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Abstract: In machining processes, chatter vibrations are always regarded as one of the major limitations for
production quality and efficiency. Accurate and timely monitoring of chatter is helpful to maintain stable
machining operations. At present, most chatter monitoring methods are based on the energy level at specified
chatter frequencies or frequency bands. However, the spectral features of chatter could change during machining
operations due to complexity and time-varying dynamics of the physical machining process. The purpose of this
paper is to investigate the time-varying chatter features in turning of thin-walled tubular workpieces from the
perspective of entropy. The airborne acoustics was selected as the source of information for machining condition
monitoring. First, corresponding to the distinguishing surface topographies relevant to machining conditions, the
features of the sound signal emitted during turning of the thin-walled cylindrical workpieces were extracted using
the spectral analysis and wavelet packet transform, respectively. It was shown that the dominant vibration
frequency as well as the energy distribution could shift with the transition of the machining status. After that, two
relative entropy indicators based on the spectrum and the wavelet packet energy were constructed to identify
chattering events in turning of the thin-walled tubes. The experimental results demonstrate that the proposed
indicators could accurately reflect the transition of machining conditions with high sensitivity and robustness in
comparison with the traditional FFT-based methods. The achievement of this study lays the foundations of the
online chatter monitoring and control technique for turning of the thin-walled tubular workpieces.
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I. INTRODUCTION
During cutting of flexible parts like thin-walled flanges or
long slender shafts, machining chatter vibrations are prone
to occurrence due to the insufficient stiffness of machine
tool-workpiece systems or the unreasonable setting of
cutting parameters [1,2]. Chatter is a self-excited vibration
between the tool and the workpiece in machining processes,
leading to poor surface quality and low production effi-
ciency. Therefore, it is of great significance to monitor the
machining condition for identifying the occurrence of
chatter accurately and quickly, thereby ensuring the stabil-
ity of the process.

The procedure for chatter detection mainly includes
three aspects: signal acquisition, feature extraction, and
state recognition [3]. The widely used sources of informa-
tion on chatter are the process variables affected by the
material removal progression. The most frequently mea-
sured signals are force [4], vibration [5–7], acoustics [8,9],
current, or power [10,11]. Compared to other signals,
cutting forces were regarded as more suitable for chatter
detection, because this physical variable can directly char-
acterize the dynamic interaction between the tool and the
workpiece. Cardi et al. [4] proposed the phase difference
between the cutting force and the workpiece velocity to
identify the onset of chatter in turning operations. Lu et al.
[5] developed a comprehensive indicator for chatter moni-
toring when turning a long slender shaft, which integrates

the time domain variance and spectral features of accelera-
tion signals. Li et al. [7] developed a novel three-axis
wireless on-rotor acceleration sensing system for monitor-
ing the turning process. Delio et al. [8] adopted airborne
acoustics to detect milling chatter and proved that a micro-
phone could provide proper and consistent signals for
reliable chatter detection and control in comparison with
dynamometers, displacement sensors, and accelerometers.
In addition, Lamraoui et al. [10] used current signals to
monitor chatter during milling operations, in which the
original signal was processed by data mining techniques to
amplify and extract chatter features.

In terms of signal processing for chatter detection, the
methods were largely divided into two scopes including the
time domain analysis and the time-frequency domain analysis
[1–3]. Ye et al. [12] proposed vibration waveform irregular
coefficients according to the ratio of the standard deviation to
the mean to predict the early machining chatter. Time-fre-
quency analysis methods were also widely used in the feature
extraction of chatter vibrations, which consist of the short-time
Fourier transform [13], wavelet transform [14,15], and empir-
ical mode decomposition [16]. Liu et al. [15] introduced the
normalized spectral entropy and logarithmic spectral distance
using cross-wavelet transform for grinding chatter identifica-
tion. The results showed that the proposed indicators could
perform self-adaptive monitoring for chatter. With the devel-
opment of artificial intelligence, several classification models
based onmachining learning have also been applied for chatter
recognition, such as the neural network models [17], support
vector machine models [18], and hiddenMarkov models [19].Corresponding author: Kaibo Lu (e-mail: lvkaibo@tyut.edu.cn).

