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Abstract: The exploitation of renewable energy has become a pressing task due to climate change and the recent
energy crisis caused by regional conflicts. This has further accelerated the rapid development of the global
photovoltaic (PV) market, thereby making the management and maintenance of solar photovoltaic (SPV) panels a
new area of business as neglecting it may lead to significant financial losses and failure to combat climate change
and the energy crisis. SPV panels face many risks that may degrade their power generation performance, damage
their structures, or even cause the complete loss of their power generation capacity during their long service life. It
is hoped that these problems can be identified and resolved as soon as possible. However, this is a challenging task
as a solar power plant (SPP) may contain hundreds even thousands of SPV panels. To provide a potential solution
for this issue, a smart drone-based SPV panel condition monitoring (CM) technique has been studied in this paper.
In the study, the U-Net neural network (UNNN), which is ideal for undertaking image segmentation tasks and
good at handling small sample size problem, is adopted to automatically create mask images from the collected
true color thermal infrared images. The support vector machine (SVM), which performs very well in high-
dimensional feature spaces and is therefore good at image recognition, is employed to classifying the mask images
generated by the UNNN. The research result has shown that with the aid of the UNNN and SVM, the thermal
infrared images that are remotely collected by drones from SPPs can be automatically and effectively processed,
analyzed, and classified with reasonable accuracy (over 80%). Particularly, the mask images produced by the
trained UNNN, which contain less interference items than true color thermal infrared images, significantly benefit
the assessing accuracy of the health state of SPV panels. It is anticipated that the technical approach presented in
this paper will serve as an inspiration for the exploration of more advanced and dependable smart asset
management techniques within the solar power industry.
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I. BACKGROUND
The solar photovoltaic (SPV) market is booming globally.
For example, the power generation from SPV increased by
179 TWh in 2021, marking an increase of 22% over 2020.
Today, global solar PV generation has exceeded
1000 TWh, accounting for 3.6% of global electricity gen-
eration. This makes solar power the third largest renewable
power technology behind hydropower and wind. Of the
total growth of solar power generation in 2021, China
contributes about 38%. The second largest growth, 17%,
occurred in the United States, and the third largest growth,
10%, was in the European Union [1]. However, the average
annual generation growth of 25% in the period of 2022 to
2030 is needed to follow the Net Zero Emissions by 2050
Scenario [2]. This corresponds to a more than threefold
increase in annual capacity deployment until 2030. That
means, the future annual solar PV capacity addition will be
about 600 GW. Since single SPV panel in the current
market is rated at 1∼4 kW, the capacity addition of
600 GW means that 150∼600 million solar PV panels
will be newly installed every year. This will raise a

challenging asset management issue in solar power plants
(SPP). Although SPV panels are generally considered to be
reliable and low maintenance, there is still a possibility that
issues may arise during the various stages of their produc-
tion, transportation, and installation. These problems could
potentially affect the performance or lifespan of the SPV
panels. They also face many risks during the long service
life, which may degrade their power generation perfor-
mance [3,4]. Therefore, in the solar power industry today,
the task of promptly identifying faulty SPV panels from
hundreds of them and furthermore accurately diagnosing
the fault has become a crucial challenge. To address this
issue, much effort has been made in the past years [4–11].
The currently available techniques can be roughly catego-
rized into two categories. The first category of technique,
such as those reported in [4,5], was developed for analyzing
the electrical signals output from the SPV panels. They
assess the panel’s health condition by comparing the col-
lected electrical signals with the historical signals collected
from healthy panels. The second category of technique,
such as those reported in [9,10], relies on investigating the
features of the images taken from the SPV panels. They
judge the panel’s health state by detecting the abnormal
changes in image features using image processing and
classification methods. Such research, particularly the
work reported in [9,10], was developed based on a
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hypothesis, i.e., the presence of a fault in SPV panel will
result in temperature change in the defective area, and
therefore can be detected by a thermal infrared camera or
other temperature measurement means. Since different
types of SPV panel faults are caused by different compo-
nents in the system, they show distinct appearances in
images. Therefore, it is realistic to roughly judge the types
of SPV panel faults through observing the fault-related
features of the images. In comparison,

• The first category of technique is usually considered
ideal for online monitoring a small number of individ-
ual SPV panels as it involves simple hardware config-
uration and calculation. However, it will face a
challenge when applied to monitor a huge number
of panels due to the significantly increased cost and
complexity of the hardware.

