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Abstract: This work presents a novel wavelet-based denoising technique for improving the signal-to-noise ratio
(SNR) of nonsteady vibration signals in hardware redundant systems. The proposed method utilizes the
relationship between redundant hardware components to effectively separate fault-related components from
the vibration signature, thus enhancing fault detection accuracy. The study evaluates the proposed technique on
two mechanically identical subsystems that are simultaneously controlled under the same speed and load inputs,
with and without the proposed denoising step. The results demonstrate an increase in detection accuracy when
incorporating the proposed denoising method into a fault detection system designed for hardware redundant
machinery. This work is original in its application of a new method for improving performance when using
residual analysis for fault detection in hardware redundant machinery configurations. Moreover, the proposed
methodology is applicable to nonstationary equipment that experiences changes in both speed and load.
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I. INTRODUCTION
A. HARDWARE REDUNDANT SYSTEMS

Hardware redundancy is an important and effective tool in
fault-tolerant design of mechanical and electromechanical
systems and is often employed to increase reliability and
safety in critical systems. The inclusion of multiple redun-
dant components can also increase diagnostic coverage and
allow for fault-tolerant design of systems. Hardware redun-
dancy is commonly used for sensor fault detection and
accommodation [1,2], in these implementations multiple
sensors to measure the same subject. Sensor fault accom-
modation is the ability of the system to continue operation
with a faulty sensor. The International Standards Organisa-
tion (ISO) even goes as far as requiring the use of hardware
redundancy for safety critical parts of control systems
where a certain safety performance level must be met
[3]. When implemented for mechanical systems, hardware
redundancy often dictates the use of multiple components
operating in parallel, where the failure of one will result in
increased load on the other remaining healthy components
[4], but the overall system is still operational. An example
of an industrial application of redundancy is commonly
seen in pumping systems where multiple pumps are
arranged in parallel, sharing a common load. Such systems
are typically designed to continue to operate if one compo-
nent goes offline. There are many factors to consider when
looking at the reliability of redundant systems. Mortazavi
et al. [5] highlighted the need to consider dependent failures
when looking at redundant pump systems. In critical sys-
tems (where reliability is important), it is helpful even in
highly redundant fault-tolerant systems to obtain usable
information on the health of individual components or
subsystems.

When considering the application of redundancy in
fault detection, one methodology that must be explored is

analytical redundancy. These methods employ a mathemat-
ical model that is used as a redundant way to determine the
value of a measured signal [6]. The relationship between the
model and the measured values can take the form of so-
called analytical redundancy relations (ARRs). These
ARRs are then used to generate residuals that can indicate
the state of the machine. The mathematical models used can
come in the form of process models or signal models [4].
The form of the generated residuals can be structured
such that the fault type can be determined by analyzing
the vector composed of the residuals [7]. ARRs were
originally developed for linear systems; however, they
can be extended to nonlinear systems [8]. More recently,
Willersrud et al. [9] showed that ARRs can be used to detect
incidents while drilling.

Helm and Timusk, [10] have shown that in cases where
machinery operates in parallel (such as hardware redundant
mechanical systems), it is possible to improve early fault
detection accuracy when subsystems are analyzed together
instead of as separate systems. In this work, it was shown
that by looking at the residual value in the feature domain
between two identical subsystems that are linked together
to operate identically, it was possible to reduce the fault
detection system’s sensitivity to the nonstationary machin-
ery operating conditions.

B. CONDITION MONITORING FOR
NONSTATIONARY MACHINES

Detection of the early stages of rolling element bearing
(REB) failures is an important step when implementing
condition-based maintenance schemes for rotating machin-
ery. Due to the many factors that affect the lifetime of REBs
and their relatively frequent need for service or replace-
ment, many signal processing techniques have been devel-
oped to monitor their condition. One of the most widely
used techniques for determining the condition of REBs is
the thorough analysis of mechanical vibration. The vibra-
tions produced by rotating machinery can indicate not onlyCorresponding author: Markus Timusk (e-mail mtimusk@laurentian.ca).
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the health of the machine but also be used to diagnose the
type of fault present. Often the signature of an incipient fault
is weak when compared to other sources of vibration from
adjacent mechanical components (i.e. gears), and this re-
sults in a low signal-to-noise ratio (SNR) and requires
careful analysis and processing of the vibration signal to
extract the needed information. The problem is further
complicated when considering machinery that operates in
a nonstationary duty cycle such as variable speed and load.
This class of machinery generates characteristic signals that
are highly variable in time. Due to the transient nature of the
fault signature as well as other sources of excitation,
applying traditional signal processing techniques to non-
stationary signals is a difficult task. Consequently, there is a
large body of research aimed at reducing the influence of
changes in speed and load from the fault detection process
for these nonstationary signals [11]. Some proposed tech-
niques include optimizing the filtering of the signal to
increase SNR, time synchronous averaging, as well as
the separation of the random fault signatures from the
deterministic components in the signal.

When monitoring the vibration of REBs, envelope
analysis is perhaps one of the most commonly employed
signal processing techniques for fault detection and diag-
nostics. In this technique, the frequency of amplitude
modulations in a high-frequency band of the signal is
analyzed to reveal the bearing fault characteristic frequen-
cies [12]. It is generally desirable when applying envelope
analysis to perform some preprocessing steps to remove
nonfault-related components from the signal. Common
techniques such as time synchronous averaging or linear
prediction filtering [13,14] can be used to remove the
deterministic components from the signal to increase the
relative power of the fault signature. This works due to
the bearing fault signature’s inherently random nature.
Techniques such as these can be difficult to apply to
nonstationary signals due to the frequency modulation of
various components that is inherently present when dealing
with signals from nonstationary machinery. This can
become even more complicated when considering interac-
tions between angle-dependent (i.e. gear meshing) and
time-dependent (characteristics of the signal transfer path)
components of the signal.

