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Abstract: Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations. Convolutional
neural networks (CNNs) have achieved significant breakthroughs in machinery fault diagnosis. However,
complex and varying working conditions can lead to inter-class similarity and intra-class variability in datasets,
making it more challenging for CNNs to learn discriminative features. Furthermore, CNNs are often considered
“black boxes” and lack sufficient interpretability in the fault diagnosis field. To address these issues, this paper
introduces a residual mixed domain attention CNN method, referred to as RMA-CNN. This method comprises
multiple residual mixed domain attention modules (RMAMs), each employing one attention mechanism to
emphasize meaningful features in both time and channel domains. This significantly enhances the network’s
ability to learn fault-related features. Moreover, we conduct an in-depth analysis of the inherent feature learning
mechanism of the attention module RMAM to improve the interpretability of CNNs in fault diagnosis
applications. Experiments conducted on two datasets—a high-speed aeronautical bearing dataset and a motor
bearing dataset—demonstrate that the RMA-CNN achieves remarkable results in diagnostic tasks.
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I. INTRODUCTION
Rolling element bearings are critical mechanical compo-
nents extensively used in various machinery systems, pro-
viding support and reducing friction [1]. Bearing failure can
lead to equipment shutdown or, in severe cases, to equip-
ment damage and casualties [2]. Consequently, ensuring the
reliability and safety of bearings has garnered significant
attention from industry professionals. Real-time fault diag-
nosis of bearings is essential for maintaining the normal
operation of mechanical systems and facilitating the timely
replacement of damaged bearing components.

With advancements in the industrial Internet of Things
and sensor equipment, vast amounts of monitoring data can
be collected. Machine learning methods, capable of learn-
ing fault-related features from historical data, have been
extensively researched for bearing fault diagnosis tasks. For
example, Kang et al. [3] proposed a fault diagnosis method
for rolling bearings based on kernel discriminant feature
analysis and support vector machine methods. Baraldi et al.
[4] presented an improved method based on the K-nearest
neighbor for automatically diagnosing bearing faults under
various working conditions. Typically, most methods [5–8]
first employ feature extraction techniques (e.g., empirical
wavelet transform [5] and empirical mode decomposition
[6]) to obtain useful signal features. These features are then
input into a machine learning algorithm [4,8] to classify
bearing health status. However, these feature extraction

techniques often rely on expert knowledge, and their feature
extraction capabilities are limited. Additionally, shallow
machine learning algorithms struggle to handle the complex
non-linear relationships between inputs and outputs.

In recent years, several powerful deep learning algo-
rithms have been proposed [9,10], achieving state-of-the-art
performance in fields such as computer vision [9], speech
recognition [11], and signal processing [12]. Unlike tradi-
tional methods, deep learning can automatically learn and
extract features from raw data, allowing for more efficient
and accurate diagnostic performance. This is especially
advantageous in fault diagnosis, where data can be noisy,
complex, and high-dimensional, and thus, the underlying
patterns and relationships may be highly non-linear and
difficult to capture using traditional methods [13,14]. By
leveraging the power of deep learning, researchers and
practitioners in the fault diagnosis field can achieve more
accurate and reliable diagnoses, leading to improved safety,
reduced downtime, and increased efficiency.

Particularly, the convolution operation of convolu-
tional neural networks (CNNs) [15,16] makes a significant
breakthrough in machinery fault diagnosis [17–25]. Zhao
et al. [26] proposed a novel deep residual shrinkage network
that effectively enhanced the network’s feature extraction
ability. Peng et al. [27] combined multi-scale and multi-
branch concepts with CNN to develop an improved CNN
model for wheelset bearing fault diagnosis tasks. Zhang
et al. [28] introduced a residual learning-based CNN
method for diagnosing faults in rotating machinery. Wen
et al. [29] first transformed the signal into a two-dimen-
sional (2D) image and then employed 2D convolution toCorresponding author: Konstantinos Gryllias (e-mail: konstantinos.
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learn the spatiotemporal features of the signal, ultimately
outputting diagnostic results. All these methods depend on
the powerful feature learning capabilities of CNNs to
capture signal features, utilize fully connected layers to
encode these features, and finally obtain diagnostic
results.

Despite the considerable achievements of CNNs in
mechanical fault diagnosis tasks, they still face challenges,
including:

• Intra-class variability: Bearing operating conditions,
such as loads and speeds, often change in complex
ways. Consequently, the characteristic pattern of the
same fault type may significantly vary in terms of
periodicity and amplitude, making it difficult for the
network to learn the inherent features of that fault type.

• Inter-class similarity: Bearings present different types
of faults, with some fault features being too weak to be
distinguished from normal conditions. Some faults
may have similar vibration responses, causing the
network to misclassify the fault type easily.

• Weak ability to focus on meaningful features: While
CNNs have powerful automatic feature learning abili-
ties, they struggle to focus on meaningful features
instead of noise or other masking signals from various
sources. This makes it challenging to address the intra-
class variability and inter-class similarity problems
faced in bearing fault diagnosis tasks.

• Poor interpretability: As a “black box” for researchers,
it hinders the development of CNN in machinery health
condition monitoring. Interpretability is crucial for
both academic research and industrial applications.

To address the aforementioned limitations, attention-based
deep learning methods have been developed. Specifically,
attention modules, such as channel attention modules or
time attention modules, have been integrated into CNN
networks to enhance their feature learning ability and
improve diagnostic performance. For instance, Wang
et al. [30] improved the noise resistance and bearing
diagnostic ability of a CNN network by incorporating a
channel attention module. Hao et al. [31] introduced
a channel attention module into each scale network of a
multi-scale network to enhance its feature learning ability.
Jia et al. [32] proposed a multi-scale residual attention CNN
for bearing fault diagnosis, where a residual attention
module was introduced into each scale network as well
to improve the model’s performance. However, these stud-
ies did not provide an interpretability analysis to explain the
underlying reasons for the effective performance of atten-
tion modules, especially from the perspective of time and
frequency domain analysis methods.

Therefore, this paper aims to deeply explore the inher-
ent interpretability of the feature learning mechanism of
attention modules. By integrating traditional signal analysis
techniques, we provide an in-depth analysis from a time-
frequency domain perspective to explain how attention
modules contribute to improving bearing diagnostic per-
formance. The proposed residual mixed domain attention
module (RMAM) is designed to effectively enhance the
network’s feature learning ability and strengthen the net-
work’s learning of intra-class variability and inter-class
similarity features. RMAM constructs attention-based fea-
ture learning mechanisms for both time and channel do-
mains. The time domain attention module focuses on

extracting signal components related to signal impulses,
which are more likely to be associated with fault events. The
channel domain attention module focuses on extracting
frequency components related to faults, which can help
capture relevant information even in the presence of varia-
tions due to changes in load and speed. By introducing
mixed attention modules, the network can learn to focus on
the relevant signal components associated with faults, while
ignoring the noise signal components caused by variations
due to load and speed. This reduces the impact of intra-class
variability and inter-class similarity of signals on the
diagnostic performance of the network, ultimately leading
to better performance in bearing fault diagnosis tasks.
The proposed RMAM has a minor increase in parameters.
It can serve as an independent, lightweight network module
to form an arbitrary depth network architecture for various
fault diagnosis tasks. Additionally, RMAM employs
residual connections [9] to optimize the network’s gradient
transfer, enabling the construction of deeper networks.

