rotating
machinery is a particularly well-developed field of fault

diagnosis that applies. However, the compound fault of
rotating machinery dramatically increases the difficulty in
fault diagnosis. The difficulty in implementing compound
fault diagnosis (CFD)mainly comes from the following three
aspects: (1) Compound fault typically occurs and evolves
within several key components among which spatial–
temporal correlation and interaction exist. (2) The relation-
ship between the compound fault and its corresponding
single faults is strongly related, not just linear accumulated.
(3) The mechanisms of how the compound fault occurs and
evolves are hard to be revealed from the perspective of
causality or concluded as general laws.

Although there are many difficulties mentioned above,
researchers and engineers from industry and academia have
made many significant breakthroughs in CFD in recent years.
Therefore, it is necessary to conduct a comprehensive survey
for CFD based on the relevant publications. Admittedly,
many systematic surveys focused on fault diagnosis have
been conducted by reputable researchers, which provide
many valuable benefits, including comprehensive critical
reviews of the current state-of-the-art, in-depth insight into
challenges, limitations, and research directions in the field of
fault diagnosis, etc. For instance, Li et al. systematically
overviewed the intelligent fault diagnosis (IFD) methods for
industrial equipment based on deep transfer learning (DTL)
technology, in which the industrial scenarios of IFD have
been summarized into four categories and their corresponding
applications are reviewed in detail [3]. Zhao et al. performed a
comprehensive survey on unsupervised DTL-based IFD, inCorresponding author: Weihua Li (e-mail: whlee@scut.edu.cn).
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which an open-source code framework is established, and
comparative discussions are presented as baseline results for
convenience comparison [4]. Zhang et al. summarized the
publications which focused on the problem of IFD with small
and imbalanced data and pointed out the challenges and
directions that should be placed more effort [5]. Similar
review articles, which overview the relative literature of fault
diagnosis from different perspectives including algorithms
[6,7], components [8], PHM tasks [9], etc., can be found and
cannot be enumerated here in-depth. Nevertheless, all the
review articles mentioned above did not consider the follow-
ing two aspects: (1) Previous review articles paid more
attention to fault diagnosis with several signal or independent
faults. It is still lacking a comprehensive survey on CFD,
which has more practical significance in industrial scenarios
since the compound fault is the primary failure that causes
unexpected downtime of machines. (2) It can be found from
these historical review articles that the practical challenges
and emerging opportunities in fault diagnosis, especially in
CFD, are not clear yet. The major concern is that, in industrial
applications, a systematic guideline or an appropriate direc-
tion matters for developing effective solutions for specific
diagnosis problems.

To fulfill the above requirements, hence, the main goal
of this survey is to provide an in-depth overview of fault
diagnosis methods or algorithms for the compound fault of
rotating machinery and uncover potential challenges or
opportunities that would guide and inspire the readers to
devote their efforts to promoting fault diagnosis technology
more effectively and more practically. Specifically, the
main contribution of this article is that the state-of-the-art
in CFD has been systematically reviewed for the research-
er’s convenience, and the core challenges, potential oppor-
tunities, and future directions that might advance the field of
fault diagnosis are analyzed and presented in detail.

In the remainder of this survey, the backgrounds of
CFD are introduced in Section II, in which the related
definitions and a new taxonomy of CFD methods are
detailed according to the way of implementing compound
fault recognition. Section III summarizes the state-of-the-art
applications of CFD based on the related publications in the
past decade. The core challenges and open issues associated
with implementing CFD are concluded and discussed in
Section IV. Section V offers a conclusion for this survey
that has come to an end.

II. BACKGROUND OF CFD
This Section briefly introduces the basic definitions related
to CFD and categorizes the CFDmethods into three groups,
which offers a solid background for newcomers or seasoned
researchers and facilitates the discussions on the state-of-
the-art applications of CFD in the following sections.

A. DEFINITIONS RELATED TO CFD

As a matter of fact, there is no general definition to describe
what is compound fault since it has different manifestation
patterns in the different individuals of the same machines,
let alone in the different machines. Taking the rotating
machine as an example, the primary manifestation patterns
of the compound fault include but are not limited to the
following three types. (1) Multiple faults in an identical
component occur simultaneously. For example, the inner
race fault and the outer race fault occur simultaneously, as

well as multiple defects occur in the outer race or the inner
race. (2) Multiple components of an identical subsystem are
damaged sequentially or simultaneously. For example, the
bearing fault and the gear fault occur in the transmission
gearbox simultaneously. (3) Multiple subsystems of the
machine are damaged sequentially or simultaneously. For
example, the engine fault and the transmission fault occur in
the complex system simultaneously. Fig. 1 shows examples
of the above compound fault for helping readers understand
it better. Apart from the manifestation patterns, the termi-
nology of compound fault is also known as “multiple
faults”, “composite fault”, “mixed fault”, and “combination
fault”. Such a phenomenon may indirectly illustrate the
high complexity of the compound fault. Considering the
frequency of the terminology used in publications, in this
survey, the “compound fault” is used to represent all the
above terminology. Additionally, based on the above ex-
planations, we offer a definition of Compound Fault as “a
new failure that is formed by the combination of two or
more single faults that occurred in a machine at the same
time” for convenience.

No matter how different the manifestation patterns and
terminology of compound fault are, some common charac-
teristics can be summarized from the published literature as
follows: (1) The compound fault can be regarded as multiple
single faults nonlinearly coupled together to form a different
but related pattern. Thus, the relationship between the

(a) Bearing with inner and outer race faults 

(b) Gearbox with bearing and gear faults

(c) Complex system with different faults 

Fig. 1. Examples of compound fault.
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compound fault and its corresponding single faults is related
but absolute not simply linear accumulated. (2) The different
patterns coupled in the compound fault exert influence
reciprocally and have spatial–temporal correlation and inter-
action, resulting in more complicated characteristics than
single faults. Furthermore, fault types, sizes, and positions
are sensitive factors and deviations that can directly affect the
coupled result of the compound fault. (3) It is difficult to
establish a precisemathematical or dynamicalmodel based on
the physical mechanisms of the compound fault in complex
machines because the mechanisms of how the compound
fault occurs and evolves are hard to be theoretically explained
from the perspective of causality or concluded as general
physical laws. Noticing these common characteristics can
inspire and allow researchers to exploit effective solutions for
implementing the diagnosis of the compound fault.

