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Abstract: Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns and
reduce maintenance costs. Many maintenance models have been developed for WTs’maintenance planning, such
as corrective, preventive, and predictive maintenance. Due to communities’ dependence on WTs for electricity
needs, preventive maintenance is the most widely used method for maintenance scheduling. The downside to
using this approach is that preventive maintenance (PM) is often done in fixed intervals, which is inefficient. In this
paper, a more detailed maintenance plan for a 2 MWWT has been developed. The paper’s focus is to minimize a
WT’s maintenance cost based on a WT’s reliability model. This study uses a two-layer optimization framework:
Fibonacci and genetic algorithm. The first layer in the optimization method (Fibonacci) finds the optimal number
of PM required for the system. In the second layer, the optimal times for preventative maintenance and optimal
components to maintain have been determined to minimize maintenance costs. The Monte Carlo simulation
estimates WT component failure times using their lifetime distributions from the reliability model. The estimated
failure times are then used to determine the overall corrective and PM costs during the system’s lifetime. Finally,
an optimal PM schedule is proposed for a 2 MWWT using the presented method. The method used in this paper
can be expanded to a wind farm or similar engineering systems.

Keywords: cost-based maintenance scheduling; genetic algorithm; hierarchical optimization; preventive
maintenance; reliability modeling; wind turbine maintenance policy

I. INTRODUCTION
Wind energy is one of the growing sources of renewable
energy worldwide. In recent years, the cost of wind energy
has decreased significantly, making it more competitive
with other sources of electricity. Wind turbines (WTs) are
proven sources of energy, and they have continuously
contributed to global energy production. However, they
have also had issues with high failure rates and high
maintenance costs. This paper aims to discuss various
factors that affect the operation of WTs and their mainte-
nance cost [1]. Having a proactive maintenance program
can help reduce costs and prevent failures. Therefore, using
historical data is beneficial in determining the right mainte-
nance strategy. This is especially essential for large projects
where the cost of maintenance is significant enough to make
them uncompetitive.

There are different policies for WT maintenance, such
as corrective, preventive, condition-based, and predictive
maintenance [2]. When a failure occurs, corrective mainte-
nance is used to return the machine to a working condition,
such as the work done in [3]. Although corrective mainte-
nance requires less monitoring and inspection effort, it is
not usually used for critical systems or components. Con-
dition-based maintenance reduces the cost of machine fail-
ures; however, it requires condition monitoring equipment
installed on the system, which is commonly expensive.
Predictive maintenance applies condition-based mainte-
nance for fault prognosis and planning for replacing dam-
aged subsystems, such as the methods presented in [4,5].
Predictive maintenance can minimize the time spent on

maintenance, and it can also improve reliability. However,
same as the condition-based method, it also needs test
equipment. Validating the accuracy of the predictive main-
tenance method is also a challenge. When maintenance
activities such as oil or bearings changes are scheduled
before the operation, it is called preventive maintenance
(PM) [2,6–11]. PM is generally intended to reduce the
probability of failure in machines. In this study, we aim
to improve the PM policy for a WT.

Regarding the mentioned policies and strategies for
WT maintenance, scheduling optimal PM scheduling of
WTs involves two main tasks: the prediction of the com-
ponents’ life (in the terms of probability) and the optimiza-
tion of the maintenance schedule. The probabilistic
approach for components’ life estimation uses statistical
models, such a method has been discussed in [11,12]. The
deterministic approach uses physics-based models to esti-
mate the life based on the degradation rate of the compo-
nents such as the work done in [13]. The data-driven
approach uses machine learning techniques to learn the
degradation patterns from the sensor data [14]. Once the
useful life probability is predicted, the maintenance sched-
ule can be optimized. Several optimization methods have
been proposed, including the heuristic approach, the math-
ematical programming approach, and the simulation-based
approach. The heuristic approach generates feasible main-
tenance schedules based on a nature-inspired algorithm
[15,16]. The mathematical programming approach formu-
lates the optimization problem as a mathematical model and
uses optimization algorithms to find the optimal solution.
The simulation-based approach uses computer simulations
to evaluate the performance of different maintenance sche-
dules and selects the best one. For example, in [17], a
mathematical programming approach was proposed for theCorresponding author: Xihui Liang (e-mail: Xihui.Liang@umanitoba.ca).
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optimization of the maintenance schedule of WTs. The
proposed method achieved a considerable reduction in the
maintenance cost and an improvement in the availability
of WTs.