Many signal processing techniques have been devel-
oped to deal with the challenges of monitoring nonstation-
ary machinery. Recently, much research has been focused

on the treatment of cyclo-nonstationary signals [15–17] for
fault detection. Additionally, there are some methods that
extend typical techniques for the separation of deterministic
components. One such method is Linear Parameter-Vary-
ing Autoregressive Prediction Filtering (LPV-AR). By
combining LPV modeling and AR prediction filtering,
LPV-AR models can capture the system’s dynamic behav-
ior and improve predictions of future values. The varying
parameters in the LPV model are estimated using a set of
past observations, and the AR model is used to predict
future observations based on these estimated parameters.
LPV-AR has been used to detect faults in gearboxes
[18–20]. Other common techniques include order tracking
of the signal to remove frequency modulations that are
linked to the rotating frequency of the machine [21], or the
analysis of the vibrations in the time-frequency domain to
see how the spectral characteristics change over time [22].
Examples of time-frequency domain techniques include
wavelet analysis, the Short-Time Fourier Transform
(STFT), and empirical mode decomposition. The wavelet
transform is a technique that has found many applications
for vibration analysis of time-variant systems due to its
ability to provide simultaneous localization of signals in the
time and frequency domain. The method projects a signal
onto a set of orthogonal basis functions to represent the data
in the time-frequency domain. Unlike the STFT, the wave-
let transform can provide a multiscale time-frequency
representation, wherein higher-frequency components are
represented with higher time resolution and lower frequen-
cies are represented with higher-frequency resolution.

There are a few different types of wavelet transforms,
most notably the continuous wavelet transform (CWT) and
the discrete wavelet transform (DWT). The output of the
CWT is highly redundant because there is significant
overlap between wavelets in each scale. The output of
the CWT is an m-by-n matrix where n is the length of
the original signal andm is the number of scales (see Fig. 1).
The DWT, in contrast, can provide a sparse representation
of the original signal, where the number of coefficients is
equal to the length of the original signal. The CWT is useful
for detailed time-frequency domain analysis, whereas the
DWT is commonly used for compression and noise
reduction.

The DWT results in a set of coefficients that represent
the signal in different frequency bands, with high-frequency
components in the detail coefficients and low-frequency

Fig. 1. CWT of a raw vibration signal from a rolling element bearing.
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components in the approximation coefficients. The
decomposition can be performed recursively, resulting in
a multi-resolution analysis of the signal. The DWT only
further decomposes the approximation part at each decom-
position level.

Another type of transform that has been demonstrated
to be effective for condition-based maintenance is wavelet
packet decomposition (WPD) [23–25]. WPD is an
extension of the DWT that allows for a more flexible
decomposition of the signal. In WPD, each node in the
decomposition tree has two child nodes, representing the
approximation and detail coefficients. The decomposition
can be continued recursively, resulting in a tree structure
with multiple levels of nodes. The advantage of WPD over
DWT is that it provides a more detailed analysis of the
signal, allowing for better compression and feature extrac-
tion. Figure 2 shows the decomposition tree for both the
DWT and WPD.

C. WAVELET DENOISING

First proposed by Mallat [26,27], wavelet denoising is a
technique that can be used to help increase the SNR of a raw
signal by removing white noise (white noise is defined here
as a random series with zero mean and finite variance). In
this work, Mallat demonstrated that by using only the local
extrema from the wavelet transform modulus, it is possible
to reconstruct an approximation of the original signal. This
is due to the redundancy of information produced by the
wavelet transform. The principal problem in wavelet de-
noising is the selection of a suitable threshold. Donoho and
Johnstone [28] proposed the SureShrink method for
wavelet denoising in which the threshold is automatically
determined for each decomposition level. Another method
was proposed by Cai and Silverman (referred to as the
NeighCoeff method) for wavelet denoising. In the
NeighCoeff method, neighboring wavelet coefficients are
taken into account during the thresholding process [29]. In
the more general context, wavelet denoising has been used
to denoise bearing vibration signals for the task of fault
detection [30–33].

Aminghafari et al. [34] extended the typical application
of wavelet denoising to multivariate signals. This technique
aims to improve denoising results for multivariate signals

with additive spatially correlated noise. This method can
combine wavelet denoising with principal component
analysis (PCA), which is used as a second step to further
denoise the signal by leveraging deterministic relationships
between the signals. This method addresses systems
following the general form of equation 1. Where X is the
observed signal that of dimension p, f is the deterministic
signal to be recovered, and E is spatially correlated
noise:

XpðtÞ = f pðtÞ + EpðtÞ (1)

This technique has seen some limited applications to
fault detection in rotating machinery. Cancan et al. pro-
posed a multi-sensor signal denoising scheme based on a
matching synchrosqueezing wavelet transform [35].
The technique was implemented to detect faults in gears
and bearings using a signal from a three-axis accelerometer.
Chaabi et al. [36] used this technique to denoise
individual intrinsic mode functions (IMFs) generated by
Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN). The denoised IMFs were
then analysed using envelope analysis to detect faults in
REBs.