CFD is a process that determines or infers which faults
(typically more than one fault) have occurred in machinery
based on analyzing the monitoring data, identifying the
types of faults, and distinguishing each fault’s location or
even judging the size of faults. Compared to regular fault
diagnosis, which mainly concerns situations when only a
single fault occurs, CFD can be regarded as a more complex
diagnosis task, which deals with the more practical situa-
tions when multiple faults occurred simultaneously and are
coupled with each other. A general way to make a fault
diagnosis for a compound fault should consider the follow-
ing three main questions: (1) whether a compound fault
occurs, (2) what faults are coupled in the compound fault,
and (3) how to separate these faults.

“Whether a compound fault occurs” asks in which
situations CFD should be implemented. In some situations,
CFD would be unnecessary when only a single fault
happens. Brute-force CFD may even increase the risk of
misdiagnosis. Most of the current publications on CFD
focus on the latter two issues by implicitly assuming that the
compound fault has already occurred.

“What faults are coupled in the compound fault” refers
to exploring the most important problem about CFD, that is,
what exact faults are coupled together to form the com-
pound fault. However, in practice, there is no prior infor-
mation that can be known in advance such that it is difficult
to directly solve such a problem. Just as mentioned earlier,
the compound fault is related but not a linear superposition
with its corresponding single faults. Thus, it needs to
develop an effective solution that can separate the discrimi-
native characteristics of single faults from the monitoring
data of the compound fault.

“How to separate these faults” specifies the form that a
CFDmethod takes. The motivation behind these methods is
to imitate the ability of human beings who can easily
recognize overlapped entities through separate key features,
such as shape and color, associated with each entity.
Similarly, the compound fault can be recognized and
separated into multiple single faults by judging whether
the typical characteristics of the corresponding single fault
exist or not, also known as decoupling. Different solutions
to the question of “how to separate these faults” give an
appropriate principle for summarizing the taxonomy of the
CFD methods, which is detailed in the following section.

B. TAXONOMY OF CFD METHODS

Even though CFD has attracted increasing attention from
academic and industrial researchers, it is difficult to reach an

absolute consensus on how to summarize the taxonomy of
CFD methods. For example, Zhang et al. provided a
categorization for the CFDmethods and relevant algorithms
and thought that these methods generally fall into three
categories: analytical model-based approaches, qualitative
knowledge-based approaches, and data-driven-based ap-
proaches [10]. However, such a taxonomy provides little
information about how the compound fault is recognized or
decoupled and cannot summarize the published litera-
ture well.

Here, a well-designed taxonomy is proposed for the
categorization of CFD methods according to the ways to
solve the problem of how to separate these faults. Fig. 2
illustrates the proposed taxonomy for convenience, show-
ing that the CFD methods can be divided into three groups:
failure mechanism-based CFD, signal processing-based
CFD, and artificial intelligence-based CFD.

Failure mechanism-based CFD refers to the methods
that are trying to find the root cause that results in com-
pound fault and to explain what, why, and how it happens,
which can help us completely understand the compound
fault mechanisms to come up with effective maintenance
strategies for eliminating the compound failures that are
causing downtime of machinery. One general way to
achieve that is to establish a precise mathematical or
dynamical model of machines using techniques like
dynamic modeling and finite element or modal analysis.
Failure mechanism-based CFD can provide solid funda-
mental theories for uncovering the physical laws behind the
real symptoms and compound failure.

Signal processing-based CFD refers to the methods
that are leveraging advanced signal processing technologies
to extract fault-related information associated with different
health statuses of machines from the monitoring compound
fault signals, which allows experts to easily figure out which
faults are coupled into the compound fault. An array of
signal-processing algorithms has been published for CFD in
the literature. The essence of these methods is to separate
the compound faults by converting the compound fault
signal in a way that engineers or experts can directly capture
the discriminative and fault-related characteristics from the
post-processing signals; thus, the compound fault can be
decoupled into multiple single faults.

Fig. 2. Taxonomy of CFD methods.
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Artificial intelligence-based CFD refers to intelligent
CFD methods that focus on developing an end-to-end
diagnosis model to recognize or decouple the compound
fault by utilizing machine learning algorithms, such as
shallow neural networks, deep learning, and transfer learn-
ing. The essence of these methods comes from the ability of
artificial intelligence algorithms to capture the pattern or
knowledge of compound faults from industrial data. Artifi-
cial intelligence-based CFD methods are being developed
into two trends: a well-investigated way and an emerging-
investigated way. The well-investigated way is to take the
compound fault as an independent pattern of other single
faults for fault classification, while the emerging-investi-
gated way is to intelligently decouple the compound fault
into multiple single faults by outputting the corresponding
multiple labels.

It should be noticed that, although there may exist a few
exceptions of past work (such as hybrid methods) that do
not fall into the proposed taxonomy, the historical CFD
methods are well-categorized following such taxonomy,
and the prior work can be clearly discussed within such a
framework.

III. APPLICATIONS FOR CFD OF
ROTATING MACHINERY

CFD technologies have attracted tremendous attention from
scholars and engineers who have made revolutionary break-
throughs in many applications over the past few decades.
Generally, these technologies or applications may range in
many ways, but they could be classified into the three
categories introduced in the previous section. In this sec-
tion, the general procedures of each type of CFD method,
which can describe how the fault diagnosis can be imple-
mented, are concluded to provide a convenient guide for
helping readers grab the essence of the different methods.
Thereafter, the historical publications, which focus on
leveraging the corresponding CFD methods to deal with
the problems encountered in the practical applications of
fault diagnosis, are systematically summarized and dis-
cussed for providing a mature overview of CFD from
different aspects.