Furthermore, an RMAM-based CNN architecture
(RMA-CNN) for bearing fault diagnosis is proposed and
evaluated on two popular public bearing datasets, a
High-Speed Aeronautical (HAS) [1] bearing dataset and
a motor bearing dataset [33], achieving competitive
performance.

The proposed attention mechanism can automatically
learn the time domain and channel domain information
most relevant to the task. The relationship between the input
and output of RMAM is deeply explored, discussing and
analyzing the inherent mechanism of RMAM feature learn-
ing. This contributes to the interpretability of CNNs in
mechanical fault diagnosis.

The contributions of this paper are summarized as
follows:
• This paper designs a novel attention mechanism
(RMAM) that can automatically extract fault-related
features from noisy signals and enhance the network’s
discriminative feature learning ability.

• This paper proposes a CNN framework based on
residual mixed domain attention for bearing fault diag-
nosis. This framework is a simple and versatile model
that can be flexibly adapted to various health monitor-
ing tasks.

• This paper provides an in-depth analysis of the feature
learning mechanism of the attention method from a
time-frequency domain perspective.

The paper is organized as follows: Section II describes the
proposed RMA-CNN in detail. Section III verifies the
effectiveness and the superiority of the RMA-CNNmethod.
Section IV discusses the interpretability of the attention
mechanism. Finally, Section V summarizes the conclusions
of the paper.

II. METHODOLOGY
A. METHOD OVERVIEW

The proposed framework for bearing fault diagnosis is
illustrated in Fig. 1. It primarily comprises a bearing vibration
signal acquisition system and an end-to-end condition
monitoring model based on deep learning. Figure 1(a) dis-
plays the test rig utilized for bearing vibration signal acqui-
sition, which essentially consists of a high-speed spindle
driving the rotation of a shaft. An acceleration sensor is
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mounted on the test rig to monitor the bearing’s status
information. Figure 1(b) presents the shaft with its three
bearings. During the bearing experiment, the fault location is
in the B1 bearing.

To achieve precise bearing status monitoring, a novel
RMAM-based CNN architecture is presented, boasting
exceptional discriminative feature learning capabilities
and impressive scalability. As depicted in Fig. 1, the
RMA-CNN takes raw vibration signals as input and deli-
vers an end-to-end assessment of the bearing’s health
condition. Comprised of multiple RMAMs, the architecture
allows for flexible adjustments in the number of RMAMs to
accommodate various dataset types and sizes.

To address the intra-class variability and inter-class
similarity challenges posed by vibration signals, RMAM
introduces both channel domain and time domain attention
mechanisms, as illustrated in Fig. 1(c). These attention
mechanisms work to enhance the network’s ability to learn
meaningful features. A GAP layer and a classification layer
with Softmax are then employed to aggregate the acquired
features and produce diagnostic results. Moreover, our
approach employs traditional signal analysis methods to
examine the feature learning mechanism and the interpret-
ability of the attention mechanisms from both time and
frequency domain perspectives. The following parts pro-
vide a comprehensive introduction to the proposed
RMAM, along with detailed information about the
RMA-CNN.

B. RESIDUAL LEARNING

First, consider a plain CNN block consisting of several
simple convolution layers. Assume that the function map-
ping learned by these layers is defined as H(x). Throughout
the training process, these layers will directly fitH(x). Here,
a basic CNN block can be defined as Eq. (1).

y = Fðx,WÞ (1)

where x and y denote the input and output of the block,
respectively, while F(·) is the function mapping and W
represents the parameters learned by these layers.

The fundamental assumption of residual learning [9] is
that, compared to having the convolution layers directly
learn the complex function H(x), it is more manageable to
learn its residual function, which also simplifies the network
training. In the residual learning architecture, these convo-
lution layers learn the residual function H(x) – x instead of
directly fitting H(x). The definition of residual learning is
illustrated in Eq. (2).

y = Fðx,WÞ þ x (2)

where the function F(·) denotes the residual mapping
learned by these convolution layers. The residual learning
mechanism can be integrated into the network through skip
connections. Although the introduction of residual learning
allows for a deeper network and, consequently, for
enhanced learning capabilities, it is more worthwhile to
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explore lighter and more efficient methods to improve the
model’s discriminative feature learning ability.

C. CHANNEL DOMAIN ATTENTION
LEARNING

In 1D-CNN, the convolution layer takes a 1D time step signal
v(t) as input and uses a set of convolution kernels to convolve
the signal, capturing useful features of the signal, and finally
outputs the obtained feature maps. During network training,
the CNN model optimizes and updates the parameters of the
convolution kernel to improve its feature learning ability,
enabling the network to obtain more useful features. From
the perspective of signal analysis, the convolution kernel can
be defined as a time domain function c(t), and the input
signal is defined as v(t). In this way, the feature learning
process of CNN is a time domain convolution of c(t) and v(t).
Time domain convolution is equivalent to frequency domain
multiplication, which means that the convolution kernel is
essentially a filter that controls which frequency domain
information is retained and which is discarded [34]. Each
convolution layer contains multiple filters to capture different
frequency domain features from the input signal.

However, each layer of a deep CNN contains a large
number of convolutional kernels, and it is usually difficult
to collect enough data to effectively optimize all the kernel
parameters. Among these kernels, some learned features are
useful for diagnosis, while others may be irrelevant. These
irrelevant features may affect the network’s decision-
making. Therefore, it is challenging for CNNs to identify
which kernels are more relevant for diagnosis tasks
since the model treats all kernels with equal importance
weights.

To address this issue, channel domain attention is
proposed. As shown in Fig. 1(c), we assume that the output
features of the second convolution module (in the second
row) of RMAM are M = ½m1,m2, : : : , mC�, where
mi ∈ ℜL×1 denotes the feature on the ith channel. We first
use a GAP layer to aggregate global information in the time
domain, obtaining a channel descriptor z ∈ ℜ1×C for each
channel. The core of channel domain attention is to find out
which channel feature is more important for the fault
diagnosis. Therefore, two non-linear transformation layers
are adopted to obtain the relative importance among differ-
ent channels. The non-linear layers consist of two 1 × 1
convolution layers, which reduce by half of the original
dimension and then restore their original dimensions. The
activation function α maps the resulting vector to a fixed
weight range and outputs the final channel weight vector
ẑ ∈ ℜ1×C: The value ẑ represents the importance of the
corresponding channel feature. Finally, ẑ is employed to
enhance the meaningful channel features inM, as shown in
Eq. (3).

Nz = M ⊗ ẑ = ½m1ẑ1, m2ẑ2, · · · , mCẑC� (3)

where ẑi is the ith element of ẑ, and⊗ denotes the element-
wise multiplication of two matrices.

D. TIME DOMAIN ATTENTION LEARNING

Vibration signals of bearings are time domain signals that
contain periodic and time-correlated information. There is a
strong signal correlation among different time sequences,
and much valuable information is hidden in some signal
sequences. For example, when a local fault occurs to a

bearing, a rolling element passes over the defect each time,
and a periodic impulse is generated and excites the natural
frequencies of the structure. The fault-impulsive signal
components contain more meaningful information than
other signal sequences and can more directly reflect the
inherent properties of the faulty bearing. Therefore, the goal
of the time domain attention learning module is to make the
network pay more attention to important signal sequences
in the time domain.