Helm and Timusk first proposed an adaption to wavelet
denoising aimed specifically at fault detection in hardware
redundant systems. This new methodology looked to lever-
age the information gained when systems are operating in
parallel to improve the extraction of weak bearing fault
signatures [37]. This technique adapted wavelet denoising
to utilize a reference signal for thresholding in the wavelet
domain. The results in the original paper were promising;
however, the analysis is limited to simulated signals. This
work focuses on applying it to real data collected from two
mechanically identical subsystems operating in nonstation-
ary conditions, as well as detecting several different fault
types. The expectation is that by applying the wavelet
denoising algorithm to each of the redundant systems (using
the other as a reference), differences in the signals will be
amplified and shared deterministic components will be
removed. This will result in an increased residual between
the two systems in the feature domain making incipient
faults easier to detect.

II. METHODOLOGY
A. WAVELET DENOISING USING A
REFERENCE SIGNAL

This section describes the proposed methodology used to
enhance the relevant information in the measured vibration
signals to aid in fault detection and improve the SNR.
Unlike typical wavelet denoising applications where mea-
sured signals take the form of equation 1 (presented earlier),
when implementing denoising for fault detection, we must
consider that the signal to be recovered is somewhat random
and impulsive in nature. Whereas the “noise” or the parts of
the signal that are not related to the fault and need to be
eliminated can be deterministic and dominate the signal
(such as gear meshing frequencies). When considering
hardware redundant systems, similar to the system formu-
lated for multivariate wavelet denoising, there is a deter-
ministic relationship between the measured signals.
However, in this case, the relationship is well defined,
and the frequency content of the signals (not associated
with fault condition) will be the same. While typical

Fig. 2. Three-level decomposition trees for discrete wavelet
transform (left) and wavelet packet decomposition (right).
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wavelet denoising techniques use a static threshold to
remove noise from signals, the proposed technique adapts
the thresholding level (in both the scale and time direction)
based on information from a reference signal. In doing this,
the components of the signals that present the same in the
wavelet transform domain can be removed, reducing the
original signals to the residuals that are not shared between
the two. The steps for the proposed wavelet denoisng
methodology are presented in Fig. 3.

The thresholding value for a given scale and index in
the wavelet packet transform (WPT) modulus is determined
by finding the nearest local maxima of the reference signals
WPT modulus at the same scale and index (see Fig. 4).

Soft thresholding is then applied to each signal to
remove the shared signal components. See equation 2 for
soft thresholding, where x is input, t is the threshold, and y is
the output:

y =

8<
:

0 if jxj < t
x − t if x > t
xþ t if x < −t

(2)

The signals are then reconstructed using the inverse
of the original transform. The reconstructed signals can
then be treated with any other suitable fault detection
scheme. Additional information on this method can be
found in [37].

B. FAULT DETECTION OF HARDWARE
REDUNDANT SYSTEMS USING WAVELET
DENOISING

When detecting faults in hardware redundant systems,
wavelet denoising using a reference signal can be easily
employed as the redundant mechanical system can provide
the required reference signals. In this application, each of
the subsystems can serve as a reference of the other,
allowing faults to be detected in either subsystem. When
applying this technique to fault detection, the denoised
signal must then be analyzed using other methods to
determine if there is a fault present. In this work, the
denoised signals are analyzed using envelope analysis to
extract the bearing fault frequencies and autoregressive
(AR) modeling. Features are then extracted from the AR
model and the envelope signal, and the resulting feature
vectors are compared between the two subsystems to detect
the faults. The signal flow of this technique is illustrated in
Fig. 5 for depicting both parallel subsystems.

1) WAVELET DENOISING AS APPLIED TO REDUNDANT
REBs. After the collection of vibration signals from each
subsystem, wavelet denoising is performed using the signal
from each subsystem as a reference for the other. In this
work, the Fejér–Korovkin wavelet of order 8 was used and
the decomposition level was 3. These parameters were
initially selected based on the results presented for simu-
lated signals in [38] and then adjusted based on some initial
analysis of the resultant denoised signals. In this case, these
parameters are not considered to be optimized and should

Fig. 3. Wavelet denoising using a reference signal.

Fig. 4. Wavelet domain threshold determination.

Fig. 5. Flow chart of proposed method.
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be chosen for a given system based on a priori knowledge of
the system to be analyzed.

2) SEGMENTATION. In an actual industrial application,
the vibration signal could reach extreme lengths running
continuously for hours. Therefore, it is necessary for fault
detection to break them up into shorter manageable chunks
for feature extraction. This is achieved using segmentation.
Longer segments will be more immune to noise, whereas
shorter segments will better localize changes in the nonsta-
tionary signals. In this work, the signals were segmented
based on an even number of shaft revolutions to ensure each
segment contains an appropriate amount of information.
This is important in cases where rotating speed varies
significantly. For example, at slow speeds the segment
must be significantly longer than at high speeds to capture
the same number of ball pass events over a potential race
fault. In this work, the signals are segmented in parts that
contain 10 revolutions of the bearing.