A. APPLICATIONS OF FAILURE
MECHANISM-BASED CFD METHOD

The failure mechanism-based CFD method aims to explore
and reveal the correlation laws between the failure mecha-
nism and the parameters of the established system model,
which can help humans find the root causes that led to
compound faults and their evolution process and can
provide a theoretical understanding of CFD methods.
The general procedures of the failure mechanism-based
CFD method are summarized in Fig. 3. First, the system
model is established to simulate the target machines, in
which the key components are focused while other factors
might be simplified. The ways to establish the systemmodel
typically include three classes, that is, mathematical model,
phenomenological model, and dynamical model. Then, the
system responses are simulated for different health condi-
tions, such as the normal condition and the compound fault
condition, using the established system model. In doing so,
based on the generated vibration signals or order spectrums,
CFD methods can be developed through system response
analysis in which the system model is validated by com-
paring the experimental and simulated results.

Application examples of the failure mechanism-based
CFDmethod include rolling bearings with compound faults
[11–14], gear systems with multiple failures [15–17], and
bearing-gear interaction systems [18,19]. Specifically, Patel
et al. built a dynamic model to investigate the vibration
response of deep groove ball bearings, where the single and
multiple defects on inner and outer race surfaces are
explored using both theoretical and experimental results
[11]. To further investigate the multiple local defects on the
same component, Patel et al. analyzed the vibrations in both
time and frequency domains, in which the number of
defects did not reflect in the frequency spectra but can
be found in the time domain analysis [12]. Similarly, Zhang
et al. established a four-degree-of-freedom dynamic model
for rolling bearings with compound faults, in which the
vibration characteristics of compound faults on the raceway
and rolling element are analyzed. The relationship between
the vibration response of the compound fault and three
different working conditions is revealed based on the
experimental validations [13]. Additionally, to reveal the

Fig. 3. General procedure of the failure mechanism-based CFD method.
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correlation between single faults and compound faults,
Yuan et al. used bearing practical kinematics and Hertz
contact theory to construct the bearing-rotor dynamic model
with a single fault on the inner and the outer race, respec-
tively, and then a six-degree-of-freedom vibration model of
rolling bearing with a compound fault of inner and outer
race is modeled, in which a conclusion has been drawn that
the Lempel-Ziv complexity measure can be regarded as a
quantitative criterion to recognize the single and compound
fault of bearings [14]. Apart from bearing compound fault, a
four-degree-of-freedom dynamic model was constructed by
Ma et al. for a gear system with local faults, and the
dynamic model with tooth crack and spalling failure are
used to explore the failure mechanism [15]. To explore
multiple tooth cracks in spur gearboxes, Yang et al. inves-
tigated the mesh stiffness and the vibration response of three
scenarios of multiple tooth cracks based on dynamic model-
ing, and then a method named crack-induced impulses was
proposed to detect and locate the scenario of multiple tooth
cracks [16]. A 20-degree-of-freedom lumped-parameter
model was developed by Xue et al. to analyze the system
response of planetary gear, in which gear defects on differ-
ent components were introduced into the finite model to
generate the failure vibration signals; thus, the failure
mechanism of the planetary gear system was investigated
by vibration response analysis [17]. Considering the more
complex systems, Sawalhi et al. simulated and investigated
the interactions between gears and bearings by combining
the gear-bearing dynamic model, in which the inner and
outer race faults of rolling bearings are discussed under the
scenario with the gear interaction [18,19].

The experimental results presented in the publications
illustrate that the methods mentioned above have been
proven to be effective tools for CFD of rotating machinery
and can provide the intuitive theoretical basis for fault
diagnosis and health management. The CFD based on
modeling and mechanism analysis has strong theoretical
support in revealing the mechanism of fault generation, the
essential correlation law between fault modes and their
manifestations, and the interpretability of diagnosis results.
However, with the complexity of mechanical equipment in
structure, material, function, environment, and other fac-
tors, it is very difficult to build accurate and effective
mechanism models for such a complex system, and the
performance of failure mechanism-based CFD methods

depends on the complexity of the target objects. These
factors may be hindered the application of failure mecha-
nism-based CFD methods in practical industries.

B. APPLICATIONS OF SIGNAL
PROCESSING-BASED CFD METHOD

The signal processing-based CFD method aims to recog-
nize the compound fault by extracting or separating the
unique characteristics of the corresponding single faults
from the compound fault signals, which helps engineers or
experts intuitively decouple the compound fault into multi-
ple single faults from the post-processing signals contained
discriminative and fault-related characteristics. The general
procedures of the signal processing-based CFD method are
presented in Fig. 4. Generally, the compound fault signals
are first captured from the target rotating machinery, which
contains useful information associated with the health
statuses of the machinery. However, when there exist
multiple faults, the characteristics of each fault will be
coupled together in a complex way, resulting in difficulties
in extracting the discriminative features from the monitor-
ing signals. To solve such problems, advanced signal
processing algorithms, such as signal decomposition, signal
deconvolution, blind signal processing (BSP), and sparse
representation, are utilized to convert the compound fault
signal into multiple parts where each part can represent a
single fault coupled in the compound fault. Therefore, the
compound fault can be detected and separated by observing
or comparing the postprocessing signals. According to the
exact signal processing algorithms being used, the applica-
tions of the signal processing-based CFD method are over-
viewed from the following four subcategories: signal
decomposition-based method, signal deconvolution-based
method, BSP-based method, and sparse representation-
based method.

1) SIGNAL DECOMPOSITION-BASED METHODS. The
essence of the signal decomposition-based method is to
extract and separate the signal components from the com-
pound fault signals. Signal decomposition-based methods
are similar to pattern recognition that relied on feature
engineering, in which the different components are ex-
pected to be separated. Scholars and researchers have
proposed lots of successful methods for CFD, such as

Fig. 4. General procedure of the signal processing-based CFD method.
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wavelet transform (WT) [20–28], variational mode decom-
position (VMD) [29–34], local mean decomposition (LMD)
[35], singular spectrum decomposition (SSD) [36,37], sym-
plectic geometry mode decomposition (SGMD) [38,39], and
other methods [40–48]. The above methods have been
widely applied in CFD of rotating machinery.