As illustrated in Fig. 1(c), we redefine M as
M = ½m1, m2, : : : , mL�, where mj ∈ ℜ1×C represents the
feature at the jth point at the time axis. We first use one
1 × 1 convolution layer to aggregate the global information
on the channel domain to generate a time feature vector
q ∈ ℜL×1. The core of the time domain attention is to find
out which signal segment information is more important for
the fault diagnosis. In order to facilitate the calculation of
convolution, a time feature vector q ∈ ℜL×1 is reshaped into
q 0 ∈ ℜ1×L. Similarly, two non-linear layers are used to
encode the relative importance among time signal seg-
ments. Then, the activation function α is adopted to map
the obtained feature vector to a fixed weight range. Through
the reshape operation, the final time weight vector q̂ ∈ ℜL×1

is output. The value of a point in q̂ represents the importance
of the corresponding time signal segments. Finally, q̂ is
used to enhance the meaningful signal segment features in
M, as shown in Eq. (4).

Nt = M ⊗ q̂ = ½m1q̂1, m
2q̂2, · · · , m

Lq̂L� (4)

where q̂j is the jth element of q̂.

E. MIXED DOMAIN ATTENTION

The time domain attention module aims to extract signal
components that are more likely to be related to fault events,
such as signal impulses. On the other hand, the channel
domain attention module focuses on extracting frequency
components that are associated with faults and can capture
relevant information even in the presence of variations due
to changes in load and speed. Therefore, RMAM performs
the channel domain attention and the time domain attention
in parallel and then combines the optimized features. This
mitigates the impact of intra-class variability and inter-class
similarity of signals on the diagnostic performance of the
network, resulting in improved performance in bearing fault
diagnosis tasks.

The structure of RMAM is shown in Fig. 1(c). It shows
that, after two convolution modules, the output features are
input to two attention branches to enhance the network’s
learning ability for meaningful features in both the channel
and the time domains. Finally, the residual learning idea is
introduced to reduce the difficulty of network training. In
most attention-based studies [35,36], the Sigmoid function
is often used as the activation function α because of its good
performance in most cases. However, α is a very important
hyperparameter for an attention module, which identifies
which kind of weight vectors we can obtain. Different
activation functions α will bring different weight vectors,
and thus, the network will show different diagnostic per-
formances. Therefore, this paper discusses and demon-
strates seven classical activation functions, which are
applied to the proposed RMAM to generate different
weight vectors. These activation functions are displayed
in Table I.
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III. EXPERIMENTAL VERIFICATION

In this section, the parameters of the proposed RMAM-
based CNN architecture are elaborated in detail. In addition,
the influence of different activation functions on the model
performance will be discussed, and the effectiveness of
mixed domain attention will be demonstrated on a motor
bearing dataset and an HSA bearing dataset. At last, the
proposed method will be compared with existing deep-
learning-based fault diagnosis methods. Figure 2 presents a
detailed flowchart that comprehensively illustrates the diag-
nosis procedure. The process consists of data normalization
and sliding segmentation, training set and test set partition-
ing using four-fold cross-validation, the RMA-CNN model
training on the training set, and subsequently the trained
model evaluation on the test set.

A. RMAM-BASED CNN ARCHITECTURE

The proposed RMA-CNN is a universal and flexible end-to-
end bearing fault diagnosis architecture. By stacking
RMAM, we can easily construct an RMA-CNN architec-
ture with any depth. In this experiment, we use a lightweight

version (named RMA-CNN-10, which means that there are
only ten learnable layers in the network). For simplicity, in
the following description, we use RMA-CNN to refer to
RMA-CNN-10. The structure and the parameters of RMA-
CNN are shown in Table II.

In order to ensure that the input signal sample contains
a complete signal period, the input dimension of RMA-
CNN-10 is 2048 × 1. RMA-CNN contains a convolution
module and a classification layer, including four RMAMs.
Each convolution module consists of a 1D convolution
layer, a batch normalization layer, and a ReLU activation
function. To obtain features on longer signal segments, we
use the wider convolution kernels in the first and the second
RMAMs, which are 12 × 1 and 6 × 1, respectively. The
number of channels gradually increases from 16 to 256. We
use Maxpooling technology to reduce feature dimensions
while retaining valuable information. In the classification
stage, a GAP layer is used, and a fully connected layer with
a Softmax function is adopted to give final diagnostic
results. In addition, we also constructed a Pure-CNN as a
comparison method for our method. Pure-CNN also has ten
learnable layers, including nine convolutional layers and a

Table I. Seven classical activation functions

Activation function Equation Activation function Equation

Sigmoid SðzÞ = 1
ð1+e−zÞ ReLU f ðzÞ = maxð0,zÞ

Softplus τðzÞ = log logð 1 + ezÞ Softsign τðzÞ = z
ð1+ jzjÞ

Leaky ReLU f ðzÞ = fz, if z > 0 λz, if z ≤ 0 ELU f ðzÞ = fz, if z > 0λðez − 1Þ, if z ≤ 0

Tanh tanhðzÞ = ðez−e−zÞ
ðez+e−zÞ

Fig. 2. The diagnosis flowchart.

Table II. Parameters and structure of RMA-CNN

Layer Type Kernel/Channel Stride/Padding Output

1 RMAM 12 × 1/16 1/yes 2048 × 16

2 Pooling – 4/− 512 × 16

3 RMAM 6 × 1/32 1/yes 512 × 32

4 Pooling – 4/− 128 × 32

5 RMAM 3 × 1/64 1/yes 128 × 64

6 Pooling – 2/− 64 × 64

7 RMAM 3 × 1/128 1/yes 64 × 128

8 Pooling – 2/− 32 × 128

9 Convolution 3 × 1/256 1/yes 32 × 256

10 Pooling – 2/− 16 × 256

9 Global Average Pooling 256

10 Softmax 10
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classification layer. The convolution kernel and other
parameters are completely consistent with the RMA-CNN.

B. COMPUTATIONAL PARAMETERS

In order to obtain more samples to optimize the parameters
of the network, we use the sliding segmentation technique
[18] to increase the number of samples, which is a simple
and fast method often used. The proposed method is written
in Python 3.6 with the deep learning framework Keras and
runs on Ubuntu 16.04 with a GTX 2080 GPU. In order to
make the training process of the network more stable, we
perform a z-score normalization on all samples.

During the training process, the Adam optimizer is
used to optimize the network parameters with a learning rate
of 0.0001 and a batch size equal to 96. Accuracy is used to
evaluate the network’s performance. This metric is widely
used to evaluate the performance of various classification
algorithms and is defined as Eq. (5).

Accuracy =
TPþ TN

TPþ FN þ FPþ TN
× 100% (5)

where FP, FN, TN, and TP refer, respectively, to the
number of false positive samples, false negative samples,
true negative samples, and true positive samples.

To simulate the real operation condition of the bearing
and explore the anti-noise performance of our method, we
add extra Gaussian white noise to raw signals. The defini-
tion of SNRdB is shown as:

SNRdB = 10log10ðPsignal=PnoiseÞ (6)

where Psignal and Pnoise are, respectively, the power of the
signal and the noise.