One of the most common approaches to optimizing the
maintenance schedule is formulating the problem as a
mathematical optimization problem, which can then be
solved using optimization algorithms. For example, in
[18], a mixed-integer linear programming (MILP) model
was proposed for optimizing the maintenance schedule of a
multi-component system. The model considered the trade-
off between maintenance costs and system availability and
was shown to be effective in reducing maintenance costs
while maintaining high system availability. Another
approach to optimizing the maintenance schedule is to
use simulation-based techniques. Simulation involves cre-
ating a computer model of the system and using it to
evaluate different maintenance schedules. For example,
in [19], a discrete-event simulation model was developed
for optimizing the maintenance schedule of a WT. The
model considered the stochastic nature of the WT’s opera-
tion and maintenance (O&M) needs and was used to
evaluate different maintenance policies. Data-driven ap-
proaches have also been proposed for optimizing the main-
tenance schedule. These approaches involve using machine
learning techniques to analyze data from the system and
identify patterns that can be used to optimize the mainte-
nance schedule. For example, in [20], a data-driven
approach was proposed for optimizing the maintenance
schedule of a manufacturing plant. The approach used
machine learning techniques to analyze data from the plant
and identify the optimal maintenance schedule based on
cost and production requirements. In addition to these
approaches, several other techniques have been proposed
for optimizing the maintenance schedule, including heuris-
tic approaches [16,21] and fuzzy logic approaches [22].
These approaches aim to find an optimal maintenance
schedule while considering factors such as system reliabil-
ity, cost, and safety.

Regarding the reviewed articles, the use of historical
data can be beneficial when choosing the right maintenance
strategy, which would reduce O&M costs. Historical failure
data can be represented using probability distributions to
simulate the failure using methods such as Monte Carlo
simulation (MCS) [23]. Maintenance costs for WTs could
be considerably greater because of the portion of unsched-
uled maintenance, which is hard to predict at the start of a
project. Hence, a more optimized maintenance strategy is
needed to reduce O&M costs [24]. In the reviewed studies
on WT maintenance cost, researchers have only considered
one or two factors (such as labor cost and downtime cost) in
the cost structure. However, considering different costs and
combining them for an optimization model can result in a
more effective maintenance schedule. To the best of our
knowledge, no published study has considered all unit
maintenance costs, desired reliability, maximum availabil-
ity, labor, and dismantling costs in their PM optimization
method.

This study considers all critical subsystems in a WT
for PM scheduling. Also, for optimizing the PM schedule,
we consider the regulated major PM activities in WT
industries to improve the application of our method for
real operations [25]. We have also used different resources
to find an accurate replacement cost for all components in
our model. Therefore, our optimization of the PM schedule

is performed based on actual replacement costs to mini-
mize the summation of a WT’s corrective and PM costs.
MCS using lifetime distributions of WT components is
also performed to estimate potential failure times of
components and plan the PM activities. Moreover, labor
costs, dismantling, and unavailability costs have also been
considered in our study, providing a more general model
than previous studies. As we are considering many com-
ponents in our simulations, the MCS will be a timely
process. Therefore, we need to utilize an efficient optimi-
zation framework for PM scheduling that guarantees the
minimum need for MCS runs. Accordingly, we have used
two layers of optimization to select the optimal number of
PM activities and PM optimal times, respectively. In the
first layer, we have used the Fibonacci search algorithm to
optimize the number of maintenances in a given lifespan.
In the second layer, the genetic algorithm (GA) is applied
to determine the PM times and which component to
maintain in each PM activity. In the end, we compare
our results with other models from the literature to validate
our results and show the effectiveness of our proposed
method for PM schedule optimization considering the
maintenance costs. The method presented in this paper
is generic, and it can be used for other similar engineering
systems.

II. SYSTEM CONFIGURATION AND
RELIABILITY MODEL

A WT is a complicated system that includes many sub-
systems and components. Therefore, a reliability model is
usually used for estimating the system lifetime and sched-
uling maintenance strategies. A reliability model helps with
estimating the failure time of the system and its components
for further use in PM scheduling. An adequate reliability
model for a 2MWWT is reported and is used directly in this
study. Here, we briefly describe this model’s reliability
block diagram (RBD), which demonstrates different sub-
systems and components and how their failures cause a
system failure.

A. RELIABILITY BLOCK DIAGRAM

Figure 1 represents RBD for a 2 MW WT. Each block
represents a subsystem. The WT has six mechanical sub-
systems with a total of 28 components. Each component
follows a specific lifetime distribution.

Rotor Drivetrain Gearbox

Generator
Yaw 

System

Brake and 

Hydraulics

Fig. 1. RBD for the wind turbine.
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B. DESCRIPTION OF SUBSYSTEMS

Each subsystem can be represented by another RBD with a
set of components connected in series or parallel. A sub-
system can also contain another subsystem with another
RBD. In the following, the gearbox is briefly described as
an example of a subsystem. Please refer to [2] for more
details about the subsystems.

1) GEARBOX SYSTEM. The gearbox is a seven-block
series system where two lube pumps and cooling fans
are required. The repair of the gearbox gears and bearings
blocks requires a crane (the first two blocks). Figure 2
shows the RBD of a gearbox.

Lifetime distributions of some gearbox components are
provided in Table I [6]. The lifetime distributions for other
components can also be found in [26].

These lifetime distributions are used to estimate the
potential failure times of each subsystem and component.
Each time the component replaces at the corrective or PM
time, a new failure time will be estimated for the newly
replaced component. In the next section, we consider those
estimated failure times together with the time required to
replace a component and the replacement cost to define and
solve the PM optimization problem.