WT, also known as Wavelet Analysis, can be regarded
as the presentation or projection of a signal using a set of
basis functions (wavelets), bringing enormous applications
including filtering, noise reduction, and feature extraction in
the field of fault diagnosis. Peng et al. [49] and Yan et al.
[50] systematically reviewed the WT and its variant algo-
rithms for health condition monitoring and fault diagnosis
in 2004 and 2014, respectively. As for CFD, Jiang et al.
developed a method by combining empirical WT and
chaotic oscillator (named EWTDO), which implements
the CFD by the following steps: first, the compound fault
signals are separated into different empirical models by
empirical WT; second, a duffing oscillator which incorpo-
rates all single fault frequency is used to establish the fault
isolator; finally, all the single faults can be recognized one
by one by observing the chaotic motion from the Poincar
mapping of the fault isolator outputs [20]. Ding utilized
double impulsiveness measurement indicators to determine
the lower–upper segment boundaries of empirical WT
which can be further demodulated to detect the different
single faults [21]. Different from the empirical WT, which
uses the fixed basis functions, He et al. combined an
adaptive redundant multiwavelet packet that can automati-
cally select the sensitive frequency bands and Hilbert
transform demodulation analysis to decouple the compound
fault of two gearboxes [24]. An improved tunable Q-factor
wavelet transform (TQWT) was proposed by Hu et al. to
decompose the vibration signal, and the compound fault can
be recognized by comparing the fault characteristic fre-
quencies between the experimental results and theoretical
values [27]. Although WT-based methods have many good
properties ensuring the effectiveness in CFD, their decom-
position performance of compound fault signals depends on
the selected wavelet basis function.

VMD is also a prevalent algorithm to decompose the
compound fault signal into multiple band-limited intrinsic
mode functions. For example, Yan et al. combined the
VMD with the 1.5-dimension envelope spectrum to detect
the compound fault of rotating machinery, in which the
compound fault signals are decomposed into several intrin-
sic mode components using VMD [29]. Wan et al. com-
bined the fast spectrum kurtosis with the VMD to deal with
the compound fault signals with weak single components
[30]. Parameters of VMD, such as the penalty and the
number of subcomponents, are significant for the decom-
position results. Therefore, parameter-optimized VMD has
also been investigated and applied in CFD for rotating
machinery [32–34]. However, it is still lacking an effective
solution for determining these parameters to ensure the
diagnosis performance.

LMD, SSD, and SGMD are mode decomposition algo-
rithms for nonstationary signals. Specifically, LMD is an
adaptive mode decomposition algorithm that can decompose
a compound fault signal into a set of mono-components that
is, product function. Jay Lee et al. proposed a compound
envelope construction method based on LMD for fault
diagnosis of reciprocating compressors [35]. LMD has
good performance in demodulating amplitude- and fre-
quency-modulated signals, but it has limitations, such as

end effects and mode mixing phenomenon. SSD is also an
adaptive algorithm that can decompose nonlinear and non-
stationary time signals in narrow-banded components. Wang
et al. have proposed several methods based on SSD for
composite fault diagnosis of gearboxes, which achieve
higher decomposition accuracy and can overcome the modal
mixing to some extent [36,37]. SGMD is a decomposition
method that uses the symplectic geometry similarity trans-
formation to reconstruct the mono-components with their
corresponding eigenvectors. Pan et al. proposed a CFD
method based on SGMD, in which the compound fault
that is coupled by the bearing fault and gear fault are
separated and recognized [38]. The above discussions
show that the SSD and SGMD have been applied in CFD
successfully. However, it is difficult to extract features of the
weak single faults coupled in the compound fault signals
since the SSD and SGMD have a strong ability of noise
reduction and the weak fault information may be removed as
noise. What’s more, the pseudo-components are prone to be
decomposed under strong noise environments.

Besides the aforementioned methods, there exist many
other methods to make a CFD by combining the signal
decomposition algorithm with other techniques. For
instance, Tang et al. proposed a compound fault detection
method with virtual multichannel signals in the angel
domain and applied it to monitoring the rolling bearings
under varying working conditions [43]. More details can be
found in [40–48], which are not enumerated here.

2) SIGNAL DECONVOLUTION-BASED METHODS. The
essence of the signal deconvolution-based method is to
reverse the compound signal as single signals which are
not coupled together. Signal deconvolution-based methods,
such as minimum entropy deconvolution (MED) [51–55],
maximum correlated kurtosis deconvolution (MCKD) [56–
62], and cyclostationary blind deconvolution (CYCBD) [63],
can enhanceweak periodic features and suppress signal noise
by constructing a comb filter, thus, have been proven to be an
effective tool for separating compound fault with weak
components.

MED is a technique that was developed for solving the
deconvolution problem of a signal when it follows the
convolutional form. Many examples show that the MED
endows fault diagnosis methods with the ability to decouple
compound faults. For example, Fan et al. proposed a CFD
method for rolling bearings based on an improved MED
adjustment and adaptive signal sparse decomposition,
where the effectiveness of the proposed compound fault
feature extraction is validated by both generated and exper-
imental vibration signals of compound bearing fault [52]. A
similar investigation for CFD of a wind turbine gearbox can
be found in the work done by Feng et al. [54]. The
advantage of the CFD methods based on MED is that it
eliminates strong hypotheses over the components and only
require the simplicity of the outputs.

Compared with MED, which only enhances single
pulse components, MCKD-based methods have shown
more powerful performance in CFD because MCKD can
extract continuous periodic pulses. For example, Lyu et al.
proposed an improved MCKD method for CFD of plane-
tary gear by combining a quantum genetic algorithm
(QGA), in which the single fault-related feature is extracted
by the proposed method [58]. To deal with the problem that
the periodic impulses may be contaminated by strong noise,
Hong et al. developed a CFD method by combining
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customized balanced multiwavelets with adaptive MCKD,
whose effectiveness is validated on the simulation and
experimental data collected from the aero engine rotor
[59]. TheMCKD has been combined with other algorithms,
such as spare representation and convolutional neural net-
works (CNNs), for implementing the CFD of rolling bear-
ings, and the corresponding experiments also show that
these methods can effectively separate the fault character-
istic components and achieve good performance on CFD.
Although the MCKD-based method has some metrics in
extracting continuous periodic pulses, the feature extraction
performance significantly relied on their parameters, such
as filter length and deconvolution period.