In this study, we compare the proposed RMA-CNN
with the following five deep learning algorithms. First, we
compare it with the multi-attention 1D-CNN (MA1DCNN)
[35]. In this work, Wang et al. [35] proposed a joint
attention module, constructed the MA1DCNN for the fault
diagnosis of wheelset bearings, and achieved quite good
results. Secondly, we compare RMA-CNN with the deep
learning algorithm based on GRU. GRU is an improved
version of LSTM with better performance and faster train-
ing speed. The GRU architecture has two layers of GRU
units. The length of time steps is 64, and the dimension of
the input size is 32. In addition, we compare RMA-CNN
with three excellent CNN-based fault diagnosis methods.
They are named WDCNN [18], ResCNN [28], and Wen-
CNN [29]. WDCNN and ResCNN are typical 1D CNNs,
which use wide convolution kernels and residual network
structures, respectively. Wen-CNN is a 2D convolution
network structure, which first converts a 1D signal into a
2D image, and then uses a 2D network to learn fault-related
features.

C. CASE 1: MOTOR BEARING FAULT
DIAGNOSIS

1) DATA DESCRIPTION. Firstly, the motor bearing data-
set of CWRU [2] is adopted to verify the effectiveness of the
proposed method. The dataset contains four types of health
conditions, which are healthy, outer race fault, inner race
fault, and ball fault. Each fault condition contains three
levels of fault severity, with faults ranging in diameter from
7 to 21mil (0.18–0.71mm) which were seeded on the drive-
end bearings. These bearings were then run at a constant

speed (approximate motor speeds of 1797–1720 rpm) for
motor loads of 0–3 horsepower. We consider the different
fault severity degrees as independent health conditions;
therefore, this dataset contains 10 types of health conditions
in total. The detailed fault information of the experimental
bearings is shown in Table III, and the labels are respec-
tively C1, C2, C3, : : : , and C10.

To increase the number of samples, a sliding segmen-
tation strategy is employed on the original vibrational
signals, as illustrated in Fig. 3. With a stride size of 256,
each sample is set to a length of 2048, ensuring that each
sample contains at least one complete rotation. This
approach results in a total of 106,024 samples.

To evaluate the model’s performance more compre-
hensively and reliably, the four-fold cross-validation
method is used. Using multiple folds helps reduce the
impact of data variability and noise, improving the accuracy
and reliability of the evaluation. All samples are randomly
divided into four subsets of equal size. Each of the four
subsets is treated as a test set and the remaining three
subsets as a training set. The average accuracy across all
the test sets was recorded as the final accuracy.

2) DISCUSSION ON THE SELECTION OF ACTIVATION
FUNCTIONS. The activation function in RMAM affects
the generation of weight vectors, which in turn affects the
diagnostic performance of the network. In order to discuss
the influence of the activation function on the attention
module, we introduce seven common activation functions
in RMAM and verify the diagnostic performance of these
methods through experiments. These methods are named
RMA-CNN-Tanh, RMA-CNN-Sigmoid, RMA-CNN-
ReLU, RMA-CNN-Leaky ReLU, RMA-CNN-ELU,
RMA-CNN-Softplus, and RMA-CNN-Softsign. In addition,

Table III. Description of the CWRU bearing dataset
information [2]

Fault location Fault size (mil) Load (hp) Label

None 0 0,1,2,3 C1

Ball fault 7 0,1,2,3 C2

Ball fault 14 0,1,2,3 C3

Ball fault 21 0,1,2,3 C4

Inner race fault 7 0,1,2,3 C5

Inner race fault 14 0,1,2,3 C6

Inner race fault 21 0,1,2,3 C7

Outer race fault 7 0,1,2,3 C8

Outer race fault 14 0,1,2,3 C9

Outer race fault 21 0,1,2,3 C10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

-0.15
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Fig. 3. The signal sliding segmentation description.
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in order to more intuitively show the performance improve-
ment brought by the attention mechanism with different
activation functions, we also give the experimental results
of Pure-CNN. Figure 4 shows the mean accuracy of the
four-fold cross-validation for these methods in the case of
SNR =−6dB.

It can be observed that, no matter which activation
function is used, the network with RMAM is significantly
better than the Pure-CNN. For example, Pure-CNN
achieves only 82.95% diagnostic accuracy, while RMA-
CNN-Sigmoid has a diagnostic accuracy of 94.89%, which
is 11.94% higher than the Pure-CNN. This strongly shows
that the RMAM can effectively improve the diagnostic
performance of the network. This RMAM module can
enhance the useful information in the time domain and
the channel domain, and suppress useless information,
thereby improving the network’s ability to learn meaningful
features and resist useless information interference (such as
noise). In addition, it can be found that different activation
functions have an impact on the performance of RMA-
CNN. For example, RMA-CNN obtained a diagnostic
performance of 96.65% when using Softsign and 94.20%
when using Tanh. It is worth noting that Softsign is an
improved version of Tanh. Softsign has a flat curve and a
slower descending derivative, which can provide a more
efficient learning ability than Tanh. In addition, we found
that RMA-CNN also has good diagnostic results when
using Leaky ReLU and ELU. Due to the excellent

performance of Softsign in RMA-CNN, it is adopted in
the following experiments.

Overall, there are no significant differences in diag-
nostic performance among the different activation functions
in the attention module. This indicates that the choice of
activation function may not be the most critical factor
influencing the network’s performance, and other factors
such as model architecture or data representation may have
a more significant impact.

However, there is no universally optimal activation
function for all applications. Instead, it is important to
choose an activation function according to the specific
needs of a specific application. The choice of the activation
function should be guided by the particular problem and the
characteristics of the data being used. For example, ReLU
has become a popular choice due to its simplicity and
computational efficiency, but it may not be suitable for
all applications because of its “dying” tendency when the
input is negative. On the other hand, SELU has been
proven effective for deep neural networks, but it may
require more computational resources and careful initiali-
zation [37].

Therefore, the choice of the activation function should
be based on the trade-off between computational efficiency
and performance, as well as on the specific characteristics of
the application and the dataset used. Our research provides
some insights into the effectiveness of different activation
functions in domain attention modules, but further studies
are required to explore their effectiveness for other applica-
tions and datasets. Experimenting with different activation
functions in the context of a specific problem and selecting
the one that provides the best performance is recommended.

3) EFFECTIVENESS OF MIXED DOMAIN
ATTENTION LEARNING

To further explore the effectiveness of the proposed atten-
tion module, we construct two architectures, named RMA-
CNN-C (only includes the channel domain attention learn-
ing) and RMA-CNN-T (only includes the time domain
attention learning). Under an SNR equal to −6dB, two
networks are compared: Pure-CNN and RMA-CNN.
Figure 5 shows the average accuracy of the four-fold
cross-validation method for each category and the average
accuracy of all fault classes.
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Fig. 4. The experimental results of the network with different
activation functions (SNR =−6dB).

Mean C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Pure-CNN 82.95 99.74 50.43 77.83 51.65 98.72 78.93 95.48 98.11 79.48 99.19
RMA-CNN-C 89.11 99.94 74.15 87.45 65.44 99.38 85.52 98.87 99.09 82.46 98.76
RMA-CNN-T 92.86 99.67 89.88 84.54 77.82 98.49 94.03 96.23 98.96 89.99 98.98
RMA-CNN 96.76 99.98 95.20 92.37 88.01 99.87 99.06 98.81 99.77 94.93 99.66
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Fig. 5. The results for each fault category and their average accuracy (SNR =−6 dB).
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Both domain attention can effectively improve the fault
diagnosis performance of the network. The average accu-
racy of RMA-CNN-C is 89.11%, which is an increase of
6.16% compared with the Pure-CNN, while that of RMA-
CNN-T is 92.86%, which is 9.91% higher than the Pure-
CNN. Additionally, RMA-CNN-T has better performance
than the RMA-CNN-C, due to the particularity of the
vibration signal, for example, the vibration signal of the
faulty bearing has a periodic short-time impulse signal
segment. The time domain attention mechanism can
make the network focus on the learning of the fault impulse
signal segment, so as to obtain more fault-related features.
In addition, RMA-CNN achieved an average accuracy of
96.76%, which is significantly better than that of the RMA-
CNN-C and the RMA-CNN-T. This shows that the time
domain attention and the channel domain attention can
complement and promote each other, and jointly improve
the performance of the network. From the perspective of
diagnosis results in each category, RMA-CNN obtains the
best results among all methods, with the exception of C7.
The diagnosis results of the RMA-CNN-T and the RMA-
CNN-C are better than the Pure-CNN in most categories.