© The Author(s) 2023. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 61

Journal of Dynamics, Monitoring and Diagnostics, 2023, 2, 61-68
https://doi.org/10.37965/jdmd.2023.155 RESEARCH ARTICLE

mailto:lvkaibo@tyut.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jdmd.2023.155


In summary, a number of productive outcomes have
been achieved in the area of machining chatter monitoring.
However, the issue of turning of the challenging thin-walled
tubular workpieces has rarely been involved. Compared
with solid structures, the dynamic characteristics of thin-
walled workpieces seem to be more sensitive to the removal
of material during cutting [20–22]. In addition, the thin-
walled tubular workpiece subjected to external forces gen-
erally vibrates in combination of the beam and shell modes
[23]. These differences make the response of the vibratory
thin-walled tubular structure time-varying and complex,
leading to a difficulty in judging the machining condition
accurately.

In this paper, we introduce the relative entropy to deal
with the complexity of machining vibrations when turning a
thin-walled tubular workpiece so as to characterize the
changing condition of the process. Two relative entropy
indicators for condition monitoring are proposed using the
wavelet packet energy and the spectrum of vibration signals
generated in cutting operations. Finally, machining trials of
thin-walled tubes were conducted to verify the effectiveness
of the developed entropy indicators for chatter detection.

II. RELATIVE ENTROPY
The relative entropy is an asymmetric measure of the
difference between two probability distributions, which
can be used to measure similarity between two random
distributions. The greater the relative entropy value, the
larger the difference between the two random distributions;
on the contrary, the smaller the value, the closer the two
random distributions; if and only if two random distribu-
tions are exactly the same, the relative entropy value
equals zero.

if PðxÞ and QðxÞ are two probability distributions on a
random variable x, where PðxÞ is the true distribution, and
QðxÞ is the ideal distribution or fitted distribution, then in
the case of discrete and continuous random variables, the
relative entropy of PðxÞ with respect to QðxÞ is defined
respectively as:

KLðPkQÞ =
X

PðxÞ log PðxÞ
QðxÞ (1)

KLðPkQÞ =
ð
PðxÞ log PðxÞ

QðxÞdx (2)

A. RELATIVE WAVELET PACKET ENERGY
ENTROPY

As an extension of the wavelet transform, the wavelet
packet transform (WPT) can decompose the signal in
both the low-frequency band and the high-frequency
band with better time-frequency local analysis. A schematic
diagram of the wavelet packet decomposition is shown
in Fig. 1.

In the WPT method for m-level decomposition, the
original signal can be divided into 2m frequency bands.
Because the sequence of each frequency band after wavelet
packet decomposition is not strictly arranged according to
node numbers, after reordering the frequency range at level
m and band i is

½ði − 1Þ2−mf , i · 2−mf � i = 1,2, : : : 2m (3)

where f is the Nyquist frequency of the signal.
The wavelet packet coefficient corresponding to the

frequency band is defined as

xim =
n
ci,j, j = 1,2, : : :K

o
i = 1,2, : : : 2m (4)

where K is the total number of discrete points of the signal
wavelet packet transformation in this frequency band. Thus,
the energy of node i at level m has

Em,i =
XK
j=1

jci,jj2 (5)

The total energy E of all frequency bands can be
expressed as

E =
X2m
i=1

Em,i (6)

The ratio of each frequency band energy Em,i to the
total energy E is defined as the proportion of energy, which
is expressed as

pi =
Em,i

E
(7)

The measured signal xlðtÞ is decomposed into m levels,
and the proportion of energy in each frequency band can be
calculated. The signal energy probability distribution is
Pl = fpl1, pl2, · · · , pl2mg. Meanwhile, the energy probability
distribution of the signal generated during stable cutting is
taken as the reference distribution Pr = fpr1, pr2, · · · pr2mg.