CYCBD is a blind deconvolution algorithm that has
been proven to be an effective tool for CFD because it can
reconstruct periodic impulses from coupled fault signals.
Applications can be found in [63], in which an improved
adaptive CYCBD method was proposed by Sun et al. and
applied for gearbox CFD under strong noise background.
The CYCBD-based method provided an alternative way to
extract weak shock faults from the compound fault signals.

Note that the CFD method based on signal deconvolu-
tion lacks effective evaluation criteria for the selection of
key parameters, and the extracted features are easily
affected by signal noise.

3) BSP-BASEDMETHODS. The essence of the BSP-based
method is to separate unknown and independent source
signals from mixed or composite signals. BSP, also known
as bind signal separation (BSS), has been widely developed
for solving the problem of CFD.Various effective algorithms
have been proposed, such as independent component analy-
sis (ICA) [64–67], sparse component analysis (SCA) [68–
71], morphological component analysis (MCA) [72], and
other methods [73,74]. These algorithms can separate the
identification characteristics of each single fault source from
the complex monitoring signals, to accurately evaluate the
health conditions of rotating machinery.

ICA is a popular BSS algorithm for separating inde-
pendent subcomponents from mixed signals, which is also
suitable for dealing with the problems encountered in
CFD. Viewing the CFD as a problem of underdetermined
BSS for the vibration sources estimation, Wang et al. [64]
and Tang et al. [65] proposed several CFD methods for
rolling bearings by combining ICA with other mode
decomposition algorithms, respectively. Experimental re-
sults showed that these methods are effective for com-
pound fault separation and have better performance in
separating strong noise signals than the signal decompo-
sition methods [66,67].

To overcome the limitation of ICA that the estimation
of source number must be done before the ICA which
significantly increases the complexity of algorithms, SCA
can avoid such estimation and solve the underdetermined
problem by contrast, which has been widely applied in
CFD. For example, Hao et al. have developed several CFD
methods based on SCA and its variants algorithms [68–70].
The core steps of thesemethods are that the signal processing
algorithm is first used to extract the sparse representation of
the vibration signal and then put these representations into
the SCA to obtain the precise source signal. Combining the
SCA with other techniques, such as the morphological
filtering of sin C function and density peak clustering,
Xie et al. developed a method to effectively separate the
composite faults of bearings [71].

Apart from the bearing compound faults, Yu et al.
proposed an improved MCA method for the CFD of
gearboxes under the scenario when a gear fault and a
bearing fault occur at the same time [72], in which there
are two different components (one is the meshing compo-
nent caused by gear fault, the other one is the periodic
impulse component caused by bearing fault) that coupled in
the compound fault signal. Additionally, other methods,
such as the null-space pursuit [73] and canonical correlation
analysis [74], have also been applied in the CFD for aero-
engine rolling element bearing by scholars.

Although BSP technology can deal with the difficulties
encountered in decoupling compound faults of mechanical
equipment to a certain extent, there are still problems, such
as unsatisfactory performance and low reliability of results,
when extracting or separating multiple fault sources due to
the characteristics of nonlinear, high noise, and strong
coupling of complex fault monitoring signals. Furthermore,
the compound fault methods based on BSP have a high
requirement on the channel numbers of the observed signal;
that is, the number of sensors should meet the requirements
of the algorithm, which may increase the cost of fault
diagnosis.

4) SPARSE REPRESENTATION-BASED METHODS. The
essence of the sparse representation-based method is to
separate the compound faults by representing signals as
linear combinations of a few atoms with a given over-
complete dictionary. The sparse representation-based
method has been proven to be a prevalent tool in CFD
due to its several advantages including different component
matching, signal denoising, and signal separation without
mode mixing. Generally, sparse representation theory
mainly contains two aspects: overcomplete dictionary con-
struction [74–80] and sparse coefficient solution [81–85].

The overcomplete dictionary construction is one of the
key problems when we develop a CFD method. There are
two ways to construct an overcomplete dictionary. The first
one is the predefined analytic or static dictionaries. For
example, Li et al. proposed a CFD method for gearboxes
based on the multiple enhanced sparse decomposition
algorithm, in which three subdictionaries are manually
designed by considering the gearbox failure mechanism
[78]. Meng et al. proposed a CFD method based on
periodicity-weighted kurtosis sparse denoising and period-
icity filtering, and the corresponding flowchart is shown in
Fig. 5 [79]. It can be found that the impulse dictionary is
constructed to obtain the sparse coefficients and fault types.
The designed dictionaries typically have more explicit
physical significance and good adaptability, but their limi-
tation is that they may be out of work when processing
unknown signals. The second one is the learning dictionary,
which shows more advantages in feature extraction of the
compound fault signals since it can adaptatively learn the
atom library to match the target signals; thus, it is more
effective to capture the fault-related features and has been
widely applied in the field of fault diagnosis. Lin et al.
proposed an effective CFD method based on an improved
double-dictionary K-singular value decomposition (K-SVD)
and applied it to rolling element bearings with inner and outer
race defects [86]. Although these dictionary-based sparse
representation methods have been successfully applied to
separate the compound faults of rotating machinery, it is still
a challenging problem of constructing a precise dictionary
for CFD in practical industrial applications.
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For sparse representation-based methods, solving the
sparse coefficients is pivotal and has a significant influence
on the performance of compound fault signal decomposi-
tion. Many approximate methods have been proposed for
dealing with the sparse coefficient solution, among which
convex relaxation optimization [81–83] and orthogonal
matching pursuit (OMP) [84,85] have attracted the most
attention in CFD. For instance, Huang et al. proposed a
CFDmethod for gearboxes, in which a multi-source fidelity
sparse representation algorithm was developed to convert
the signal reconstruction problem into a multivariate sparse

convex optimization problem [82]. Combining with the
OMP algorithm, a multiple enhanced sparse representation
method was proposed by Zhang et al. to reconstruct and
identify each type of fault-induced feature for making the
CFD of bearings [85].