Particularly, our method has the most significant
improvement in the diagnosis of the ball fault (i.e., C2,
C3, and C4). The accuracy of C2 by the RMA-CNN is
95.20%, which is 44.77% higher than that of the Pure-CNN.
These experimental results well illustrate that the proposed
method obtains more meaningful features, thereby allevi-
ating the problems of intra-class variability and inter-class
similarity.

4) COMPARISON WITH EXISTING DEEP-LEARNING-
BASED METHODS. To explore the performance of
RMA-CNN under different noise conditions and verify
its superiority, we compare the RMA-CNN with five
deep learning algorithms and the Pure-CNN under three
noise conditions (0 dB, −4 dB, −6 dB). The average
accuracy of the four-fold cross-validation of these methods
is shown in Fig. 6.

The diagnostic performance of the RMA-CNN is better
than the five comparison methods under the three noise
conditions. When SNR =−6dB, RMA-CNN-10 obtains a
diagnostic accuracy of 96.65%, which is 6.59% higher than
that of the MA1DCNN. This shows that our attention

method is significantly better than that used in the
MA1DCNN. On the other hand, methods with attention
mechanisms, such as RMA-CNN and MA1DCNN, are
better than other methods. Despite the varying speed and
load conditions that result in different vibration signal
distributions for the same fault class in this dataset, the
proposed model demonstrates promising results, indicating
its effectiveness in addressing the limitations of intra-class
variability and inter-class similarity of signals caused by
varying conditions. As a result, the RMA-CNN is capable
of accurately classifying faults even in the presence of
different operating conditions. This highlights the applica-
bility and the effectiveness of the attention mechanism in
the field of fault diagnosis.

In addition, we can see that as the noise increases, the
diagnostic performance of these deep learning models
gradually decreases. For example, the diagnostic accuracy
of the WDCNN dropped from 98.37% to 85.17%. The
diagnostic accuracy of the Wen-CNN dropped from
98.56% to 86.75%. It is worth mentioning that the accuracy
of RMA-CNN has only dropped by 3.17%. This shows that
the RMA-CNN has good anti-noise performance, and it can
extract useful features from noisy signals.

To analyze the recall and the accuracy of the proposed
method more clearly, we give the confusion matrix of the
RMA-CNN and the Pure-CNN when the SNR is −6 dB.
These two confusion matrices are shown in Figs. 7 and 8.
The diagonal is the number of accurate diagnoses for each
category. The bottom row shows the precision of each
category while the rightmost column represents the number
of testing samples of each category. It can be seen from
Table III that the C2–C4 classes have the same fault
location, but the fault severity is different. These three
categories have very serious inter-class similarities, result-
ing in poor classification results. Comparing Figs. 7 and 8,
we find that the proposed RMA-CNN alleviates this prob-
lem very well and improves the diagnostic performance of
each category. To further demonstrate the scalability of the
proposed method, we constructed a new network architec-
ture named RMA-CNN-18. The basic architecture of the
RMA-CNN-18 is consistent with the RMA-CNN. The
difference is that the RMA-CNN-18 has 18 learnable layers.
The experimental results of the RMA-CNN and the
RMA-CNN-18 are shown in Table IV. We found that

0dB −4dB −6dB
RMA-CNN 99.82±0.08 98.75±0.50 96.65±0.23
Pure-CNN 99.04±0.15 91.84±0.60 82.95±1.09

MA1DCNN 98.28±0.36 93.80±0.41 90.06±0.59
GRU 97.46±0.29 90.49±0.75 80.51±1.15
WDCNN 98.37±0.31 91.55±0.39 85.17±0.96
Wen-CNN 98.56±0.37 92.54±0.22 86.75±0.80
ResNN 98.08±0.36 90.99±1.36 85.89±1.22
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88.00
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RMA-CNN Pure-CNN MA1DCNN GRU WDCNN Wen-CNN ResNN

Fig. 6. The experimental results of RMA-CNN, MA1DCNN, GRU, WDCNN, Wen-CNN, and ResCNN under three types of noise
conditions (0 dB, −4 dB, −6 dB).
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the RMA-CNN-18 has better diagnostic performance than
the RMA-CNN, due to the fact that RMA-CNN-18 has
stronger learning ability. This shows that the proposed
method is a universal and flexible end-to-end bearing fault
diagnosis architecture, which can be simply modified to be
applied to different situations and applications.

D. CASE 2: HIGH-SPEED AERONAUTICAL
BEARINGS FAULT DIAGNOSIS

1) DATA DESCRIPTION. Besides the CWRU dataset, we
also considered the Politecnico di Torino rolling bearing
dataset to verify the effectiveness of the proposed method
[1]. The test rig is shown in Fig. 9(a), which consists of a
high-speed spindle, a sledge, a load cell, and a lubrication

line. Two accelerometers are located at the two positions of
the structure shown in Fig. 9(b).

Bearings with different types and dimensions of dam-
age are mounted in position B1. Local faults on the inner
race or on a roller were produced using a Rockwell tool. We
consider the different fault severities as independent health
conditions; thus, there are seven bearing health conditions
H1–H7, as shown in Table V. For every bearing, the
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Recall Test 
Number

C1 1796 3 0 0 0 1 0 0 0 0 99.78% 1800

C2 8 1400 192 580 20 216 19 16 248 1 51.85% 2700

C3 0 69 2206 85 3 129 101 18 81 8 81.70% 2700

C4 21 639 144 1334 3 301 72 48 138 0 49.41% 2700

C5 0 5 0 0 2678 0 7 0 10 0 99.19% 2700

C6 0 68 118 161 17 2175 12 5 98 46 80.56% 2700

C7 1 1 11 18 6 22 2622 4 1 14 97.11% 2700

C8 0 6 2 46 2 10 14 2619 1 0 97.00% 2700

C9 6 244 129 225 12 135 2 2 1941 4 71.89% 2700

C10 0 0 0 0 0 0 2 0 0 2698 99.93% 2700

PRE 98.03% 57.49% 78.73% 54.47% 97.70% 72.77% 91.97% 96.57% 77.08% 97.36% 26100

Fig. 8. The confusion matrix of the Pure-CNN on the CWRU dataset (SNR =−6dB).
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Recall Test 
Number

C1 1799 1 0 0 0 0 0 0 0 0 99.94% 1800

C2 0 2543 3 115 6 5 4 5 19 0 94.19% 2700

C3 0 29 2431 76 0 14 23 0 127 0 90.04% 2700

C4 4 99 52 2319 0 30 22 1 173 0 85.89% 2700

C5 0 0 0 0 2695 1 4 0 0 0 99.81% 2700

C6 0 5 0 2 2 2684 7 0 0 0 99.41% 2700

C7 0 0 5 0 1 9 2677 1 1 6 99.15% 2700

C8 0 0 3 7 0 16 1 2672 0 1 98.96% 2700

C9 0 8 22 74 0 7 2 0 2587 0 95.81% 2700

C10 0 0 0 0 0 2 0 6 0 2692 99.70% 2700

PRE 99.78% 94.71% 96.62% 89.43% 99.67% 96.97% 97.70% 99.52% 88.99% 99.74% 26100

Fig. 7. The confusion matrix of the RMA-CNN on the CWRU dataset (SNR =−6dB).