• The second category of technique is more economical
when applied to simultaneously monitor hundreds of
SPV panels in a SPP as it does not require using lots of
transducers and the associated hardware. Since the
images of solar PV panels can be readily collected
using drones, the second category of technique is
attracting increasing interest today from both scholars
and industrialists.

However, how to process the collected PV panel
images quickly and effectively and apply them to the in
situ asset management in the SPP is still a technology gap.
The work reported in this paper is a part of the contribution
to address this technology gap. The novelty of this paper is
that a smart health state assessment method will be devel-
oped specifically for SPV panels solely based on intelligent
processing and analysis of the thermal infrared images. The
corresponding algorithms will be developed with the aid of
the U-Net neural network (UNNN) and support vector
machine (SVM).

The reason for adopting the UNNN and SVM in this
study is based on their numbers of key advantages in image
processing and image classification. For example, the
UNNN is a specialized convolutional neural network
(CNN) commonly used for image segmentation tasks. It
was designed for pixel-wise semantic segmentation, which
means it can accurately identify and segment objects or
regions of interest within an image. Moreover, the UNNN
consists of an encoder path and a decoder path. The encoder
gradually reduces spatial resolution while increasing the
number of channels to capture high-level features, and the
decoder path upscales the feature maps to produce a
segmentation mask. This architecture enables precise local-
ization of object boundaries [11]. In the past years, it has

been successfully applied to tumor segmentation in medical
images, road detection in satellite imagery, and cell nucleus
segmentation in microscopy images. It is believed that the
UNNN can continue its success in processing the thermal
infrared images in this study. The SVM performs well in
high-dimensional feature spaces, which is especially useful
when dealing with data that has many features. This makes
it suitable for tasks like text classification, image recogni-
tion, and genomics. In addition, the SVM is less prone to
overfitting and less affected by outliers compared to many
other machine learning algorithms [12]. These advantages
will significantly benefit the accuracy of classification when
applied to assess the health state of SPV panels.

The rest of the paper is organized as follows. To ease
understanding, Section II will give a brief introduction to
the three popular types of SPV panel faults that may occur
in the practice of solar power generation. Section III will
introduce the method used for image collection. To develop
the database for performing machine learning, image pro-
cessing and image sample expansion methods will be
developed in Section IV. The method for extracting features
from thermal infrared images will be developed in
Section V. A smart SPV panel condition monitoring
(CM) technique will be developed and tested in
Section VI. Finally, the paper is ended in Section VII
with a few key conclusions.

II. POPULAR SPV PANEL FAULTS
The long-term practice has shown that SPV panels may
develop faults during the process of manufacturing, trans-
port, and installation. They may also fail during the subse-
quent power generation process due to harsh environments,
grid problems, or other unforeseen reasons [13,14]. Since
faults can cause optical degradation or electrical mismatch
of the SPV panels [15], the efficiency of the SPV panels will
decrease significantly in the presence of a fault. So, it is
hoped that these faults can be identified and resolved as
soon as they are present to avoid significant economic
losses or secondary damage to other facilities in the SPP.
Although various types of faults may develop in SPV
panels, the most popular types of faults are power unit
faults, safety glass cracks, and safety glass contaminations
[16,17]. To facilitate understanding, the thermal infrared
images in the presence of these three types of faults are
shown in Fig. 1. In the figure, the color indicates the relative
temperature in the surface area of the SPV panels.

From Fig. 1, it is seen that completely different graph
features can be observed from the thermal infrared images
when different types of faults are developed in the solar PV

(a) Power unit fault (b) Safety-glass crack (c) Safety-glass contaminations

Fig. 1. Three popular types of faults occurring in solar PV panels.
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panels. This suggests the feasibility of identifying and
diagnosing SPV panel faults by analyzing the thermal
infrared images remotely taken from the SPV panels by
a drone. To help understand the three popular types of SPV
panel faults, Fig. 2 shows the structural configuration of a
solar PV panel.

Of the three popular types of faults, power unit failure
is usually resulted by mechanical damage during
manufacturing, installation, and transportation. Faults of
this type can result in power failure or lead to the failure of
some function modules, with a noticeable temperature
change in the vicinity of the faults. The cracking of safety
glass may occur due to improper handling during
manufacturing, installation, and transportation, as well as
due to shocks and extreme temperature. Usually, once the
safety glass breaks, the SPV panels may display signs of
delamination, air bubbles, discoloration of the encapsulat-
ing material, and cracked PV glass. In practice, the detec-
tion of such type of fault depends on the sensitivity of the
detection methods and tools to the fault. Usually, this type
of fault can result in a local temperature increase at the
location of the fault and a 4–10% power generation loss.
The pollution of safety glass may be caused by the dust on
the surface of the SPV panel, the accumulation of bird
droplets or other dirt. As a consequence of this type of fault,
the temperature in the vicinity of contamination will change
abnormally, causing a decrease in the efficiency of the SPV
panels.