Fig. 1. Schematic diagram of wavelet packet decomposition.
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According to Eq. (1), the relative entropy of wavelet
packet energy is defined as

KLðPlkPrÞ =
X2m
i=1

pli log
pli
pri

(8)

where pli is the energy ratio of the ith band at the lth time
segment, and pri is the energy proportion of the ith band for
the reference distribution.

B. RELATIVE SPECTRAL ENTROPY

The measured signal xlðtÞ with the length of 2L is trans-
formed using the Fast Fourier Transform (FFT) to obtain its
spectrum. The number of spectral lines is L. After normal-
izing the amplitude corresponding to each line to calculate
the proportion of amplitude, we can obtain the spectral
probability distribution Al = fal1, al2, · · · , alLg. Further-
more, the spectral probability distribution of the stable
cutting signal is also regarded as the reference distribution
Ar = far1, ar2, · · · arLg.

According to Eq. (1), the relative entropy of FFT
spectrum is defined as

KLðAlkArÞ =
XL
i=1

ali log
ali
ari

(9)

where ali is the proportion of the amplitude of the ith spectral
line at the lth time segment, and ari is the proportion of
amplitude with respect to the ith spectral line for the
reference distribution.

III. EXPERIMENTAL SETUP AND
MODAL MEASUREMENT

A. EXPERIMENTAL SETUP

In order to verify the effectiveness of the relative entropy for
chatter identification in machining of thin-walled tubular
workpieces, experimental tests were carried out on a CA6140
lathe, as shown in Fig. 2. Two typical thin-walled tubes with
different geometric dimensions were chosen and presented
for comparison. During machining, the thin-walled cylinder
was fixed at one end and free at the other end, and the feed
direction of the tool was from the chuck side to the free end.
The clamping length by the three-jaw chuck was 40 mm.
The type of the tool holder was SDNCN25 * 25M11, and
the corresponding tool insert was DCMT11T304. The
workpiece material was AISI 1,040. An accelerometer was

attached to the back of the tool and a sound pressure sensor
supported by a bracket was placed next to the lathe. The
sample rate of the data acquisition (DAQ) was 10.24 kHz.
The main cutting parameters for the experiments are sum-
marized in Table I.

B. MODAL MEASUREMENTS

The modal measurements were conducted before the
cutting tests. Compared with the rigidity of the tool, the
cantilevered tube was regarded as the only compliant
component in the machining system. Figure 3 presents
the frequency response functions (FRFs) of the two work-
pieces. It can be seen that for Tube A, there are two peaks at
577 Hz and 1113 Hz in the spectrum, which correspond to
the first two Eigen frequencies of the thin-walled work-
piece; for Tube B, the first three natural frequencies are
601.3 Hz, 976.3 Hz, and 1,363 Hz, respectively.

IV. RESULTS AND DISCUSSION
A. PRELIMINARY ANALYSIS OF THE
SIGNALS

Figure 4 shows the comparison of the airborne acoustics
and acceleration generated during cutting. It can be seen
that when chatter occurred, the amplitude of the acoustic
signal varied more significantly than that of the acceleration
signal. Moreover, as shown in Fig. 5, the time-frequency
spectrum of the acceleration was obviously complex in the
high-frequency band (red dotted box), indicating that the
accelerometer was more sensitive to the high-frequency
vibration.

Accelerometer

Chuck

Cutting tool

Workpiece

Sound 
pressure 
sensor

Fig. 2. Experimental layout for machining tests.

Table I. Main cutting parameters in the experiments

Tube A B

Length (mm) 195 160

Wall thickness (mm) 1.5 1.3

Inner diameter (mm) 111 130

Spindle rotation speed (rpm) 740 583

Depth of cut (mm) 0.8 0.6

Feed rate (mm/rev) 0.1 0.1

577Hz 601.3Hz

1363Hz

976.3Hz

1113Hz

Fig. 3. Measured FRFs of the two workpieces.
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This complexity in spectrum could distract the identi-
fication of chatter frequency. When compared with accel-
erometers, the sound sensors also have the advantages of
easy installation and remote non-contact measurement.
Thus, the acoustic signal was selected for processing and
analysis in the subsequent sections.