3) FEATURE EXTRACTION FROM DENOISED SIGNALS.
For each segment of the signal, a set of features were
calculated to represent that given time period. The set of
features can be referred to as the feature vector. Two types of
features are used in this work: features from envelope
analysis and features extracted from AR models. For each
segment, an AR model was generated using the Yule–
Walker method. The model takes the form of equation 3:

yðnÞ = b0xðnÞ + a1yðn − 1Þ
+ a2yðn − 2Þ : : : apyðn − pÞ (3)

The coefficients of the model (a1–ap) were used as
features to describe the signal. This technique is well known
for feature extraction and was chosen due to the model’s
ability to represent the frequency content of the signal [39–
41]. The fit of the model was evaluated using the Akaike
information criterion (AIC); see [42]. When optimizing the
order of the model (p), there are two competing objectives.
The fit of the model to the data used to generate it will
improve as the model order increases; however, it is also
desirable to keep the dimensionality of the feature space
small. A higher-dimensional feature space increases
computational requirements, and the available data may
become sparse. The AIC with respect to model order for AR
models generated for denoised vibration signals is shown in
Fig. 6. In this work, the AR models used were order 10. In
this case, model order 10 is at the knee of the AIC curve.
The AIC presented is the average across tests for several
different healthy bearings.

The steps to perform envelope analysis are outlined as
part of Fig. 5. First, a bandpass filter is used to filter out the
frequency band of interest. The frequency range for filtering
was determined by analyzing the kurtogram of the signals.
The kurtogram presents the kurtosis (measure of the impul-
siveness of the signal) for different frequency bands of the
signal (see Fig. 7) [43]. In a signal where a fault is present,
the band with the highest kurtosis value can reasonably be
assumed to contain the fault signature and therefore be
selected for analysis. The frequency band used in this work
was from 2000 Hz to 4000 Hz and was obtained using a
simple finite impulse response (FIR) bandpass filter. If the
structural resonance of the system was known, that could
also be used to determine the center frequency for the filter.
This is because the ringing caused by the fault is influenced
by the structures present along the path of signal transfer.

After filtering, the Hilbert transform was used to
produce the analytic signal (the complex version of the
original real-valued signal without negative frequency
components). This is important since without the negative
frequency content, the magnitude of the complex analytic
signal represents the amplitude of the signal (signal enve-
lope). After the envelope was obtained, a simple Fast
Fourier Transform (FFT) could be used to determine the
frequency content of the envelope (amplitude modulation
frequencies). The features extracted from the envelope
frequency spectrum were the difference in magnitude
between values found at the ball pass frequency for the
inner and outer race, the bearing’s rotating frequency, and
the rolling element frequency. Additionally, the overall
spectral difference was calculated. This measure represents
the average spectral dissimilarity or contrast between the
envelope amplitudes of two subsystems providing a single
quantitative measure of their differences. See equation 4,
where a1(i) is the amplitude of the envelope of the first
subsystem at frequency i, a2(i) is the same for the second
subsystem, and l is the length of the spectrum:

Fig. 6. Mean AIC for AR models generated using a denoised
vibration signal.

Fig. 7. Kurtogram of a signal after wavelet denoising.
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SpectralDifference=
P

l
i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða1ðiÞþa2ðiÞÞ � ja1ðiÞ−a2ðiÞj
p

l
(4)

The features were all normalized using the mean and
standard deviation of the healthy data. The AR features and
envelope features were combined to create a single com-
bined feature vector to represent each time segment. Com-
bining AR features and envelope analysis leverages their
respective advantages. The AR features capture the overall
signal behavior, while envelope analysis focuses on the
fault-specific high-frequency components. Together, they
improve the accuracy and reliability of bearing fault detec-
tion by capturing both the subtle changes in signal dynam-
ics and the fault-related characteristics.

4) DETECTION OF FAULTS. In order to determine an
indicator of the difference between the two bearings, the
residual that was calculated between feature vectors from
each subsystem was analyzed. The residual represents the
overall difference between the two systems in the feature
domain. A single residual value or score was calculated
based on Euclidean distance of the feature vectors. This
represented the magnitude of the distance between the
feature vectors in Cartesian space. This distance measure
between feature vectors responded to changes in either
subsystem that were not common between the two signals
(i.e. two vectors that are not the same class will produce
a higher Euclidean distance). See equation 5 for the
Euclidean distance between N-dimensional feature vectors
A and B:

Euclidean distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1 − B1Þ2 + : : : ðAN − BNÞ2

q
(5)

This distance was then used to demonstrate the likelihood
that there is a fault present. For classification purposes, a
threshold on the final residual value was used. Selecting a
threshold for detection depends on several factors, includ-
ing the desired trade-off between false positives and false
negatives, and the distribution of the data. In this work, the
threshold was set to achieve approximately 10 percent error
(false positives) based on a subset of the healthy data. The
chosen value is intended to preserve sensitivity to early
faults while accounting for the inherent variability among
members of the same class, which is influenced by the
random characteristics of the systems.

C. DATA COLLECTION

To properly test the proposed methodology, it was required
to gather data from bearings in a hardware redundant
arrangement. This was achieved using a test bench specifi-
cally designed to replicate hardware redundant machinery.
Furthermore, it was also required for the machine to operate
with a nonstationary duty cycle with independent control of
both the speed and load of the components. To achieve
these goals, the test setup consisted of two identical belt-
driven hydraulic systems that are both driven in parallel
with the same control signal. Each of the two subsystems
contained a 10-hp induction motor to be used as a drive as
well as a hydraulic gear pump to provide the load to the
system. The two gear pumps were connected to the same
manifold such that they experienced the same hydraulic
load. Pressure in the shared manifold was controlled using a
solenoid-actuated proportional valve. The variable hydrau-
lic load allowed for controllable variable radial loading of
the test bearings as the radial load was caused by the belt
tension required to spin the pump pulley. The torque
required to spin the pump is directly related to the pressure
at the pump output. Gearboxes with a 3∶1 reduction and
serpentine belts were used to transfer the power from the
motors to their respective pumps (see Fig. 8). The motors
were controlled using a common variable frequency drive
(VFD) and set up to drive eachmotor at the same speed. The
machine was instrumented with pressure sensors, acceler-
ometers, and encoders. The data from the various sensors
were collected to be used for fault detection as well as
control of the machine. The variable speed and load duty
cycle can be seen in Fig. 9.