It is noted that in order to develop a PM model, the
relations among components have been dealt with the
following assumptions:

(1) we have used a verified RBDmodel. The system has 8
subsystems and 5 components with a total of 34
components. The RBD is used to represent the sub-
systems and components of the jet engine.

(2) Regarding the block diagram, if a component fails,
the system will stop working if it does not have any
redundancies. Here, we assume that failure only stops
the system and does not affect other components’
performance unless otherwise concluded during the
inspection.

(3) We have considered the regulated major PM activities
in WT industries in our model and if there is a
component major degradation, that will be replaced
at that maintenance activity.

III. PM SCHEDULING OPTIMIZATION
AWT has a typical lifespan of 20 years; during this lifetime,
the operators do multiple PM checks. The current industry
policy indicates having one PM every 6 months for the WT.

A. PM MODEL PARAMETERS

The part costs of 28 components are given in Table II. They
are directly used from the NREL report and maintenance
delay cost in case of component failure. In addition to these
expenses, every time the crew must go to the WT site for
maintenance, a crew travel expense of $50,000 is incurred.

B. OPTIMIZATION MODEL

A WT with 28 components is considered, and the compo-
nents follow their specific lifetime distribution. The main-
tenance of the 28 components is performed based on the
failure times generated using their specific lifetime distri-
butions. Whenever a failure occurs in the wind farm, the
maintenance team is sent onsite to perform corrective
maintenance and takes this opportunity to simultaneously
perform PM on multiple turbines and their components
which show relatively high risks. The industry uses a fixed
remaining useful life threshold of the component to trigger a
replacement of the component. The threshold limit can be
determined based on the working conditions and the envi-
ronment of the WT. For the case study, a constant threshold
limit is not implemented because the purpose of the study is
to find the optimal PM times for the replacement of multiple
components before their failure, which results in minimal
maintenance costs. If a constant threshold limit is consid-
ered, multiple components will only be replaced when they
are close to their end of life and meet the threshold limit.
This will increase maintenance instances.

The lifetime distributions generate random failure
times, and the total cost generated in each realization is
not the same. For this purpose, the MCS is used to find the
average total costs of 100 realizations. This total mainte-
nance cost can help the WT industry estimate maintenance
budgets and develop plans for PM.

1) OBJECTIVE FUNCTION. The objective function of the
current optimization problem is to minimize corrective
and PM costs. The considered optimization problem is a
MILP problem with some variables constrained to be
integers while other variables are non-integers. Whenever
a component fails, corrective maintenance is performed,
and PM is performed at intervals generated by the optimi-
zation. Every maintenance occasion, preventive or correc-
tive, involves a constant crew travel cost. Also, we have
part cost, labor cost, mobile crane per-use cost, and
downtime losses.
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Fig. 2. RBD for the gearbox.

Table I. The lifetime distribution of the Gearbox sys-
tem components

Component
Failure

distribution
Exp.
(λ)

Weibull

α β
Gearbox gears Exponential 14,600

Gearbox bearings Weibull 9490 3.5

High-speed
gearbox

Weibull 9,490 3.5

Lube pumps Weibull 4,380 3

Gearbox cooling
fan

Weibull 6,935 1.1
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Corrective maintenance means the replacement of a
single component (i) when it fails. PM can be the replace-
ment of one or more components of the system simulta-
neously. Eqs. 1–3 represent the maintenance costs of the
system that is also used as our optimization cost function
[15].

Minðf Þ = CMCþ PMC (1)

where CMC is the corrective maintenance costs, and PMC
is the preventive maintenance costs.

CMC =
XN
i=1

ðCi þ Li þ Ri þ J þ DiÞ × ðZiÞ (2)

PMC =
XP
t=1

��XN
i=1

ðCi þ Li þ RiÞ × ðXitÞ
�
þ J

�
(3)

The symbols used in the above equations are ex-
plained below:

N The number of components: 28

Ci Cost of component i

Li Labor cost, component i

Ri Cost of mobile crane, if applicable

J Crew travel cost to wind turbine site, USD 50,000

Di Operational downtime cost due to component failure

P The optimal number of preventive maintenances obtained
from the Fibonacci search algorithm. The preventive
maintenance time is given by [m1,m2,m3 : : : : : : ::mP] that
gives the minimum total maintenance cost.
[m1,m2,m3 : : : : : : ::mP] are obtained from optimization

Xi Binary decision variable of whether to perform replacement
of component i at preventive maintenance t (0=No replace,
1=Replace)

Zi The number of corrective maintenances of component i
during the life span

The number of corrective maintenances for a compo-
nent i is dependent on the number of PMs (P) and PM times
for the system [m1,m2,m3 : : : : : : ::mP]. The number of

Table II. Spare part replacement cost

Components Component cost ($) [25] Labor cost ($) [25] Crane cost ($) [3]