III. IMAGE COLLECTION
In this study, a thermal imaging camera, modeled FLUKE
Ti 450, was employed to collect the thermal infrared images
of the SPV panels. It is shown in Fig. 3, and its specifica-
tions are listed in Table I.

In the study, in order to develop a smart machine
learning network for diagnosing SPV panel faults, a data-
base will be established first, in which the thermal infrared

images collected from the SPV panels in the following four
health states will be considered:

(a) Healthy SPV panels

(b) SPV panels with cracks on safety glass

(c) SPV panels with power unit failure

(d) SPV panels with polluted safety glass

The specifications of the solar PV panels used for this study
are listed in Table II.

During the collection of images, all images of SPV
panels were taken using a FLUKE Ti450 camera without
interruption of the panel’s operation despite their health
states. The thermal infrared camera was set up 0.6–1.0 m
above the SPV panels to mimic a scenario in which the
camera is carried by a drone to monitor the panels. Since the
assessment of the health state of SPV panels relies on
characterizing the graph features within the images rather
than the size of patterns, the variation in camera distance
above the SPV panels and camera shooting angle should not

Fig. 2. The structural configuration of a solar PV panel [15].

Fig. 3. Thermal imaging camera FLUKE Ti450 [15].
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affect the assessment results. In the experiment, a total of
295 images were taken, of which 98 images were from the
panels in the type (a) health state, 73 were from the panels in
the type (b) health state, 64 from the panels in type (c) health
state, and 60 from the panels in type (d) health state,
respectively.

IV. IMAGE PROCESSING AND IMAGE
SAMPLE EXPANSION FOR

DATABASE ESTABLISHMENT
In order to facilitate image storage and processing, the
software SmartView was adopted firstly to convert the
collected image into real color images with 24-bit depth
and 320 × 240 resolution. Since the UNNN has a capability
to tackle the problem of limited sample availability in image
segmentation [18], it will be adopted in this study and
trained for automatically generating the mask images from
the true color images that are newly obtained using Smart-
View. Since the mask images contain fewer interference
information than true color images, the application of mask
images can help increase the accuracy of image classifica-
tion. To obtain correct mask images required by the training

of the UNNN, software LabelMe will be used to process the
true color images. To ensure the accuracy of the mask
images, the defect areas on the true color image are outlined
with the aid of the software LabelMe during the mask image
creation process. To ease understanding, the mask images
obtained using SmartView and LabelMe from the three true
color images in Fig. 1 are shown in Fig. 4. Where, the
images are 320 × 240 black images. Herein, it is worth
noting that all pixel values in the mask image of a healthy
SPV panel will be set to 0.

By comparing Figs. 1 and 4, it is seen that that all the
interference items in true color images have disappeared in
the corresponding mask images. Undoubtedly, this will be
very helpful to improve the accuracy of CM and fault
diagnosis of SPV panels.

Even though the UNNN can handle small sample size
problem, the use of more training samples can still enhance
the quality of image segmentation. In the study, three
methods were also adopted in the following to expand
the database of image samples. They are (1) mirroring
(i.e., creating a new image by flipping the original image
left and right), (2) flipping (i.e., creating a new image by
flipping the original image up and down), and (3) cropping
and zooming in (i.e., creating a new image by cropping and
zooming in the original image), respectively. To ease
understanding, a few examples of the new images generated
using these three image sample expansion methods are
illustrated in Fig. 5. In the figure, all four new images
were generated from an original safety glass crack image.

To generate more image samples for training the
UNNN, the corresponding mask images also need to be
expanded using the aforementioned image sample expan-
sion methods. In the end, a total of 2,352 mask images are
obtained in the database, of which 1,852 are for training the
UNNN, and the rest will be used for verification.

Table I. Technical specifications of the camera [15]

Characteristics

IFOV with standard lens (spatial resolution) 1.31mRad, D:S 753:1

Detector resolution 320 × 240

Multi-Sharp™ Multi-point focus Close and telephoto images can be captured in the whole view.