Table IV. The results of RMA-CNN and RMA-CNN-
18 on the CWRU dataset

Method 0dB −4dB −6dB
RMA-CNN 99.82 ± 0.08 98.75 ± 0.50 96.65 ± 0.23

RMA-CNN-18 99.90 ± 0.01 98.86 ± 0.21 97.01 ± 0.22

(a) (b)

(c)

Fig. 9. The high-speed aeronautical bearings test rig [1]:
(a) general view of the test rig; (b) positions of the
accelerometers and the reference system and (c) the shaft with
its three roller bearings.
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operating load changes from 0 N to 1800 N (0, 1000, 1400,
and 1800 N), and the operating speed also changes from
100 Hz to 500 Hz (100, 200, 300, 400, 500 Hz), as shown in
Table VI. Similarly, the sliding segmentation strategy is
applied with a stride of 256 and a sample length of 2048,
resulting in a total of 118,286 samples. We then used the
four-fold cross-validation method to evaluate the perfor-
mance of our model. The data were randomly divided into
four subsets of equal size, with each subset serving as a test
set while the remaining three were used as training sets. We
conducted four runs and recorded the average accuracy as
the final evaluation metric.

2) COMPARISON WITH EXISTING DEEP-LEARNING-
BASED METHODS. In order to explore the performance
of the RMA-CNN under the high-speed aviation bearing
dataset, we conducted experiments on the dataset with three
different noise levels. As the fault diagnosis of high-speed
aviation bearings is rather difficult, we only consider the

cases when the SNR is 0 dB, 4 dB, and 6 dB. In addition, we
also report the experimental results of five comparison
methods and of the Pure-CNN. The experimental results
of these methods are shown in Fig. 10. Consistent with the
previous experimental results, the RMA-CNN seems to
achieve better performance compared to the other compari-
son methods in all the three noise environments.

First, the diagnostic accuracy of the RMA-CNN is
7.65 %, 3.34 %, and 2.87 % higher than that of the Pure-
CNN under the three noise conditions, respectively. This
demonstrates the effectiveness of the proposed RMAM.
Secondly, the performance of the RMA-CNN is also better
than the MA1DCNN, indicating that the proposed attention
method has a stronger feature optimization ability. Thirdly,
methods with the attention mechanism have better perfor-
mance than other methods, which once again illustrates the
effectiveness of the attention mechanism in the bearing fault
diagnosis task. Similarly, as the noise increases, the perfor-
mance of these deep learning models gradually decreases.
RMA-CNN shows better noise immunity, which also
shows that it can extract useful fault-related information
from noisy (aeronautical bearing) data.

In order to further analyze the performance of the
proposed method in solving the problem of intra-class
variability and inter-class similarity, two confusion matrices
are shown. Figure 11 shows the confusion matrix of the
RMA-CNN on the HSA bearings dataset (SNR = 6 dB).
Figure 12 shows the confusion matrix of the Pure-CNN on

Table V. Description of the HSA bearing dataset information

Defect Dimension Load Speed Label

No defect – 0–1800N 100–500 Hz H1

Diameter of an indentation on the inner ring 450 μm 0–1800N 100–500 Hz H2

Diameter of an indentation on the inner ring 250 μm 0–1800N 100–500 Hz H3

Diameter of an indentation on the inner ring 150 μm 0–1800N 100–500 Hz H4

Diameter of an indentation on a roller 450 μm 0–1800N 100–500 Hz H5

Diameter of an indentation on a roller 250 μm 0–1800N 100–500 Hz H6

Diameter of an indentation on a roller 150 μm 0–1800N 100–500 Hz H7

Table VI. List of the tested load and speed cases

Nominal load (N) Nominal speed (Hz)

0 100 200 300 400 500

1000 100 200 300 400 500

1400 100 200 300 400 /

1800 100 200 300 / /

6dB 4dB 0dB
RMA-CNN 98.71±0.22 96.60±0.89 90.62±0.35
Pure-CNN 95.84±0.10 93.26±0.11 82.97±0.23
MA1DCNN 97.12±0.24 95.89±0.35 87.71±0.65
GRU 96.57±0.14 94.72±0.29 87.32±0.64
WDCNN 94.71±0.84 92.62±0.39 83.02±0.21
Wen-CNN 95.99±0.21 93.24±0.37 80.29±0.35
ResNN 93.08±0.54 89.78±0.73 78.39±0.39
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87.00

92.00
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RMA-CNN Pure-CNN MA1DCNN GRU WDCNN Wen-CNN ResNN

Fig. 10. The experimental results of RMA-CNN, MA1DCNN, GRU, WDCNN, Wen-CNN, and ResCNN under three SNRs.
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the HSA bearings dataset (SNR = 6 dB). The diagonal is the
number of the accurate diagnoses for every category. The
bottom row shows the precision of every category. The
rightmost column represents the number of testing samples
for every category. From Table V, H2–H4 classes have the
same fault location, but the fault severity is different. The
same stands also for H5–H7. As shown in Fig. 12, Pure-
CNN cannot clearly solve the problem of intra-class vari-
ability and inter-class similarity. More specifically, there are
many mispredictions between categories H2–H4. In addi-
tion, there are many mispredictions between H2, H4, and
H6, H7. As shown in Fig. 11, the proposed RMA-CNN
alleviates this problem and effectively improves the perfor-
mance of each category. Similarly, we explored the perfor-
mance of the RMA-CNN-18 on the HSA bearings dataset.
The results are shown in Table VII. The RMA-CNN-18 also
has better performance than the RMA-CNN, which once
again illustrates the flexibility and scalability of the pro-
posed method.

IV. INTERPRETABILITY OF
ATTENTION MECHANISM

In this section, we explore the interpretability of the atten-
tion mechanism on the CWRU dataset. We creatively
introduce time-frequency analysis technology to deeply
analyze the feature learning mechanism of attention and
discuss the interpretability of CNNs in the field of mechan-
ical fault diagnosis.

A. INTERPRETABILITY OF TIME DOMAIN
ATTENTION

To deeply understand the learning mechanism of time
domain attention, we conduct a detailed visualization and
analysis of the weight vector of the time domain attention.
Figure 13 shows the visualization results of four signal
samples (A, B, C, and D). These four samples belong to two
categories: C7 (A, B) and C10 (C, D). The vibration signal
of the bearing is a time domain signal with periodicity and
time correlation information. When a local fault occurs to a
bearing, each time a rolling element passes over the defect, a
periodic impulse is generated exciting natural frequencies
of the structure. The fault-impulsive segment of the vibra-
tion signal contains rich fault-related features. The design
goal of the time domain attention mechanism is to make the
network focus on learning meaningful signal segment

Predicted Label

Tr
ue

L
ab

el

H1 H2 H3 H4 H5 H6 H7 Recall Test 
Number

H1 4141 7 6 42 0 3 0 98.62% 4199

H2 27 4141 0 23 0 6 2 98.62% 4199

H3 1 2 4151 14 0 29 2 98.86% 4199

H4 46 27 3 4069 0 53 1 96.90% 4199

H5 0 5 22 16 4155 1 0 98.95% 4199

H6 2 1 72 62 0 4061 1 96.71% 4199

H7 2 1 5 9 0 2 4180 99.55% 4199

PRE 98.15% 98.97% 97.46% 96.08% 100% 97.74% 99.86% — 29393

Fig. 11. The confusion matrix of the RMA-CNN on the HSA bearings dataset (SNR = 6 dB).