Subsystem: rotor

Blade structure 87,500 23,000 105,260

Blade non-structure 12,700 4,000

Pitch cylinder 13,000 1,000

Pitch bearing 13,100 4,000 105,260

Pump and hydraulics 3,300 1,000

Pitch position x-direction 1,800 500

Pitch motor 8,400 500

Pitch gear 8,300 2,000

Subsystem: drive train

Main bearing 23,700 13,000 105,260

High-speed coupling 7,700 1,000

Subsystem: gearbox

Gearbox gears 282,000 18,000 105,260

Gearbox bearings 196,300 8,000 105,260

High-speed gearbox 183,300 3,000

Lube pumps 3,000 500

Gearbox cooling fan 2,300 500

Subsystem: generator and cooling

Generator – rotor 198,300 6,000 105,260

Generator – bearings 2,200 500

Full converter 36,000 500

Generator cooling fan 2,300 500

Contactor generator 11,700 500

Partial converter 17,000 1,000

Subsystem: brakes and hydraulics

Brake caliper 7,300 1,000

Brake pads 5,700 500

Accumulator 2,200 500

Hydraulic 6,000 500

Subsystem: yaw system

Yaw gear 9,700 800

Yaw motor 2,200 800

Yaw sliding pads 800 800
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corrective maintenance increases the number of overhauls
and total maintenance costs (f ). The optimal number of PM
(P) and PM times [m1,m2,m3 : : : : : : ::mP] that result in
minimal total maintenance costs, and corrective mainte-
nance (zi) for a component i are obtained from the optimi-
zation method.

2) CONSTRAINTS AND FACTORS CONSIDERED. The
constraints of the proposed optimization model are
described below:

• Service life: Each component must be replaced before
the end of its service life (PM) or upon the end of its
service life – failure (corrective maintenance). Here, the
service life is the random failure times of probabilistic
components generated by their specific lifetime
distribution.

The factors considered for the case study are ex-
plained below:
• Labor cost: This is the cost associated with the old
component’s disassembly and installation of the
replacement component. Each component has its
own specific associated labor cost based on the data
provided in.

• Component cost: This is the cost of the replacement
part from the crane cost: This is the cost of a mobile
crane use for components that require a mobile crane
for replacement.

• The time duration for repair: This is the time duration
for maintenance of a component. Every component
considered has its specific repair duration. The data are
based on [6].

• Crew travel cost to the WT location: Every time the
maintenance crew travels to the WT location, there is a
logistic and admin cost associated, and it is a fixed cost
per visit. The costs are extracted from [25].

• Delay in maintenance due to failure: Based on the
literature, critical components of the WT have a very
long lead time. Whenever one of those components
fails, the WT is out of commission for months.

• Operational loss due to failure and maintenance: This is
the cost associated with the downtime of WTs caused
due to component failure and maintenance. The opera-
tional loss can be calculated by using the equa-
tion below:

Loss of electricity ðkWhÞ = ðDaysÞ × ðhoursÞ
× ðwind turbine capacity ðkWÞÞ
× ðcapacity factorÞ

For a 2 MW WT with a 33% capacity factor, the loss of
electricity in a year is 5.7 × 106 kW h.

The cost of electricity is assumed to be $0.096/kW h.
Whenever the WT is not operating, it losses $63.36/hr.
Table III gives a breakdown of downtime and maintenance
delay costs for each component.

3) DECISION VARIABLES. The optimization decision
variables are listed below:
• The number of PM (P) required for the system for a
given lifespan.

• PM times [m1,m2,m3 : : : : : : ::mP].

• Replacement decision of components (whether to per-
form the replacement or not) at those PM times xit .

IV. NUMERICAL SOLUTION TO THE
OPTIMIZATION MODEL

The optimization problem in this study is a MILP problem,
and a combination of the Fibonacci search algorithm and
GA is used. We use a GA, since it has been successfully
implemented in solving some of the maintenance problems
of the WT. The first step of the method is to find the total
maintenance costs of the system using GA based on the
inputs from the Fibonacci search algorithm. Fibonacci
inputs the total number of PM required for the system
ðpÞ to GA. Through this input from Fibonacci, GA gen-
erates an initial population and finds the total maintenance
costs. The next step is to find the optimal number of PM
required for the system using a Fibonacci search algorithm
by successively providing inputs to GA and also obtaining

Table III. Component maintenance delay cost

Components Maintenance delay cost ($)

Subsystem: rotor

Blade structure 286,675

Blade non-structure 286,675

Pitch cylinder 1,592

Pitch bearing 1,592

Pump and hydraulics 1,592

Pitch position x-direction 1,592

Pitch motor 1,592

Pitch gear 1,592

Subsystem: drive train

Main bearing 33,445

High-speed coupling 33,445

Subsystem: gearbox

Gearbox gears 191,116

Gearbox bearings 191,116

High-speed gearbox 191,116

Lube pumps 1,592

Gearbox cooling fan 1,592

Subsystem: generator and cooling

Generator – rotor 95,558

Generator – bearings 95,558

Full converter 95,558

Generator cooling fan 1,592

Contactor generator 95,558

Partial converter 1,592

Subsystem: brakes and hydraulics

Brake caliper 1,592

Brake pads 1,592

Accumulator 1,592

Hydraulic 1,592

Subsystem: yaw system

Yaw gear 1,592

Yaw motor 1,592

Yaw sliding pads 1,592
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the output (total maintenance cost according to the input)
from GA. The flowchart in Fig. 3 explains how GA and
Fibonacci are used together in our study to solve the
explained optimization problem.