Laser rangefinders Yes, calculate the distance to the target to obtain a precisely focused image.

Temperature measurement

Temperature measurement range −20∼1200°C(−4∼2192°F)
Accuracy ±2°C at a nominal temperature of 25°C

Thermal sensitivity (NETD) ≤0.05°C (50 mK), target temperature 30°C

Table II. Specifications of the solar PV panel used in
the study [15]

Maximum power 110 W

Maximum operating voltage 18 V

Maximum operating current 6.11 A

Open-circuit voltage 23.66 V

Short-circuit current 8.4 A

(a) Power unit fault (b) Safety-glass crack (c) Safety-glass contaminations

Fig. 4. The mask images that correspond to the true color images in Fig. 1.
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V. IMAGE FEATURE EXTRACTION
Since mask images contain less interference items and this
benefits the accuracy of monitoring and diagnosing SPV
panels, a UNNN will be trained in this section to automati-
cally produce mask images from the true color images. The
UNNN training process is illustrated in Fig. 6.

As shown in Fig. 6, the UNNN algorithm is imple-
mented by two tools, i.e., encoder and decoder. The encoder
is responsible for extracting features from the true color
images by reducing their resolution four times. The decoder
is responsible for increasing the resolution of the extracted
features back to the original true color image size by the
approach of up-sampling. Then, the image segmentation
results can be readily obtained by calculating the probability
of each pixel. In this study, the UNNN training algorithm is
coded in Python 3.7. The Python codes are shown in Fig. 7.

In the UNNN training process, the similarity between
the image created by the trained UNNN and real mask
image is measured by a Dice coefficient, of which the value
varies in the range of [0, 1]. The larger the value of the Dice
coefficient, the more similar the newly created image is to
the real mask image. The Dice coefficient is expressed as:

Dice =
2 × ðpred∩ trueÞ

pred∪ true
(1)

where “pred” denotes the predicted values and “true”
denotes the true values. The symbol “∩” refers to the
operation of the dot product and the symbol “∪” represents

the operation of the linear sum of the pixel values in the
output image and the real mask image.

By using the trained UNNN, the mask images corre-
sponding to the true color thermal images can be generated
quickly and correctly. Some of the results are shown
in Fig. 8.

From Fig. 8, it is found that when different types of
faults occur in the SPV panels, the defective areas in the
mask images exhibit distinct graph contour features. Spe-
cifically, when the SPV panel has a power unit fault, a
regular-shaped contour with a large area and long perimeter
is present. If there is a crack on the safety glass surface, a
slender-shaped contour can be seen from the mask images.
An irregular-shaped contour is often associated with con-
tamination of the safety glass by dust, dirt, or shadows. If
the SPV panel is healthy and defect-free, no white graph
will be present in the mask images. Herein, it is important to
acknowledge that all the aforementioned fault-related
image features were observed only in the context of this
study. However, it is essential to recognize that these
observations may exhibit variations in real-life SPV appli-
cations owing to a multitude of factors. To facilitate the
description of these fault-related image features, the area
and the perimeter of the graph contour were used firstly to
characterize the mask images. This is because Fig. 8 shows
that the fault-related features exhibit different geometric
shapes and sizes when the SPV panels are under different
health conditions. Besides, “aspect ratio” and “the ratio of
contour area to the area of the outer rectangle” of the

(a) Original image (b) Result of mirroring (c) Result of flipping (d) Result of cropping

Fig. 5. An example of image sample expansion.

Fig. 6. The working process of a UNNN [13].
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Fig. 7. The UNNN training algorithm.

(a) Panel with power 
unit fault

(b) Panel with safety-
glass crack

(c) Panel with 
contaminations

(d) Panel without any 
defect

Fig. 8. Masks generated by the trained UNNN.
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contour were also adopted to enhance the description of the
geometric shape of the graph contour.

VI. FAULT DIAGNOSIS OF SPV
PANELS

Given that SVM has demonstrated excellent performance in
solving both binary and multi-class classification problems
[19], an SVM-based smart technique will be developed in
this section for diagnosing the health state of SPV panels.
The input of the SVMwill be the four defined graph contour
features of the mask images generated by the trained
UNNN. The output of the trained SVM will be four digital
numbers 0, 1, 2, and 3, which respectively indicate the panel
with a safety glass crack, the panel with safety glass
contaminations, the panel with a power unit fault, and
the healthy panel without any defect.