1) FAULTED COMPONENTS AND DATA COLLECTION.
The target mechanical component which was subjected to
variable duty in the larger parallel system was a REB in an
idler pulley (see Fig. 10). This pulley is located between the
load pulley (hydraulic pump) and the drive pulley
(connected to the gearbox and motor) on the tension side
of the belt drive system. This allowed for modulation of the
bearing’s speed and load simply by changing the input
speed to the system and the pump load. The radial load on
the bearing is directly linked to the belt tension and can be
determined using the wrap angle and the tension of the belt.
The tension in the belt was proportional to the tension due to
load torque from the pump, which was variable with respect
to pump torque (controlled via hydraulic pressure) plus the

Fig. 8. Parallel machinery simulator.
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initial tension provided by the belt tensioner. The rotational
speed of the bearing is proportional to the motor speed
factoring in the gearbox ratio and the ratio between the drive
pulley and idler pulley diameters. The resulting ratio in this
case between the motor and the idler pulley is 1.42∶1.

The REBs used in the idler pulleys were deep-groove
ball bearings (SKF model 6203) which are commonly used
for automotive and automation applications. Mechanical
faults were introduced to the contact surfaces inside the
bearings using electrical discharge machining (EDM); see
Fig. 11. There were three types of faults created: outer race,
inner race, and rolling element. The calculated characteris-
tic frequencies associated with these faults can be seen in
Table I.

The faults ranged in width from 1.5 mm to 0.25 mm
wide. The inner and outer race faults were 0.1 mm deep and
covered 2 mm across the bearing surface with a width
corresponding to the listed size. The rolling element faults
were also 0.1 mm deep. However, they were square with a
size corresponding to the listed fault size. In total, 30 tests
were run with faulted bearings, once with each fault type in
each of the machine’s two subsystems. Eight different
healthy bearings were also used to collect data with both
subsystems in a healthy state as well as for tests in which
one of the subsystems contained a fault. Eight tests were run
with no fault present. Each test run consisted of one run
through a duty cycle of transient speed and load depicted in
Fig. 9. Uniaxial accelerometers were mounted to the posts
that support the idler pulleys (see Fig. 11 bottom) in a
direction aligned with the hub load applied to the pulley.
This raw data was collected using a sampling rate
of 10 KHz.

III. RESULTS
A. WAVELET DENOISING EFFECTS ON
ENVELOPE SPECTRUM

In this section, the squared envelope spectrum of a signal
encompassing an entire test is shown for both before and
after denoising. The reference signal used for the denoising
process is a simultaneously collected signal from the other
parallel operating subsystem. The top row of Fig. 12 shows
these results for a healthy test, and there are many peaks in
the envelope of both the original and the denoised signal.
However, note that the magnitude of peaks in the denoised
signal decreases by a factor of about 10.

Figure 13 shows the same results for a signal from a
bearing with a 1.5-mm inner race fault. In this case, the
spectrum from the original signal appears very similar to
that of the healthy test. However, the denoised spectrum
contains one clear peak that is located at the ball pass order

Fig. 9. Machine duty cycle.

Fig. 10. Belt drive system layout.

Fig. 11. Bearing with outer race fault (top) and assembled in the
belt drive system (bottom).

Table I. Bearing characteristic frequencies

Characteristic frequency
Fault order (per

bearing revolution)

Ball pass frequency inner (BPFI) 4.947

Ball pass frequency outer (BPFO) 3.053

Fundamental train frequency (FTF) 0.618

Ball spin frequency (BSF) 1.994

Rolling element defect frequency
(REDF)

3.988
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for the inner race. Since in the case of an idler pulley, the
inner race of the bearing is stationary, no modulations at the
pulley’s rotational frequency are expected (unlike many
applications, gearboxes for example). Moreover, the peak at
the ball pass frequency is expected to be pronounced, since
the fault is in the load zone of the bearing at all times.

A similar type of result for a bearing with a 1.5-mm
outer race fault can be seen in Fig. 14. In this case, the
spectrum of the original signal again looks the same as the
healthy case. However, the denoised spectrum has peaks
that correspond to the pulleys rotational frequency and its
harmonics. This is to be expected because in this case, the
fault is moving in and out of the load zone due to the
rotation of the pulley housing.

Finally, Fig. 15 illustrates the results for a 1.5-mm
rolling element fault. These results look similar to the
healthy case for both the original and the denoised signal.
This is not a promising result; however, it is expected that
the rolling element fault is the most difficult to detect in any
case since each rolling element will spend significant time
outside the load zone of the bearing and there are orienta-
tions of the rolling element in which the fault (if small
enough) will not contact the bearing race. Furthermore, this
is in line with other results found using the same data
set [44].