A. APPLICATION OF GA

GA is used to optimize the total maintenance costs and to
obtain the optimal PM times and optimal selection of
components to be maintained. The chromosome for the
GA consists of both real and binary values. The real values
are the PM times of the system, while binary values
represent whether to do replacement of component i at
those PM times or not. The initial population is in the form
of a matrix X with N × 2P elements. The matrix of the
decision variables for the maintenance schedule is shown
below.2

6666666664

1
2
..
.

..

.

..

.

N

3
7777777775
=

2
6666666664

m1 · · · · · · mp x11 · · · · · · x1P
m1 · · · · · · mp x21 · · · · · · x2P

m1 · · · · · · mp
..
. . .

. . .
. ..

.

m1 · · · · · · mp
..
. . .

. . .
. ..

.

m1 · · · · · · mp
..
. . .

. . .
. ..

.

m1 · · · · · · mp xN1 · · · · · · xNP

3
7777777775

(4)

The left side of the above equation represents the
number of components ði = 1,2, : : : :N); a total of 28 com-
ponents are considered in the case study. The elements in
the row and column matrix on the right side of the Equation
represent the number of PM times ð½m1,m2,m3 : : : : : : ::
mP�,ð0 < m1 < m2 < m3 : : : : : : : < mp < TÞÞ of the sys-
tem. The binary decision variables ½xN1,xN2, : : : :xNP�,
xNmP

∈ ½0,1�, represent whether to perform PM on compo-
nent N at PM time mP.

The PM times ½m1,m2,m3 : : : : : : ::mP� and replacement
decisions ½xN1,xN2, : : : :xNP� of the initial population (chro-
mosomes) are generated randomly by GA for the input P (P
is the number of PM) from Fibonacci. The GA evaluates the
objective functions f (total maintenance costs) for the initial
population.

The next step involves selecting crossover and mutation
to generate the next generation and calculating the objective
function for the population of the new generation. The GA
uses the current population to create children that make up
the next generation. The algorithm selects a group of chro-
mosomes in the current population, called parents; parents
contribute their genes, that is, the elements of their vectors to
their children, which is the next generation for GA.

The tournament model scheme is used for the selection
of parents in chromosomes. Chromosomes having lower
total maintenance costs have a higher chance of getting
selected for the reproduction population. Each selection
after mutation and crossover generates two sets of new
children. The selected parents are randomly paired in the
crossover.

In the model, a set of parents using scattered crossover
produce two children. A random binary vector (a vector of
[0,1] randomly) equal to the length of the pair of parents is
created. Based on the elements in a random binary vector,
the elements from the parents are selected. If the element in
a random binary vector is 1, it selects the elements from the
first parent, and if the element in a random binary vector is
0, it selects the elements from the second parent. A parent’s
mutation is done by replacing the parents’ elements with a
random number satisfying the constraints. The elements of
binary bits are changed from 0 to 1 and vice versa [27].

The GA is a global optimization technique. It can be
used to calculate the globally optimal set of variables.
However, as our computational power was limited, we
also limited the number of generations to 100,000. There-
fore, we can say our solution is close to the global optimum
values, but we cannot say that it is exactly the global
optimal solution. We believe that increasing the number
of generations may result in a better answer but at a higher
computational cost.

For every generation generated, the objective functions
f (total maintenance costs) are evaluated until the stopping
criteria are met. The stopping criteria for the current model
are the maximum number of generations; for the case study,
it is 100,000. GA is used to find the optimal PM times
½m1,m2,m3 : : : : : :mP� and replacement decision of compo-
nents to be maintained ½xN1,xN2, : : : : : : xNP� at those PM
times. The flowchart of the applied GA algorithm is pre-
sented in the Appendix (Fig. A1).

B. APPLICATION OF FIBONACCI SEARCH
ALGORITHM

The Fibonacci search algorithm’s purpose in the model is to
find the optimal number of PMs required for the system.

Fig. 3. Flowchart of the genetic algorithm.
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The Fibonacci search algorithm finds an extremum (maxi-
mum or minimum) of a function within a specified interval.
The algorithm operates by successively reducing the range
of values on the specified interval and finally finding the
interval locating the function’s extremum. The ratio of the
remaining length to the initial length of the range of values
at each iteration is the ratio between two consecutive
Fibonacci numbers, and the ratio approaches the golden
ratio. Reducing a range of values is terminated when the
difference between the range of values is less than the
specified value. Currently, the WT industry does PM every
6 months, and manufacturers recommend at least one
maintenance annually so based on these numbers. A WT
operating for 20 years must have at least 20 PMs; however,
currently, mostWTs perform about 40 PMs in 20 years. The
initial values is used as it covers a broader range to give the
optimal result.