Predicted Label
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H1 H2 H3 H4 H5 H6 H7 Recall Test 
Number

H1 3888 55 9 124 0 57 66 92.59% 4199

H2 5 4013 1 35 31 13 101 95.57% 4199

H3 7 0 4112 11 0 59 10 97.93% 4199

H4 69 94 8 3845 4 95 84 91.57% 4199

H5 0 1 0 2 4195 0 1 99.90% 4199

H6 17 8 33 103 6 4004 28 95.36% 4199

H7 13 125 9 24 0 29 3999 95.24% 4199

PRE 97.22% 93.41% 98.56% 92.79% 99.03% 94.06% 93.24% — 29393

Fig. 12. The confusion matrix of Pure-CNN on HSA bearings dataset (SNR = 6 dB).

Table VII. The results of RMA-CNN and RMA-CNN-
18 on HSA bearings dataset

Method 0 dB 4 dB 6 dB

RMA-CNN 90.62 ± 0.35 96.60 ± 0.89 98.71 ± 0.22

RMA-CNN-18 91.91 ± 0.48 97.54 ± 0.28 98.88 ± 0.10

RMA-CNN: A Residual Mixed Domain Attention CNN 125

JDMD Vol. 2, No. 2, 2023



features. If wemake the network paymore attention to those
periodic impulsive signal segments, it will be helpful for the
network to obtain more meaningful information. A similar
phenomenon is observed in Fig. 13. The time weight vector
shows a higher weight in the area of the impulse signal
segmentation and a lower weight in the non-impulse signal
segments. It is worth noting that this phenomenon is
observed when the SNR is 0 dB. The energy of the noise
is the same as that of the original signal, and it can be seen
that the noise has basically overwhelmed the normal wave-
form of the original signal. However, the proposed attention
module has good anti-noise performance. It is also found
that the attention mechanism tries to filter meaningful
information more precisely. For example, there are also a
few cases with lower weights in the impulse signal segment.
The experimental results from Fig. 5 show that the perfor-
mance of the RMA-CNN-T with time domain attention has
been greatly improved compared with the Pure-CNN,
which strongly proves the effectiveness of this learning
mechanism. In addition, Fig. 6 demonstrates that the pro-
posed method has very good anti-noise performance, which
is consistent with our visualization results. More examples

of time domain attention visualization, including the HAS
bearings data case, can be found in the Appendix.

B. INTERPRETABILITY OF CHANNEL
DOMAIN ATTENTION

As explained in Section 2.3, a convolutional layer com-
prises multiple filters. These filters learn various signal
features, but not all of the learned features are useful.
The purpose of channel domain attention is to enable the
network to concentrate on acquiring meaningful channel
features. To thoroughly understand the learning mechanism
of channel domain attention, we first carry out an analysis of
the channel weight vectors.

Figure 14 presents the visualization of four channel
weight vectors (W1–W4) within the RMA-CNN, where
each small grid represents a weight. It is observed that the
method assigns different weights to distinct channels, indi-
cating its attempt to discern which features are more
valuable. Notably, W3 and W4 contain numerous channels
with negative weights. This suggests that a considerable
amount of irrelevant information exists within the network.
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Fig. 13. The visualization result at the time domain for four vibration signal samples (A–D). (a) The vibration signal (no noise added);
(b) the noisy vibration signal (SNR = 0 dB); (c) the visualization result of the time weight vector, where each small grid represents a
weight and the color represents the weight value; (d) the time weight vector values (pink curve) and the signal without noise (blue curve).
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Fig. 14. The visualization of the channel weight vectors of the RMA-CNN, where each small grid represents a weight value.
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Secondly, we focus on analyzing the first RMAM of
CNNs, as it is responsible for extracting basic features from
the input data. These features are crucial for building
higher-level representations in subsequent layers. Further-
more, CNN typically includes pooling layers to reduce the
dimensionality of parameters and avoid overfitting. As the
network deepens and multiple pooling layers are intro-
duced, the sampling rate of features decreases, posing
difficulties for the attention module’s learning process
from a time-frequency analysis perspective. Therefore,
we further analyze the features learned by different con-
volutional kernels of the first RMAM to understand the
learning mechanism of the attention module.

Figure 15 consists of two parts: the top and the bottom
sections. The top section’s first row displays the original
vibration signal (E), the Fourier spectrum of the original
vibration signal (F), and the squared envelope spectrum (G)
of (E). The second row shows the vibration signal after
adding white Gaussian noise with SNR = 0 dB, along with
its Fourier spectrum and the corresponding squared enve-
lope spectrum. The bottom section illustrates the feature
signals learned by some convolutional kernels when the
signal with SNR = 0 dB is used as network input, for
example, Feature-1, Feature-2, Feature-3, and Feature-4.
The channel attention module assigns different weight
values to these four convolutional kernels, for example,
0.748 to Feature-1, 0.556 to Feature-2,−0.715 to Feature-3,
and −0.342 to Feature-4. Therefore, among these four
convolutional kernel feature maps, Feature-1 is the most
relevant feature selected by the channel attention module.

Let us then observe the spectrum of Feature-1 (denoted
as A) and the spectrum of the network input signal (denoted

as B). Both A and B have the same y-axis, with an
amplitude range [0, 0.5]. It can be seen that A not only
retains the 3000 Hz high-frequency impulse signal and its
surroundings from B but also has a higher amplitude than B,
thus enhancing this impulse signal. Meanwhile, in the low-
frequency range (0–2000 Hz), A has a lower amplitude than
B, achieving some noise suppression. The attention module
assigns a higher weight value (0.748) to this convolutional
kernel feature, thus highlighting the fault-related impulse
signal. In the square envelope spectrum, BPFI is clearly
visible for feature-1, which shows that while removing
some noise, the fault-related features are well preserved.
Therefore, our method gives higher weight to these features.

Secondly, as shown in the spectra of Feature-3 and
Feature-4, the high-frequency impulse signals are
completely submerged in the noise, making it impossible
to clearly identify the fault characteristic frequencies BPFI
in the squared envelope spectrum. This indicates that the
features learned by these two convolutional kernels are
mainly noise signals unrelated to the fault. The attention
module assigns lower weight values to these two convolu-
tional kernels (such as −0.715 and −0.342), thereby sup-
pressing the unrelated noise signals learned by these
kernels.

Therefore, the attention module can focus on fault-
related convolutional kernel features while suppressing
convolutional kernel features related to noise signals. More-
over, the performance of the RMA-CNN-C in Fig. 5 is
improved compared to the Pure-CNN, which also proves
the effectiveness of this learning mechanism. Furthermore,
Fig. 6 shows that the proposed method has good anti-noise
performance, which is consistent with our visualization
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Fig. 15. The visualization results of the vibration signal (E), its Fourier Spectrum (F) and its square envelope spectrum (G) and the
corresponding features (Feature-1 to Feature-4) learned by the convolution layer.
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results. In addition, all channel feature signals and
channel attention weights of the first RMAM are displayed
in the additional material, and it can be seen that the
attention mechanism tries to select meaningful features
more precisely. On the other hand, it gives high weight
to a few channels with unobvious fault characteristic
frequency.