B. CLASSIFICATION RESULTS USING
RESIDUAL ANALYSIS

For classification, a simple thresholding method was used
on the Euclidean distance values obtained for each segment
of the data. As described earlier, this distance value will
trend up when a fault is present in either subsystem.
Therefore, to assess the likelihood that a fault is present,
we must look at the number of segments that have a distance
above a set threshold. In this work, the threshold was set
based on analysis of the healthy data only. It was set such
that it would include all but the highest 10 percent of the
healthy data. In this work, results are presented for the
proposed methodologies both with and without the wavelet
denoising step. In this manner, it is possible to determine the
value added to the fault detection architecture by using the
proposed parallel wavelet denoising methodology. Results
over an entire range of threshold values can be seen in
Fig. 16. This shows the receiver operating characteristic
(ROC) curve for the 1.5-mm inner race fault both with and
without denoising. The ROC curve plots the outliers re-
jected (fraction of faulted segments that exceed the thresh-
old value) versus the targets accepted (fraction of healthy
segments that fall under the threshold) as the threshold
value changes. Figure 16 plots this result for the same data

Fig. 12. Envelope spectrum of the original and the denoised
signals for a healthy bearing.

Fig. 13. Envelope spectrum of the original and the denoised
signals for a 1.5-mm inner race fault.

Fig. 14. Envelope spectrum of the original and the denoised
signals for a 1.5-mm outer race fault.

Fig. 15. Envelope spectrum of the original and the denoised
signals for a 1.5-mm rolling element fault.
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both with and without the wavelet denoising step, and it can
clearly be seen here that the denoising step improves the
result.

Tables II and III list the classification results for the
healthy and faulted tests, respectively. The results are
given in terms of the error rates of false positives and
false negatives. The error rate for the healthy tests is
considered to be the percent of segments that have a
residual that exceeds the threshold value. Likewise for
the faulted tests, the error rate is the percent of segments
that have a residual that falls under the threshold. On
average, both systems performed reasonably well, while
the denoising technique provided a noticeable improve-
ment with the inner and outer race faults. The denoising
technique did not offer a performance improvement on the
rolling element fault. However, the rolling element fault
was not well detected in either case. The results did not
exhibit a strict trend in relation to fault size. Nevertheless,
as expected, the general tendency is for the accuracy of
detection to increase as the fault sizes become larger. It is
important to acknowledge that the five fault sizes exam-
ined were relatively small, representing only incipient
bearing faults. Thus, it is anticipated that more severe
faults or a wider range of fault sizes would significantly
amplify this trend.

IV. CONCLUSIONS
This work proposes the application of a novel parallel
wavelet denoising technique for the detection of faults in
hardware redundant mechanical systems. The proposed
wavelet denoising method provided a noticeable improve-
ment in ability to detect incipient bearing race faults in a
parallel system as compared to the same architecture
implemented without this denoising step. However, the
wavelet denoising technique did not appear to improve the
results for the rolling element faults. It is important to note
that the rolling element fault was not well detected in
either case. The proposed system was not optimized, and
future work should include a methodology or rationale
for optimizing the parameters associated with wavelet
denoising, namely decomposition level and choice of
wavelet. Future work should also look at different
nonstationary mechanical systems where frequency char-
acteristics are variable.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

References

[1] M. M. Gor, P. M. Pathak, A. K. Samantaray, J.-M. Yang, and
S. W. Kwak, “Fault accommodation in compliant quadruped
robot through a moving appendage mechanism,” Mech.
Mach. Theory, vol. 121, pp. 228–244, 2018.

[2] K. Medjaher, A. K. Samantaray, B. Ould Bouamama, and M.
Staroswiecki, “Supervision of an industrial steam generator.
Part II: online implementation,” Control Eng. Pract., vol. 14,
no. 1, pp. 85–96, 2006.

Fig. 16. ROC plot for 1.5-mm inner race fault.

Table II. Classification error rate for healthy tests (%
false positives)

Case With denoising Without denoising

Test #1 29 18.7

Test #2 9.3 7.2

Test #3 4.1 4.1

Test #4 3.13 18.8

Test #5 3.1 4.1

Test #6 10.2 0

Test #7 10.1 14.3

Test #8 10.3 11.3

Table III. Classification error rates for faulted tests (%
false negatives)

Fault size (mm) With denoising Without denoising

Outer race fault

0.25 35.4 43.2

0.5 19.7 24

0.75 14.6 37.5

1 21.9 34.6

1.5 19.6 21.8

Inner race fault

0.25 14 15.6

0.5 4.7 8.9

0.75 13.4 15.6

1 10.8 16

1.5 11.3 18.6

Rolling element fault

0.25 87 75

0.5 84 64

0.75 83.8 75.5

1 86.5 77.1

1.5 67.7 67.7

Wavelet Denoising Applied to Hardware Redundant Systems 141

JDMD Vol. 2, No. 2, 2023



[3] “Safety of machinery — Safety-related parts of control
systems — Part 1: general principles for design,” ISO
Standard, vol. 13849–1, 2015. https://www.iso.org/
standard/69883.html.

[4] R. Isermann, “Fault-diagnosis systems: an introduction from
fault detection to fault tolerance,” Fault-Diagn. Syst.: An
Introd. Fault Detect. Fault Tolerance, (1st ed.), pp. 1–475,
2006.

[5] S. M. Mortazavi, M. Mohamadi, and J. Jouzdani, “MTBF
evaluation for 2-out-of-3 redundant repairable systems with
common cause and cascade failures considering fuzzy rates
for failures and repair: a case study of a centrifugal water
pumping system,” J. Ind. Eng. Int., vol. 14, no. 2, pp. 281–
291, 2018.