The steps involved in the Fibonacci search algorithm
are as follows [28]:

(1) Evaluate the functions f ðayÞ, f ðbyÞ at the point ½ay,by�
of first iteration y w.r.t initial range of interval values
½a0,b0� ∈ a0 < b0, ay = b0 −

FN
FNþ1

� L, by = a0þ
FN
FNþ1

� L, L = b0 − a0, ½ay,by� ∈ ay < by, where FN is
the nth Fibonacci number.

(2) If f ðayÞ > f ðbyÞ, reduction of the interval will be
a0 = ay, and b0 = b0 and the function is evaluated
at a new point of the next iteration ay+1 = by, and
by+1 = a0 +

FN−1
FN

� L. If f ðayÞ < f ðbyÞ, reduction of an
interval will be a0 = a0, b0 = by and the function is
evaluated at a new point by+1 = ay, and
ay+1 = b0 −

FN−1
FN

� L.
(3) The steps are repeated until the difference in the range

of values is less than or equal to the specified value of
termination.

All outputs from the Fibonacci are rounded to the
closet integer as it is the number of PM and can only be
integers. Values with first decimals larger than 0.5 are
rounded up, and below are rounded down.

The initial length ½a0,b0� = ½5,60� is the range for the
Fibonacci. Then, the reduced interval for the first iteration
½ay,by� of the initial length ½a0,b0� is evaluated using the
procedure discussed above. Every point generated by Fi-
bonacci is used as an input for GA to select the next range
for Fibonacci iteration. The objective functions (total main-
tenance costs) f ðayÞ and f ðbyÞ are evaluated at the point
½ay,by� (the number of PMs M = ay,M = byÞ using GA. In
the next step, the total maintenance costs obtained from
f ðayÞ and f ðbyÞ are compared. Then the new reduced
interval for the next iteration will be evaluated. The differ-
ence between the range of values of a new interval is
evaluated. If the difference is greater than 0 (specified value
of termination), evaluate objective functions f for the new
reduced interval, and compare them to evaluate the next
reduced interval. Else if the difference is less than or equal
to 0 (specified value of termination), then the optimization
is terminated. The above steps are repeated until the speci-
fied value of the termination condition is met. The flowchart
of the working of a Fibonacci search algorithm is given in
the Appendix, Fig. A1.

In Table IV, the interval [9,9] is the final interval and
clarifies that 9 is the optimal number of PM. The trend from
the figure shows the total cost of maintenance for the WT is
decreasing as we decrease the number of PM but below 9
the maintenance cost starts increasing again.

A graph plotted for the average maintenance costs
obtained at the number of PM (P) is given in Fig. 6. The
points in Fig. 6 represent the variation of average mainte-
nance costs with the number of PM P in each iteration of
Fibonacci. From Table III and Fig. 4, the optimal number of
PM required for the system is 9, and minimal maintenance
costs of $ 1.032 M are obtained.

V. RESULTS OF THE GA TO FIND THE
OPTIMAL MAINTENANCE TIMES AND
THE OPTIMAL COMPONENTS FOR

MAINTENANCES
This section describes the working of a GA to find the
optimal PM times and replacement decisions for compo-
nents at those PM times. Based on the number of PMs, P
obtained from the Fibonacci search algorithm. GA gener-
ates the initial population of random values of PM times
½m1,m2,m3 : : : : : : ::mP� and replacement decisions
½xN1,xN2, : : : :xNP� of components at those PM times (com-
ponents to be considered for replacement at those PM
times) satisfying the constraints discussed in Section 4.1.
for the first generation (iteration) and evaluates the objec-
tion function f. If the component fails before the PM time, a
corrective maintenance event is used for the replacement of
the failed component.

The next generation populations are created using
crossover and mutation. The PM is done on the system
at these specific intervals generated in each generation of
GA. GA evaluates the objective function until the stopping
criteria are met.

The evaluation of objective functions f ðayÞ and f ðbyÞ
(average maintenance costs) for the inputs of start and end
values of intervals ½ay,by� of each of Fibonacci (the number

Table IV. Results of the Fibonacci search algorithm to
find the optimal number of preventive maintenances

Iteration ay by f ðay Þ $ f ðby Þ $ Interval

0 5 60 1.20 M 4.24 M

1 26 39 1.68 M 2.61 M [5–60]

2 17 26 1.45 M 1.68 M [5–39]

3 12 17 1.14 M 1.45 M [5–26]

4 10 12 1.09 M 1.45 M [5–17]

5 8 9 1.12 M 1.032 M [5–12]

6 9 11 1.032 M 1.13 M [8–12]

7 9 9 1.032 M 1.032 M [8–11]
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Fig. 4. Average maintenance costs for all output from Fibonacci.
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of PMs M) using GA is given in Table III. In Table III, the
interval [26,39] is the first interval in the first iteration of
Fibonacci for the initial length [5,60]. This interval is
obtained using the procedure described in Section 4.2.
The objective functions (average maintenance costs)
f ð26Þ and f ð39Þ are evaluated by GA. The intervals for
the next iterations of Fibonacci are evaluated using the
Fibonacci, and for all the start and end values of intervals
(number of PM P) average maintenance costs are obtained
using GA. In Table III, the last interval of Fibonacci is [9,9].
Since the change in the length of reduced intervals is equal
to the specified value of termination (zero), the optimization
is terminated here. The average total maintenance costs
obtained at the number of PM P= 9 is the minimum.
Therefore, the required optimal number of the PM for
the system is 9, and the optimal average maintenance costs
are obtained at P= 9. The average maintenance costs
obtained in each generation (iteration) of GA at the number
of PM are given in Fig. 6. The average maintenance costs
obtained in each generation (iteration) of GA for other
Fibonacci inputs (number of PM) are not presented.