Although the sparse representation-based methods
have brought some successful breakthroughs in CFD, there
is still a long way to go before they can be widely applied in
more complex industrial scenarios. How to effectively use
the sparse representation theory to mine the intrinsic char-
acteristics of compound fault signals and realize the sepa-
ration of more complex compound faults needs to be placed
more effort in the future.

It should be highlighted that there are still many other
CFD methods that have been developed based on signal
processing algorithms that are not included in the four
subcategories mentioned above, which will not be dis-
cussed here [87–90].

With the above overview and discussions, it can be
found that the signal processing-based CFD methods usu-
ally extract the features of each independent fault compo-
nent from the collected compound fault signals; thereby,
they can achieve the purpose of decoupling and diagnosing
compound faults. However, since they heavily depend on
advanced signal processing methods and empirical knowl-
edge of experts and cannot reveal the coupling law of
compound fault signals, it is extremely difficult to distin-
guish and decouple the complex compound fault coupled
by three or more faults, which limits their application in the
practical maintenance of complex mechanical equipment.

C. APPLICATIONS OF ARTIFICIAL
INTELLIGENCE-BASED CFD METHOD

The artificial intelligence-based CFD method aims to estab-
lish intelligent diagnosis models using machine learning
algorithms, which can make a CFD in a pattern recognition
way where the compound fault is regarded as an indepen-
dent pattern for classification or can be decoupled into
multiple single faults by outputting multiple corresponding
single-fault labels. The general procedures of the artificial
intelligence-based CFD methods are presented in Fig. 6.
Specifically, the monitoring data/signals are first collected

Fig. 5. Flowchart of the CFD method proposed in [79].

Fig. 6. General procedure of the artificial intelligence-based CFD method.
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from the target rotating machinery, which is fundamental
for training the intelligent CFD model since these methods
typically recognize the compound fault by observing the
given data. After the monitoring data has been collected, it
is a critical step to construct the IFD model for compound
fault by selecting the appropriate machine learning algo-
rithms. Once the IFD model has been trained, it can be used
to diagnose the compound fault in an end-to-end way, and
the corresponding results can be obtained from the outputs
of the IFD model. It is well-known that the collected data’s
quantity and quality significantly affect the fault diagnosis
performance. Therefore, according to whether the labeled
compound fault data are available or not during the process
of model training, the artificial intelligence-based methods
can be divided into two subcategories: supervised learning-
based CFD method and unsupervised learning-based CFD
method.

1) SUPERVISED LEARNING-BASED METHOD. The
essence of the supervised learning-based method is to
take the CFD as a pattern recognition problem for classifi-
cation, which simply annotates the compound fault signal
with another independent label to train the CFD model.
That is to say, the supervised learning-based method is the
same as the IFD method, which has been widely investi-
gated in the past decade. For example, Li et al. gave a
detailed introduction to the general procedure of the IFD
method, as shown in Fig. 7 [3], in which the crucial step is
the model construction. According to the artificial intelli-
gence algorithms used to construct the diagnosis model, the
supervised learning-based method can be further divided
into two subcategories: shallow learning-based method,
deep learning-based method, and multilabel learning-based
method.

The shallow learning-based method typically utilizes
the traditional machine learning algorithms, such as k-
Nearest Neighbor (k-NN) [91–94], probabilistic graphical
model (PGM) [95,96], support vector machine (SVM) [97–
102], and artificial neural network [103–107], to construct
the CFD model. For instance, Li and Yan et al. utilized
signal processing algorithms including WT and Empirical
model decomposition to extract the fault features from the
nonstationary vibration signals, and then put them into the
fuzzy k-NN to make a fault identification of gearbox with
multiple faults [91]. Li et al. proposed a dimension-reduc-
tion algorithm, named Nearest and Farthest Distance

Preserving Projection (NFDPP), based on the core idea
of k-NN, of which the effectiveness is validated by a
locomotive bearing dataset with compound faults [92].
Taking the non-Naïve Bayesian model (one paradigm of
PGM) as the classifier, Asr et al. proposed a CFD method
for automobile gearboxes [96]. As a popular pattern recog-
nition algorithm, a series of SVM-based IFD methods were
proposed by Chen et al. and applied to diagnose locomotive
roller bearings with compound faults, in which the experi-
mental results demonstrated that these methods are
more effective and superior to other compared methods
[100,101]. Similarly, Lei et al. proposed many hybrid IFD
methods based on the Adaptive Neurofuzzy Inference
System (ANFIS) and the Wavelet Neural Network, which
improved the accuracy and reliability of fault diagnosis
[103,104]. Wu et al. combined the ensemble extreme
learning machine (ELM) network with binary classifiers
to develop a CFDmethod for a two-stage gearbox. Through
the above discussions, it can be found that, compared with
the failure mechanism-based CFD method and the signal
processing-based CFD method, the shallow learning-based
CFD method can reduce the dependence on the experience
and knowledge of experts, and show its advantages in
compound fault classification. However, these methods
based on the shallow learning algorithm suffer from the
limitations of the poor abilities in feature learning and
extraction.