[6] R. Isermann and P. Ballé, “Trends in the application of
model-based fault detection and diagnosis of technical
processes,” Control Eng. Pract., vol. 5, no. 5, pp. 709–719,
1997.

[7] J. Gertler, “Fault detection and isolation using parity
relations,” Control Eng. Pract., vol. 5, no. 5, pp. 653–661,
1997.

[8] M. Staroswiecki and G. Comtet-Varga, “Analytical redun-
dancy relations for fault detection and isolation in algebraic
dynamic systems,” Automatica, vol. 37, no. 5, pp. 687–699,
2001.

[9] A. Willersrud, M. Blanke, and L. Imsland, “Incident detec-
tion and isolation in drilling using analytical redundancy
relations,” Control Eng. Pract., vol. 41, pp. 1–12, 2015.

[10] D. Helm and M. Timusk, “Fault detection for parallel oper-
ating machines,” J. Qual. Maint. Eng., vol. 26, no. 2,
pp. 335–348, 2019.

[11] A. Anwarsha and T. N. Babu, “Recent advancements of
signal processing and artificial intelligence in the fault detec-
tion of rolling element bearings: a review,” J. Vibroeng.,
vol. 24, no. 6, pp. 1027–1055, 2022.

[12] R. B. Randall, “State of the art in monitoring rotating
machinery – part 1,” Sound Vib., vol. 38, no. 3, pp. 14–21
+13, 2004.

[13] S. M. Kay and S. L. Marple Jr., “Spectrum analysis – a
modern perspective,” Proc. IEEE, vol. 69, no. 11, pp. 1380–
1419, 1981.

[14] P. D. McFadden and M. M. Toozhy, “Application of syn-
chronous averaging to vibration monitoring of rolling ele-
ment bearings,” Mech. Syst. Signal Process., vol. 14, no. 6,
pp. 891–906, 2000.

[15] K. Gryllias, S. Moschini, and J. Antoni, “Application of
cyclo-non-stationary indicators for bearing monitoring under
varying operating conditions,” Proc. ASME Turbo Expo,
vol. 6, 2017. doi: 10.1115/1.4037638.

[16] D. Abboud, S. Baudin, J. Antoni, D. Remond, M. Eltabach,
and O. Sauvage, “The spectral analysis of cyclo-non-station-
ary signals,” Mech. Syst. Signal Process., vol. 75, pp. 280–
300, 2016.

[17] D. Abboud, J. Antoni, S. Sieg-Zieba, and M. Eltabach,
“Envelope analysis of rotating machine vibrations in variable
speed conditions: a comprehensive treatment,” Mech. Syst.
Signal Process., vol. 84, pp. 200–226, 2017.

[18] Y. Chen, X. Liang, and M. J. Zuo, “Sparse time series
modeling of the baseline vibration from a gearbox under
time-varying speed condition,” Mech. Syst. Signal Process.,
vol. 134, 2019. doi: 10.1016/j.ymssp.2019.106342.

[19] Y. Chen, S. Schmidt, P. S. Heyns, and M. J. Zuo, “A time
series model-based method for gear tooth crack detection and
severity assessment under random speed variation,” Mech.

Syst. Signal Process., vol. 156, 2021. doi: 10.1016/j.ymssp.
2020.107605.

[20] Y. Chen and M. J. Zuo, “A sparse multivariate time series
model-based fault detection method for gearboxes under
variable speed condition,” Mech. Syst. Signal Process.,
vol. 167, 2022. doi: 10.1016/j.ymssp.2021.108539.

[21] R. B. Randall and J. Antoni, “Rolling element bearing
diagnostics-a tutorial,” Mech. Syst. Signal Process.,
vol. 25, no. 2, pp. 485–520, 2011.

[22] A. Prudhom, J. Antonino-Daviu, H. Razik, and V. Climente-
Alarcon, “Time-frequency vibration analysis for the detec-
tion of motor damages caused by bearing currents,” Mech.
Syst. Signal Process., vol. 84, pp. 747–762, 2017.

[23] Q. Hu, A. Qin, Q. Zhang, J. He, and G. Sun, “Fault diagnosis
based on weighted extreme learning machine with wavelet
packet decomposition and KPCA,” IEEE Sens. J., vol. 18,
no. 20, pp. 8472–8483, 2018.

[24] L. Huang, H. Huang, and Y. Liu, “A fault diagnosis approach
for rolling bearing based on wavelet packet decomposition
and GMM-HMM,” Int. J. Acoust. Vib., vol. 24, no. 2, pp.
199–209, 2019.

[25] S. Schmidt, P. S. Heyns, and K. C. Gryllias, “A discrepancy
analysis methodology for rolling element bearing diagnostics
under variable speed conditions,” Mech. Syst. Signal Pro-
cess., vol. 116, pp. 40–61, 2019.

[26] S. Mallat, “Zero-crossings of a wavelet transform,” IEEE
Trans. Inf. Theory, vol. 37, no. 4, pp. 1019–1033, 1991.

[27] S. Mallat and W. L. Hwang, “Singularity detection and
processing with wavelets,” IEEE Trans. Inf. Theory,
vol. 38, no. 2 pt II, pp. 617–643, 1992.