Observing the acoustic waveform and its spectrum, we
can see that at the beginning of cutting the amplitude of
sound was small and the cutting process was stable; after a
moment, the amplitude began to increase and fluctuate,
indicating the process became unstable. This transition is
because the compliance of the thin-walled workpiece near
its free end is higher than that near its clamped side. When
chatter happened, the high-frequency components domi-
nated in the spectrum. The dominant vibration frequency
could be decreased gradually as the cutting progressed, as
shown in Fig. 5b.

B. CHATTER FEATURE EXTRACTION

According to the machined patterns as well as the surface
roughness measurements of Tube A, three different zones
were divided, including the stable cutting, slight chatter,
and severe chatter zones, as shown in Fig. 6a. Correspond-
ingly, the sound waveform as well as its spectrum along the
cutting path exhibited different features, as seen in Fig. 6.

In order to determine the distribution of the spectrum
and the wavelet packet energy in different machining
conditions, the segmented data from each condition were

(a) (b)

Fig. 4. Comparison of the sound and acceleration signals in the time domain. (a) Tube A. (b) Tube B.

Fig. 5. Comparison of the time-frequency analysis of the acceleration (a) and the sound (b) for Tube A.
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(c)

Fig. 6. Machined surface quality and signal features along the
cutting path of Tube A. (a) Surface textures. (b) Sound signals.
(c) Spectra of the sound.
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processed for comparison. The corresponding cutting posi-
tions along the axis of the workpiece were at S1 (3.7–
4.9 mm), S2 (49.3–50.6 mm), and S3 (98.7–99.9 mm),
respectively. For the wavelet packet energy calculation, the
level of WPT was set to be 5, and the interval of the
frequency band was 160 Hz. The signal processing results
are presented and compared in Figs. 7–9.

At the stable cutting area S1, the analysis results
through FFT and WPT are shown in Fig. 7. It is seen
that the dominant frequency with the largest amplitude in
the spectrum was 36.88 Hz, which was about three times of

the spindle rotational frequency. Meanwhile, the energy
distribution was concentrated at the wavelet packet node 1
with the frequency range of 0–160 Hz.

At the slight chatter area S2, the signal processing
results using FFT and WPT are shown in Fig. 8. As seen in
Fig. 8(b), the dominant frequency with the largest ampli-
tude in the spectrum was around 664.5 Hz, which is a little
higher than the first natural frequency of the workpiece
shown in Fig. 3. Besides, there were other frequency
components such as the harmonics of the dominant chatter
frequency and the rotational frequency. Figure 8c shows

(a) (b) (c)
36.88Hz

617.6Hz

Fig. 7. Sound waveform (a), spectral analysis (b), and wavelet packet energy distribution (c) at S1.

(a) (b) (c)

36.88Hz

664.5Hz

1292Hz

Fig. 8. Sound waveform (a), spectral analysis (b), and wavelet packet energy distribution (c) at S2.

(a) (b) (c)

36.88Hz

1069Hz 2138Hz

Fig. 9. Sound waveform (a), spectral analysis (b), and wavelet packet energy distribution (c) at S3.
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that the corresponding energy distribution was concentrated
at the wavelet packet nodes 4 and 5 with the frequency
range of 480–800 Hz.

At the severe chatter area S3, the analysis results
are shown in Fig. 9. It is interesting to note that the
dominant chatter frequency jumped from 664.5 Hz to
around 1,069 Hz accompanied by its harmonics, which
is close to the second natural frequency of the workpiece
shown in Fig. 3. Apparently, the chatter detection methods
based on scanning for chatter frequencies in a specified
band, such as references [14–16], could be unreliable due to
the spectral shift. Besides, the harmonics of the dominant
chatter frequency and the rotational frequency also
occurred. Figure 9c shows that the energy distribution
was concentrated at nodes of 7–8 corresponding to the
frequency range of 960–1280 Hz and at node 14 with the
frequency range of 2080–2140 Hz.