Compared with the shallow learning-based method, the
major difference is that the deep learning-based method
aims to bridge the relationship between the health condition
and the monitoring data in an end-to-end manner by
utilizing hierarchical architectures to learn discriminative
and fault-related representations from raw vibration signals.
Various deep learning algorithms and its variant were
developed by scholars for intelligent CFD, such as deep
belief networks (DBNs) [108–112], sparse auto-encoder
(SAE) [113–117], CNNs [118–126], long short-term mem-
ory (LSTM) neural networks [127], capsule networks
(CapsNet) [128], and others [129]. Examples include but
are not limited as follows: Shao et al. proposed various IFD
methods for rolling bearings with compound faults, in
which the DBNs algorithms are combined with other
techniques like dual-tree complex wavelet packet and
compressed sensing to enhance the performance of the
proposed diagnosis model [108,109]; Xiang et al. proposed
a multiple fault detection method based on DBNs and

Fig. 7. General procedure of the intelligent fault diagnosis [3].
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applied it for axial piston pumps [110]; Wang et al. pro-
posed a CFD method for analog circuit system, in which
multiple ELM with AE is used to automatically extract the
fault-related representations from raw signals [117]; Com-
bining with other algorithms, such as fast spectral kurtosis
(FSK), SVMs, and data fusion techniques, CNNs have also
been developed by many scholars and applied to CFD of
rotating machinery [118–126]; Ma and Wang utilized
several techniques including adaptive chirp model decom-
position, Gini index fusion, and LSTM to develop a CFD
method, which obtained a fault diagnosis model with better
performance on the CFD of bearings [127]; Chen et al.
proposed a fast robust CapsNet to detect the compound fault
of ventilators and water pumps [128]. Although the meth-
ods reviewed above have brought many successful applica-
tions for rotating machinery, the obvious limitation is that
these methods are simply viewed the compound fault as a
unique fault that is unrelated to its corresponding single
faults for fault classification. That is to say, the relationship
between the compound fault and its corresponding single
faults is overlooked in these methods.

To deal with such a limitation, the multilabel learning-
based method was introduced to make a CFD with the
multilabel outputting mechanism. Different from the shal-
low learning-based and deep-learning-based methods
which annotate the compound fault samples with only
one label, the multilabel learning-based method typically
annotate the compound fault samples with two or more
labels for supervised learning. Therefore, the compound
fault can be decoupled into multiple single faults by the
diagnosis model via outputting multiple labels. In recent
years, the multilabel learning-based method has attracted
increasing attention from related scholars, and various
approaches have been proposed based on such ideas
[130–135]. For instance, Huang et al. developed a CFD
framework by combining deep CNNs with a multilabel
classifier which can output single or multiple labels for a

testing sample [130]. The essence of the multilabel classifier
is to use the Sigmoid function to substitute the Softmax
function as the activation function in the last classification
layer, in doing so, the output probabilities of each classifi-
cation neuron are independent, and the number of output
labels can be determined by a customized principle. Fol-
lowing such insights, there are many similar methods that
have been developed and investigated for the CFD of
rotating machinery [131–135]. It can be concluded from
the publications that the effectiveness of the CFD method
based on multilabel learning has been validated. However,
these methods have an obvious limitation: the training
process of these models still relies on the labeled compound
fault data, which is a difficult requirement for developing an
effective solution in practical applications. It should also be
highlighted that if the compound fault data are not available
or not labeled, the supervised learning-based CFD method
will be out of work and lose the ability of CFD.

2) UNSUPERVISED LEARNING-BASED METHOD. The
essence of the unsupervised learning-based method is to
decouple the compound fault into multiple single faults
without the compound fault data, which means that the CFD
model has the ability that it can leverage the knowledge
learned from the single fault data to diagnose the compound
fault. As illustrated in Fig. 8, the unsupervised learning-
based method aims to imitate the phenomenon of humans
that the overlapping entities can be easily separated into the
corresponding entities by capturing the key features of each
individual entity [3]. However, it is still a challenging task
to implement such an “easy” task for artificial intelligence-
based CFD methods. Fortunately, a few attempts have been
made at implementing CFD under the scenario when the
compound fault data are unavailable during the model
training, and this research direction has attracted more
and more attention from academic and industrial scholars
[136–145].

Fig. 8. Illustration of the motivation behind the compound fault decoupling [3].
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The first successful attempt to decouple the compound
fault only with the single fault data is the deep decoupling
convolutional neural network (DDCNN), which is pro-
posed by Huang et al. in 2018 [136]. In the DDCNN,
several capsule layers are used to construct a decoupling
classifier as a substitute for the traditional Softmax classi-
fier, in which the compound fault samples can be decoupled
into multiple single faults with multiple labels. The experi-
ments carried out on an automobile transmission have
demonstrated the effectiveness of CFD in an unsupervised
manner. With the same goal, Dibaj et al. proposed a CFD
method based on a hybrid fine-tuned VMD and CNN,
which were applied to monitor a gearbox with compound
faults [138]. Without the compound fault samples as train-
ing data, an intelligent CFD method based on zero-shot
learning was proposed by Xing et al. and applied to detect
the unseen compound fault of rotating machinery [139]. It
can be drawn a conclusion from the above discussions that
these methods have made a large step in CFD since they
eliminate the dependency on the completeness of com-
pound fault data. However, the diagnosis performance of
the aforementioned methods still suffers from varying
working conditions of rotating machinery, which has hin-
dered the wide application in practical industry.

Inspired by the core idea of transfer learning which can
enhance the generalization performance of AI models by
learning the general knowledge from the different but related
domains, Huang et al. further proposed several unsupervised
intelligent CFD methods based on DTL algorithms, such as
Transferable CapsNet (TCN) and deep adversarial capsule
network (DACN), in which the generalization performance of
CFDmodel has been significantly improved under varying or
unseen working conditions [140,141]. Specifically, the core
idea of TCN is to embed the transfer learning techniques into
the CFDmodel (such as DDCNN), which has better generali-
zation performance than DDCNN under varying working
conditions [140]. Introducing the adversarial learning tech-
nique to train the CFD model, the DACN further endows the
CFD model with the ability to intelligent decouple the
compound fault across unseen working conditions [141].
More details about CFD based on DTL algorithms can be
found in [3]. Besides the DTL-based algorithms, variants of
other algorithms, such as Zero-shot Learning [142] and
CapsNet [143], have also been developed for CFD of rotating
machinery including bearings and rotate vector (RV) reducer.