In Fig. 5, the black line represents the individual best of
average maintenance costs in every generation (iteration)
population, and a line with an “o” marker represents the
mean value of average maintenance costs in every iteration.
The stopping criteria for the current optimization problem is
a specific number of generations 100000. In this study, we
have obtained minimal costs at the number of PM P= 9.
But the PM obtained at this point in our first experiment is
not satisfactory.

Moreover, the goal of the optimization algorithm is to
find the global optimal solution. We used GA, which is
known as a global optimization technique and as a tech-
nique that can calculate the globally optimal set of vari-
ables. However, as our computational power was limited,
the number of generations has been limited to 100,000 as
such, and we did not use a tolerance limit to prevent the
algorithm from getting stuck in local optima. Therefore, we
can say our solution is close to the globally optimum values,
but we cannot say that it is exactly the global optimal
solution. We believe that increasing the number of genera-
tions or decreasing the tolerance limit may result in a better
answer, but at a higher computational cost.

The optimal PM times and components to be chosen
for replacement at those PM times (P= 9) are given in
Table III.

It is worth mentioning in this study that the failure
times of components are generated from a lifetime distri-
bution, and they are random, causing fluctuations in the best
fitness value. To reduce randomness, in our study, 100
simulations are used. But we still can see fluctuations. If
more number of simulations were used in the future, the
fluctuation will become smaller. It should also be noted, to
further evaluate the GA’s efficiency to solve our optimiza-
tion problem, we have also used the particle swarm opti-
mization (PSO) algorithm to compare our results. PSO is a
popular algorithm for optimization problems, and it has
been shown to perform well in some cases. The PSO
resulted in the best fitness of 1.77E+ 06 after 99000
iterations. Where GA has resulted in the best fitness value
of 1.032E+ 6 after similar number of iterations, showing
that the GA algorithm outperformed the PSO in finding an
optimal value for our problem. The PSO results are pre-
sented in Table A2 in the Appendix.

The maintenance schedule is also presented in Fig. 6.
In Fig. 6, the X-axis represents the optimal PM times
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½m1,m2,m3 : : : : : : ::mP� and Y-axis represents components
(i= 1,2,3,4 : : : N) to be chosen for replacement at those PM
times. The component i to be chosen for PM at times
½m1,m2,m3 : : : : : : ::mP� is represented by a green dot. Cor-
rective maintenance done on components is represented by
a red dot. The red dot represents the time at which corrective
maintenance is done on the components. The values of
optimal PM times ½m1,m2,m3 : : : : : : ::mP� and components
to be chosen for replacement at those times are given in
Table V.

VI. COMPARISON OF MAINTENANCE
COSTS OF THREE MODELS

In this section, the proposed PM model’s total maintenance
costs are compared with the two conventional models:
Model 1 (corrective maintenance model) and Model 2
(fixed interval PM model with threshold limit). The two
models are described below.

A. MODEL 1: CORRECTIVE MAINTENANCE
MODEL

In Model 1, only a corrective maintenance strategy is used
in the system. In this strategy, whenever a component fails,
it is replaced. The total maintenance cost is the sum of the
corrective maintenance costs of the components. A total of
10000 simulations have been used to estimate the average
maintenance costs. The total maintenance cost for the
corrective maintenance model is 3.5 million $.

B. MODEL 2: FIXED INTERVAL PM MODEL
WITH THE THRESHOLD LIMIT

In Model 2, the WT has a PM check on the system every 6
months. For a WT with an expected life span of 20 years, a
total of 38 PMs are required on the WT. A PM replacement
is done on a component during a PM check if the remaining
reliability of a component is less than 0.05.

If the component fails before the PM time, corrective
maintenance is done on it. The model’s total costs are the

sum of the corrective and PM costs of the components like
the proposed model. A total of 10000 simulations have
been used to estimate the average maintenance costs.
The total maintenance cost calculated for model 2 is 2.4
million $.

The maintenance costs obtained from the above two
models are compared with the proposed model (Model 3)
which finds the optimal number of PM intervals required,
the optimal PM times, and the components to be chosen for
replacement at those PM times.

The comparison between the maintenance costs gen-
erated in all three models is given in Fig. 7. From Fig. 7, the
minimal maintenance costs of 1.032 M are obtained
from the proposed model. The maintenance costs obtained
from the proposed PM model are 57% lower than the
fixed PM model and 70% lower than the corrective
maintenance.