Then, the four features defined in Section V are
extracted from 1,852 mask images. The calculation results
will then be used as the input for training the SVM. The
four features of the remaining 500 mask images are also
calculated, and their results will be used to verify the
trained SVM. In the SVM training process, in order to
further improve the classification efficiency of the SVM,
the above four features are fed into the SVM in different
combination forms. As this study focuses on just four
image features, for the sake of simplicity, their impact on
image classification is roughly evaluated only through a
trial-and-error approach. Nevertheless, when incorporat-
ing a larger set of image features into the classification
process, a more rigorous scientific method, like signifi-
cance calculation, should be employed to identify the most
suitable features for assessing the health state of SPV
panels. The classification accuracy rates of the SVM that
are trained using different feature combinations are tabu-
lated in Table III. Herein, it is worth noting that only four
feature combinations with significant accuracy rates are
listed in Table III, while those leading to unsatisfactory
accuracy rates are not listed in the table for keeping a
concise context of the paper.

From Table III, it is found that when the features of
different combinations are used to train the SVM, the
trained SVM shows different accuracy rates. The compari-
son has shown that higher accuracy rates, i.e., 80.9% and
81.2%, were achieved under the following two
combinations:

• “contour perimeter”+ “aspect ratio”

• “contour perimeter”+ “aspect ratio”+ “the ratio of
contour area to the area of the outer rectangle”

Since a similar accuracy rate was obtained before and
after considering “the ratio of contour area to the area of the
outer rectangle,” it suggests that this feature is not very
helpful to improve the accuracy of the SVM.

In the meantime, from Table III, it is interestingly
found that an accuracy of 80.9% is obtained when “contour
perimeter” and “aspect ratio” are used in combination.
However, after the “contour area” is added to the input,
the accuracy of the SVM drops significantly down to
67.7%. In addition, an accuracy of 81.2% is obtained
when “contour perimeter,” “aspect ratio,” and “the ratio
of contour area to the area of the outer rectangle” are used in
combination. However, after the “contour area” is added to
the input, the accuracy of the SVM also drops significantly
down to 67.7%. This suggests that the “contour area” has a
negative influence on the accuracy of the SVM.

Therefore, by performing the above analysis, “contour
perimeter” and “aspect ratio” are identified as the best
feature combination for diagnosing the health state of
SPV panels.

VII. CONCLUSIONS
By using the UNNN and SVM, a smart health state
diagnosing technique was developed in this paper for
assessing the health condition of SPV panels and thereby
enhancing asset management in the SPPs. Through per-
forming a systematic research, the following conclusions
can be drawn:

• Since a fault can cause change in the temperature in the
defective area on the surface of SPV panels, thermal
infrared images, especially their mask images that
contain minimal interference, are a reliable source
for monitoring the health condition of SPV panels.

• SPV panel faults can be readily identified with reason-
able accuracy by observing the graph contour char-
acteristics in their thermal infrared images. Therefore, it
is a feasible approach to diagnosing SPV panel faults
by analyzing the graph contour features in the mask
images deduced from their true color thermal infrared
images.

• The UNNN, after being trained, is a proficient and
reliable solution for image segmentation and producing
mask images from the original color images.

• “contour perimeter” and “aspect ratio” are two ideal
features that can be used by the trained SVM to assess
the health state of SPV panels. By contrast, “contour
area” has a negative influence on the accuracy of the
SVM, and “the ratio of contour area to the area of the
outer rectangle” has no significant influence on the
classification accuracy of the SVM.

While the current study has yielded promising results,
there remains a substantial amount of work that must be
undertaken in the future to enhance the accuracy, reliability,
and applicability of the techniques employed. Our forth-
coming efforts will concentrate on several key aspects,
including comparing our approach with other image

Table III. Classification accuracy of the SVM when using different feature combinations

Combinations of the features

“contour area”+ “contour
perimeter”+ “aspect ratio”

+ “the ratio of contour area to
the area of the outer rectangle”

“contour area”
+ “contour
perimeter”

+ “aspect ratio”

“contour
perimeter”
+ “aspect
ratio”

“contour perimeter”
+ “aspect ratio”+ “the ratio of
contour area to the area of the

outer rectangle”

Accuracy 67.7% 67.7% 80.9% 81.2%
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segmentation and classification techniques, enhancing the
existing algorithms by leveraging their strengths, conduct-
ing a more extensive array of experiments, acquiring a
greater number of thermal infrared images across diverse
scenarios to expand our image database, and validating the
improved methodology by implementing it for in situ
monitoring of SPV panels within a SPP.
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