It is concluded that the dominant vibration frequency as
well as the energy distribution shifted with the transition of
the machining status during machining of Tube A, leaving
distinct chatter marks on the machined surface. The physi-
cal mechanism behind these phenomena could be that
the moving contact point between the cutting tool and
the workpiece in operation leads to time-varying and posi-
tion-dependent dynamics of the machining system, which
critically determines the chatter stability of machining
processes [24–26].

For turning of Tube B, the surface quality and the
signal processing results are shown in Fig. 10, in which the
chatter patterns are similar to the results in [27,28]. In
comparison with Tube A case, it is seen that only one
kind of chatter patterns left on the machined surface and the
chatter frequency shift phenomenon did not happen in this
case. The reason probably is that under this chattering
condition, the machined tube could always vibrate in its

solo weakest mode which held the minimum of the real part
of the receptance frequency response function.

C. RELATIVE ENTROPY RESULTS

In this section, the proposed two entropy indicators, includ-
ing the relative entropy of the wavelet packet energy and the
spectrum, were tested for detection of the time-varying
chattering status as depicted above. One block of data
acquired in the initial period of stable cutting was taken
as the benchmark. The difference between the target prob-
ability distribution and the reference distribution was then
calculated to characterize the fluctuations of cutting con-
ditions in the subsequent time. For signal processing, the
overlap processing technique was used to speed up the
calculation. The number of samples in the sliding frame for
processing was 1,280, and the overlap ratio was set to 50%.

The relative entropy with respect to the cutting position
along the length of the workpiece was compared with the
traditional time-frequency analysis result, as shown in
Figs. 11, 12, where the colorbars facing the right axes
display the amplitude of the chattering frequency compo-
nent. It is readily seen that during the stable cutting the
relative entropy was low, whereas the value was increased
significantly when chatter happened. Especially, at the
location where the dominant vibration frequency shifted,
the corresponding relative entropy showed jumps sensi-
tively at the onset of chatter. In addition, the proposed
relative entropy indicators could trigger an earlier alarm for
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Fig. 10. Machined surface quality and signal features along the
cutting path of Tube B. (a) Surface textures. (b) Sound signals.
(c) Spectra of the sound.

Fig. 11. Comparison of the relative entropy method and the FFT-
based method for chatter detection of Tube A.

Fig. 12. Comparison of the relative entropy method and the FFT-
based method for chatter detection of Tube B.
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chatter monitoring when compared with the traditional
power spectrum (see the enlarged portions in Figs. 11, 12).

As shown in Fig. 11 regarding Tube A, at the stage of
the slight chatter development, the relative entropy indica-
tors using both the wavelet packet energy and the spectrum
of the sound signal nearly remained constant. At the stage of
the severe chatter, however, the two indicators showed
evident fluctuations. The similar scenario can be found
in Fig. 12 regarding Tube B. This indicates that the dynamic
behaviors of the machining system underwent strong time
variation in the period of the severe chatter vibration.

Overall, the proposed relative entropy indicators could
allow the event of machining condition transition to be
identified accurately in turning of the thin-walled tubular
workpieces. Comparatively, the relative entropy of the
wavelet packet energy showed higher sensitivity and
robustness to the chatter shift events.

V. CONCLUSION
This paper presents an experimental investigation on the
vibration features from the perspective of entropy when
turning a thin-walled tubular workpiece. Airborne sound
was chosen as the source of information by means of the
advantages of global sensing measurement and easy instal-
lation of the sound sensors. Considering that the relative
entropy can measure the similarity between the target distri-
bution and the reference distribution, two relative entropy
indicators based on the WPT and Fourier transform were
developed for machining condition monitoring. The exper-
imental results show that the dominant vibration frequency
as well as the energy distribution could shift with the
transition of the machining status during turning of the
thin-wall tubes, resulting in distinguishing topographies on
the machined surface. It is demonstrated that the proposed
relative entropy of spectrum and wavelet packet energy
could detect the event of transition of machining conditions
with higher sensitivity and accuracy in comparison with the
traditional FFT-based method for chatter monitoring. This
investigation lays the foundations of the online chatter
control technique for turning of the thin-walled cylindrical
components.
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