VII. CONCLUSIONS
WT maintenance is of great importance and acquires
considerable costs. The proposed optimization model iden-
tifies the optimal number of PM and their times, and
components to be chosen for replacement at those PM
times for a 20-year maintenance plan. This plan results
in minimized costs for WT maintenance. The total mainte-
nance cost obtained from the proposed optimization model
is 57% lower than the common industry-used fixed PM
plan. The proposed model generates the PM times based on
random failure times of components and their lifetime
distributions and finds the optimal PM times for multiple
component replacement and resulting in minimized main-
tenance costs. The Fibonacci search algorithm and GA are
used together to solve the optimization problem. The
proposed method can be further improved by adding
more lower-level components and including multiple
WTs in a wind farm. Factors like poor maintenance and
weather conditions can also be added to the mainte-
nance plan.
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Table V. Optimal preventive maintenance times and
replacement decisions

Optimal preventive
maintenance times
(years)

Components selected for
replacement at optimal
preventive maintenance

times ðxit Þ
1.65 1,4,5,9,18,19,20,22,23,

2.41 6,12,13,16,17,21,24,25

4.15 1,3,4,10,14,22,24,26

7.25 2,4,5,6,8,11,12,15,20,21,23,24,25,26

9.17 4,5,7,9,14,21,22,23,25,26,27

11.44 3,4,9,12,13,17,18,24,25,28

13.81 1,4,6,12,13,16,20,21,22,23

15.80 1,2,4,5,12,18,22,23,25,26

17.29 2,6,14,16,20,23,24,26,27
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Appendix A

Fig. A1. Flowchart of the GA algorithm used in this study.

Fig. A2. Flowchart of the Fibonacci algorithm used in this study.
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Table A1. Wind turbine components’ and failure data [6,25]

Component Failure distribution Exponential (λ in days)

Weibull

Scale (α in days) Shape (β)
Subsystem: rotor

Blade structure Exponential 146,000

Blade non-structure Exponential 36,500

Pitch cylinder Weibull 3,650 3.5

Pitch bearing Weibull 18,250 3.5

Pump and hydraulics Weibull 4,380 3.5

Pitch position x-direction Weibull 4,380 2

Pitch motor Weibull 5,475 1.1

Pitch gear Weibull 4,380 3.5

Subsystem: drive train

Main bearing Weibull 14,235 3.5

High-speed coupling Weibull 9,125 3.5

Subsystem: gearbox

Gearbox gears Exponential 14,600

Gearbox bearings Weibull 9,490 3.5

High-speed gearbox Weibull 9,490 3.5

Lube pumps Weibull 4,380 3

Gearbox cooling fan Weibull 6,935 1.1

Subsystem: generator and cooling

Generator – rotor Exponential 73,000

Generator – bearings Weibull 6,205 3.5

Full converter Weibull 5,475 2

Generator cooling fan Weibull 6,935 1.1

Contactor generator Weibull 7,300 2

Partial converter Weibull 5,475 2

Subsystem: brakes and hydraulics

Brake caliper Weibull 3,650 2

Brake pads Weibull 3,650 2

Accumulator Weibull 2,190 3

Hydraulic Weibull 4,380 3

Subsystem: yaw system

Yaw gear Exponential 146,000

Yaw motor Weibull 3,650 2

Yaw sliding pads Weibull 3,650 3.5

Yaw bearing Weibull 3,650 3.5
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Table A2. Results of PSO algorithm for the PM
planning

Iterations Best Mean

0 1.91E+06 2.01E+06
3000 1.91E+06 2.37E+06
6000 1.81E+06 2.05E+06
9000 1.81E+06 2.13E+06
12000 1.81E+06 2.07E+06
15000 1.81E+06 2.09E+06
18000 1.80E+06 2.06E+06
21000 1.80E+06 2.06E+06
24000 1.80E+06 2.05E+06
27000 1.80E+06 2.05E+06
30000 1.80E+06 2.03E+06
33000 1.78E+06 1.99E+06
36000 1.77E+06 2.00E+06
39000 1.77E+06 1.99E+06
42000 1.77E+06 1.98E+06
45000 1.77E+06 1.98E+06
48000 1.77E+06 1.98E+06
51000 1.77E+06 1.97E+06
54000 1.72E+06 1.91E+06
57000 1.68E+06 1.90E+06
60000 1.67E+06 1.89E+06
63000 1.61E+06 1.88E+06
66000 1.56E+06 1.88E+06
69000 1.56E+06 1.89E+06
72000 1.56E+06 1.90E+06
75000 1.56E+06 1.90E+06
78000 1.56E+06 1.90E+06
81000 1.56E+06 1.90E+06
84000 1.56E+06 1.91E+06
87000 1.56E+06 1.91E+06
90000 1.56E+06 1.91E+06
93000 1.56E+06 1.91E+06
96000 1.56E+06 1.90E+06
99000 1.56E+06 1.90E+06

Wind Turbine Optimal Preventive Maintenance Scheduling 169

JDMD Vol. 2, No. 3, 2023