C. ADVANTAGES OF INTERPRETABILITY
WITH AN ATTENTION MECHANISM

It is possible to analyze the weights of the kernels of the last
CNN layer and visualize the resulting signals for the highest
weight kernels, as done in the Gradient-weighted Class
Activation Mapping (Grad-CAM) method [38]. However,
the interpretability provided by the attention mechanism
differs from other explainable artificial intelligence (XAI)
methods like Grad-CAM in several aspects:

• Direct focus on important signal components: Atten-
tion mechanisms help identify important signal com-
ponents in the input data by assigning higher weights to
them, which provides a more straightforward way to
interpret which parts of the data are considered most
important by the network. In contrast, Grad-CAM
analyzes the gradients of the output with respect to
the feature maps, which is a more indirect way of
understanding the network’s decision-making process.

• Easier visualization and interpretation: The attention
mechanism can be easier to visualize and interpret
compared to Grad-CAM, as it directly highlights the
significant signal components without relying on back-
propagation-based explanations.

• Comprehensive understanding: Attention mechanisms
can provide insights into both time-sequence and chan-
nel-wise importance, giving a more comprehensive
understanding of the network’s focus, while Grad-
CAM primarily focuses on the time-sequence
importance.

• Integrated interpretability: Attention mechanisms
allow for interpretability to be integrated directly
into the network architecture, rather than relying on
post hoc analysis, such as Grad-CAM. This can lead to
a better understanding and trust in the model’s deci-
sions during the training process and help improve the
network’s performance by guiding it to focus on the
relevant signal components of the data. Grad-CAM and
other post hoc analysis methods are applied after the
model is trained, which may not provide the same level
of understanding during the training process.

Therefore, compared to other XAI methods like Grad-
CAM, the proposed methodology enhances interpretability
by incorporating an attention mechanism into the network
architecture, which provides clearer visualizations and
more comprehensive insights into the important signal
components of the input data. On the other hand at the
same time, attention mechanisms add complexity to the
network architecture, which may increase the computa-
tional requirements and training time.

V. CONCLUSIONS
This paper explores a solution to the problems of intra-class
variability and inter-class similarity in the field of

mechanical fault diagnosis and designs an attention module
RMAM. It constructs the attention feature optimization
mechanism from the time domain and the channel domain,
and can highlight fault-related features from noisy signals.
Based on the RMAM, a flexible and universal framework
named RMA-CNN is proposed. Experiments on two data-
sets, the HAS bearing dataset and the CWRU dataset, show
that the RMA-CNN has a very competitive fault diagnosis
performance, which is significantly better than the perfor-
mance of five comparison algorithms. In addition, the
proposed channel domain attention and time domain atten-
tion can effectively improve the feature learning ability of
the network to obtain better results. More importantly, we
analyzed in detail the internal mechanism of feature learn-
ing of the proposed attention mechanism focusing on the
interpretability of the CNN network, applied in the fault
diagnosis field. In the future, we will continue exploring the
theory of the attention mechanism focusing on the interpret-
ability of the network.
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APPENDIX

INTERPRETABILITY ANALYSIS

Here, we delve into a more detailed visualization and
interpretability analysis. Figure 16 displays the visualiza-
tion results for six vibration signal samples (A–F) taken
from the CWRU bearing dataset. Samples A and B repre-
sent signals from bearings with rolling element faults, while

C and D represent signals with inner race faults, and E and F
correspond to signals with outer race faults. Figure 17
exhibits the visualization results for four vibration signal
samples (A–D) associated with inner race faults in the HSA
bearing dataset. For each sample’s visualization results,
(a) signifies the vibration signal without added noise;
(b) denotes the noisy vibration signal; and (c) illustrates
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Fig. 16. CWRU bearing dataset: The visualization result at the time domain for six vibration signal samples (A–F). (a) The vibration
signal (no noise added); (b) the noisy vibration signal (SNR= 0 dB); (c) the visualization result of the time weight vector. Each small grid
represents a weight, and the color represents the weight value.
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the time weight vector visualization, where each small grid
symbolizes a weight and the color represents the
weight value.

As seen in Fig. 16, the CWRU bearing signals are
relatively clean, with clearly visible impulse signal com-
ponents. Despite the addition of strong noise, which

overwhelms the original vibration signal waveform, the
proposed method remains focused on impulsive signal
component, irrespective of the fault type. This observation
aligns with the paper’s conclusions. Figure 17 reveals that
the HSA bearing dataset signals are complex, exhibiting no
discernible trends. Nonetheless, the proposed method
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strives to identify useful features for fault diagnosis, dem-
onstrating a particular focus on impulsive signals.

As a supplementary analysis, we dive deeper into the
feature learning mechanism of channel domain attention
within the CWRU bearing dataset and explore the interpret-
ability of the first RMAM module. Figure 18 visualizes all
channel feature signals (from Feature-1 to Feature-16) and
channel attention weights. The frequency spectrum and the
square envelope spectrum of these signals are also pre-
sented. BPFI represents the inner race fault characteristic
frequency. It can be seen that the proposed method effec-
tively differentiates between useful and irrelevant features.
For instance, Feature-1, Feature-4, Feature-7, Feature-8,
and Feature-9 contain substantial fault-related information,
resulting in the assignment of greater weight. Conversely,
Feature-2, Feature-3, Feature-6, and Feature-10 possess
minimal fault information or lack identifiable fault

characteristic frequencies, leading to lower assigned
weights. However, certain exceptions exist, such as Fea-
ture-14 receiving a larger weight and Feature-15 receiving a
smaller weight. Two possible explanations can account for
this situation: (1) the attention mechanism may not accu-
rately discern useful features 100% of the time, leading to
occasional weight assignment errors; and (2) the attention
mechanism aims to more precisely select meaningful fea-
tures, implying that fault characteristic frequencies do not
fully represent the information required by the network.
Consequently, these signals might contain other features
needed by the network. In summary, while the proposed
method can generally distinguish between useful and irrel-
evant features, some weight assignment errors occur. Fur-
ther exploration and analysis in future work are necessary to
address these discrepancies.

0.00       0.02        0.04        0.06       0.08       0.10       0.12        0.14        0.16 100            200           300           400            500           600          700
Frequency (Hz)Time (s)

Feature-11
(weight = -0.433)

Feature-12
(weight = -0.396)

Feature-13
(weight = 0.694)

Feature-14
(weight = 0.504)

Feature-15
(weight = -0.611)

Feature-16
(weight = 0.280)

1×BPFI: slightly visible

1×BPFI, 2×BPFI, and 3×BPFI are 
slightly visible

1×BPFI: slightly visible

Not visible for all BPFI

1×BPFI, 2×BPFI, and 3×BPFI are 
visible

1×BPFI: slightly visible

1×BPFI

1×BPFI
2×BPFI 3×BPFI

1×BPFI

1×BPFI
2×BPFI

3×BPFI

1×BPFI

Fig. 18. (Continued)

132 Dandan Peng et al.

JDMD Vol. 2, No. 2, 2023