[28] D. L. Donoho and I. M. Johnstone, “Adapting to unknown
smoothness via wavelet shrinkage,” J. Am. Stat. Assoc.,
vol. 90, no. 432, pp. 1200–1224, 1995.

[29] T. T. Cai and B. W. Silverman, “Incorporating information
on neighbouring coefficients into wavelet estimation,” San-
khya Indian J. Stat., Series B (1960–2002), vol. 63, no. 2,
pp. 127–148, 2001.

[30] H. Qiu, J. Lee, J. Lin, and G. Yu, “Wavelet filter-based weak
signature detection method and its application on rolling
element bearing prognostics,” J. Sound Vib., vol. 289,
no. 4–5, pp. 1066–1090, 2006.

[31] E. M. Bertot, P.-P. Beaujean, and D. Vendittis, “Refining
envelope analysis methods using wavelet de-noising to iden-
tify bearing faults,” Eur. Conf. PHM Soc., vol. 2, pp. 119–
126, 2014.

[32] L. Zhen, H. Zhengjia, Z. Yanyang, and W. Yanxue, “Cus-
tomized wavelet denoising using intra- and inter-scale depen-
dency for bearing fault detection,” J. Sound Vib., vol. 313,
no. 1–2, pp. 342–359, 2008.

[33] C. Mishra, A. K. Samantaray, and G. Chakraborty, “Rolling
element bearing defect diagnosis under variable speed oper-
ation through angle synchronous averaging of wavelet de-
noised estimate,” Mech. Syst. Signal Process., vol. 72–73,
pp. 206–222, 2016.

[34] M. Aminghafari, N. Cheze, and J.-M. Poggi, “Multivariate
denoising using wavelets and principal component
analysis BT - Statistical Signal Extracting and Filtering,”
Comput. Stat. Data Anal., vol. 50, no. 9, pp. 2381–2398,
2006.

[35] C. Yi, Y. Lv, H. Xiao, T. Huang, and G. You, “Multisensor
signal denoising based on matching synchrosqueezing wave-
let transform for mechanical fault condition assessment,”
Meas. Sci. Technol, vol. 29, no. 4, 2018. doi: 10.1088/
1361-6501/aaa50a.

142 Dustin Helm and Markus Timusk

JDMD Vol. 2, No. 2, 2023

https://www.iso.org/standard/69883.html
https://www.iso.org/standard/69883.html
https://doi.org/10.1115/1.4037638
https://doi.org/10.1016/j.ymssp.2019.106342
https://doi.org/10.1016/j.ymssp.2020.107605
https://doi.org/10.1016/j.ymssp.2020.107605
https://doi.org/10.1016/j.ymssp.2021.108539
https://doi.org/10.1088/1361-6501/aaa50a
https://doi.org/10.1088/1361-6501/aaa50a


[36] L. Chaabi, A. Lemzadmi, A. Djebala, M. L. Bouhalais, and
N. Ouelaa, “Fault diagnosis of rolling bearings in non-
stationary running conditions using improved CEEMDAN
and multivariate denoising based on wavelet and principal
component analyses,” Int. J. Adv. Manuf. Techn., vol. 107,
no. 9–10, pp. 3859–3873, 2020.

[37] D. Helm and M. Timusk, “Extraction of weak bearing fault
signatures from non-stationary signals using parallel wavelet
denoising,” inAdv. Condit. Monit. Mach. Non-station. Oper.:
Proc. 6th Int. Conf. Condit. Monit. Mach. Non-Station.
Oper., Springer International Publishing, 2018, pp. 3–11,
2019. doi: 10.1007/978-3-030-11220-2_1.

[38] D. Helm and M. Timusk, “Extraction of weak bearing fault
signatures from non-stationary signals using parallel wavelet
denoising,” vol. 15, 2019. doi: 10.1007/978-3-030-11220-2_1.

[39] J. McBain and M. Timusk, “Feature extraction for novelty
detection as applied to fault detection in machinery,” Pattern
Recogn. Lett., vol. 32, no. 7, pp. 1054–1061, 2011.

[40] M. Timusk, M. Lipsett, and C. K. Mechefske, “Fault detec-
tion using transient machine signals,” Mech. Syst. Signal
Process., vol. 22, no. 7, pp. 1724–1749, 2008.

[41] T. Han and D. Jiang, “Rolling bearing fault diagnostic
method based on VMD-AR model and random forest classi-
fier,” Shock Vib., vol. 2016, 2016. doi: 10.1155/2016/
5132046.

[42] E. Figueiredo, J. Figueiras, G. Park, C. R. Farrar, and K.
Worden, “Influence of the autoregressive model order on
damage detection,” Comput.-Aid. Civil Infrastruct. Eng.,
vol. 26, no. 3, pp. 225–238, 2011.

[43] J. Antoni, “Fast computation of the kurtogram for the detec-
tion of transient faults,”Mech. Syst. Signal Process., vol. 21,
no. 1, pp. 108–124, 2007.

[44] D. Helm and M. Timusk, “Using residual analysis for the
detection of faults in unsteadily operating rolling element
bearings,” in BINT First World Congr. Condit. Monit.
(WCCW), 2017.

Wavelet Denoising Applied to Hardware Redundant Systems 143

JDMD Vol. 2, No. 2, 2023

https://doi.org/10.1007/978-3-030-11220-2_1
https://doi.org/10.1007/978-3-030-11220-2_1
https://doi.org/10.1155/2016/5132046
https://doi.org/10.1155/2016/5132046