Through the above discussions, in recent years, engi-
neers and scholars have made various successful attempts
and applications for CFD of rotating machinery based on
artificial intelligent algorithms. With their efforts, the gener-
alization performance of the CFD model has been signifi-
cantly enhanced, and the dependency on the compound fault
data completeness has also been eliminated by introducing
unsupervised learning algorithms. However, it can be easily
found from the historical publication that fewworks focus on
the third compound fault introduced in Section II, Part A, that
is, the compound fault occurred in a complex mechanical
system with three or more single faults. Such aspects should
be placed more effort by scholars in the future.

IV. FUTURE CHALLENGES AND
OPPORTUNITIES

Despite the fact that, in the past decades, scholars and
engineers from both academia and industry have brought

enormous successful attempts for CFD of rotating machin-
ery, how to make an accurate and reliable CFD remains a
significant and challenging task in the field of fault diagno-
sis, especially in practical industry applications [144]. This
is mainly because the historical CFDmethod lags far behind
the demands of intelligent maintenance for complex
machinery in the modern manufacturing industry, where
the reliability and interpretability of the diagnosis model are
placed more emphasis on. Therefore, after overviewing the
state-of-the-art of implementing the CFD for rotating
machinery, the challenges that need to be addressed and
the opportunities that would be promising in CFD are
outlined here for opening discussion.

A. FAILURE MECHANISM MODELING FOR
COMPOUND FAULT OF COMPLEX
MECHANICAL SYSTEMS

Understanding the physical failure mechanisms of com-
pound fault occurrence constitutes the cornerstone of devel-
oping effective and accurate fault diagnosis solutions for
rotating machinery. Admittedly, the failure mechanism-
based CFD method overviewed in Section III, Part A is
aiming at fulfilling this essential goal and also provides
many basic rules or laws to reveal the root causes of the
compound fault’s occurrence and evolution. Nevertheless,
due to the complexity of mechanical equipment in structure,
material, function, environment, and other factors, it is hard
to establish a precise and reliable failure model for a
complex mechanical system, let alone with a compound
fault. As a result, the failure mechanism-based CFDmethod
focuses less on the investigation of compound faults for
complex mechanical systems. Therefore, it would be better
to place more effort into failure mechanism modeling for
the compound fault of complex mechanical systems. For-
tunately, in recent years, the technology of the digital twin,
which aims to build a dynamic virtual copy of a physical
system, process, or environment that behaves identically to
its real-world counterpart, has attracted growing attention
from researchers in the related field [145]. We believe that,
in the near future, it would be a promising tool to solve the
problems mentioned above.

B. CAPACITY IMPROVEMENT OF SIGNAL
PROCESSING ALGORITHM

The signal processing-based CFD method has been proven
to be effective for separating and extracting the discrimina-
tive features of each independent fault component from the
compound fault signals in many practical industry applica-
tions. However, it should be highlighted that there is no
general signal processing algorithm that can be used for all
the scenarios of CFD because all the signal processing
methods aforementioned have their own advantages as well
as disadvantages. Furthermore, the diagnosis results of the
signal processing-based CFD method typically require the
experts or engineers to make a post-decision based on case-
dependent knowledge. Therefore, it is important and nec-
essary to investigate more powerful signal processing
algorithms and improve their capacity on all the aspects
that are required in implementing the CFD, such as the
performance of signal denoising, the detection accuracy of
weak faults, and the decoupling ability of more complex
compound fault signals. With the progress of sensing,
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measurement, and failure mechanism technologies, the
signal processing-based method will remain one of the
hot topics in the next decades.

C. INTERPRETABILITY OF INTELLIGENT
CFD MODEL

It is an acknowledged truth that scholars have brought
enormous and phenomenal breakthroughs for all aspects
of CFD based on artificial intelligent algorithms. However,
the bottleneck of the artificial intelligence-based CFD
method is that these algorithms are perceived as an unin-
terpretable black technique, lack theoretical evidence to
convince the machine’s operators, and cannot work repeat-
edly and consistently in long-term manufacturing produc-
tion. It is still difficult to understand or explain how and why
the final decision is made by these intelligent models [146].
Importantly, in terms of the unsupervised learning-based
CFD methods, few studies focus on the interpretability of
how the compound fault can be decoupled into multiple
single faults by only using the single fault data to train the
CFD model. Thereby, lacking clear interpretability be-
comes the biggest obstacle to developing a CFD solution
for practical application. Fortunately, researchers from both
the field of computer science and the field of fault diagnosis
have placed more effort into dealing with such challenges.
How to design an interpretable CFD method and increase
the transparency of its decision process is also one of the
future trends in the field of fault diagnosis.

D. MORE INTELLIGENT CFD METHOD

Although the current IFD model can perform many chal-
lenging tasks, such as compound fault decoupling and
emerging fault detection, and its performance is exceeded
the human level in some aspects [147,148], there are still
many abilities that the IFD model cannot perform. It is
difficult for a majority of existing artificial intelligent
algorithms to perform some tasks that are easy for humans,
such as learning from a small set of instances, inferring or
guessing for something, and implementing multitasks.
Compared with algorithm intelligence, human intelligence
is more reliable when encounters with high uncertainty and
low predictability. Following such a perspective, we are
confident that developing the CFD method with more
adaptable and powerful intelligence will be an irresistible
trend in the future, which will endow the intelligent model
with the ability to imitate human beings’ behaviors.

V. CONCLUSIONS
In this review article, a comprehensive survey on CFD for
rotating machinery was conducted to provide a systematic
guideline for potential readers and seasoned researchers.
The importance of implementing CFD for rotating machin-
ery was first highlighted at the beginning of this survey. The
backgrounds of CFD including the related definitions and
taxonomy of CFD were introduced to facilitate the follow-
ing discussion on the state-of-the-art applications. The three
groups of CFD applications, as well as their corresponding
subcategories, were fully explored and discussed from the
perspective of how the compound fault can be separated or
decoupled, and their advantages and disadvantages were
also concluded. Finally, the challenges and opportunities of

implementing CFD, particularly for failure mechanism
modeling for the compound fault of complex mechanical
systems, capacity improvement of signal processing algo-
rithm, interpretability of intelligent CFD model, and more
intelligent CFD method, are outlined to open up some
future research directions for researchers in the field of
fault diagnosis.
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