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Abstract: Fault diagnosis technology has been widely applied and is an important part of ensuring the safe
operation of mechanical equipment. In response to the problem of frequent faults in rolling bearings, this paper
designs a rolling bearing fault diagnosis method based on convolutional capsule network (CCN). More
specifically, the original vibration signal is converted into a two-dimensional time–frequency image using
continuous wavelet transform (CWT), and the feature extraction is performed on the two-dimensional
time–frequency image using the convolution layer at the front end of the network, and the extracted features
are input into the capsule network. The capsule network converts the extracted features into vector neurons,
and the dynamic routing algorithm is used to achieve feature transfer and output the results of fault diagnosis.
Two different datasets are used to compare with other traditional deep learning models to verify the fault
diagnosis capability of the method. The results show that the CCN has good diagnostic capability under different
working conditions, even in the presence of noise and insufficient samples, compared to other models. This
method contributes to the safe and reliable operation of mechanical equipment and is suitable for other rotating
scenarios.
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I. INTRODUCTION
With the progress and development of intelligent
manufacturing, mechanical equipment plays an important
role in the trend of intelligent manufacturing, and rolling
bearings are indispensable parts in most mechanical equip-
ment [1]. Rolling bearings are more prone to damage due to
their complex working environment of variable load and
speed changes. The failure of rolling bearings not only
affects the operation of equipment but also leads to serious
safety issues and significant economic losses. Therefore,
improving the accuracy and efficiency of fault diagnosis is
very important.

Nowadays, the processing and analysis methods of
fault signals have also been developed and widely used,
from traditional time domain waveform analysis to new
analysis methods such as wavelet analysis [2], Wigner-
Ville technique [3], Hilbert demodulation [4], and other
time–frequency analysis. The increasing number of mecha-
tronic products in the market highlights the need for
automated fault diagnosis methods. Traditional fault

diagnosis methods rely heavily on empirical knowledge
and require multiple indicators to reach a diagnosis, making
it challenging to meet the demands of the rapidly growing
market [5].

With the development of artificial intelligence,
machine learning methods such as artificial neural networks
[6], Bayesian classifiers [7], and support vector machines
[8] began to emerge gradually, which are applied for
extracting features to diagnose bearing failures. Even
though bearing fault features are reliable indicators of
machinery health, extracting these features usually requires
complex mathematical techniques. Furthermore, the feature
extraction methods used for different types of faults may
vary. Therefore, manual extraction of fault features in
diagnosis methods is highly dependent on the knowledge
and expertise of experts [9]. As the number of bearing
monitoring points and data volume grow, traditional diag-
nostic methods cannot meet the demands of big data
analysis [10].

With the development of deep learning, which has
achieved excellent results in various fields, it has also
gained more and more attention in fault diagnosis [11].
In particular, the rise of convolutional neural networks
(CNN) [12], a usual deep learning method, has gradually
led to intelligent and automated fault diagnosis. Huang et al.
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[13] proposed an end-to-end process architecture and a
rolling bearing fault diagnosis model based on convolu-
tional neural attention module-CNN, capable of adaptively
extracting fault features and free from the reliance on
manual processing of complex signals. Guo et al. [14]
constructed an improved convolutional generative adver-
sarial network to improve the accuracy of bearing fault
diagnosis under complex operating conditions with the help
of the data generation capability of generative adversarial
networks and the feature extraction capability of improved
deep convolutional networks. Xie et al. [15] proposed a
hybrid model based on CNN and individual classifiers to
diagnose bearing faults. Pan et al. combined CNN with
Long Short Term memory networks to achieve good results
in bearing fault diagnosis [16]. Wang et al. proposed a
multi-scale learning neural network that includes one-
dimensional and two-dimensional CNN, significantly
improving CNN [17]. Liu et al. used variational mode
decomposition and CNN to perform fault diagnosis and
degradation identification on planetary gears and achieved
excellent results [18]. Gou et al. utilized continuous
wavelet transform (CWT) and CNN models to achieve
fault diagnosis of sensors in aircraft engine control
systems [19]. Zhang et al. used three CNN networks
with different activation functions to extract fault features
of the original signal from different angles, then fused
and transformed the fault features into 2D DCNN for
fault diagnosis. The experimental results show that the
features extracted by this method are more comprehensive
and can significantly improve fault diagnosis accuracy
[20]. Zhi et al. proposed an intelligent fault diagnosis
method based on CNNs to solve the problem of imbalanced
bearing data [21]. The above literature has applied CNN to
various fields of engineering practice and achieved
excellent results. However, the training of deep neural
networks, such as CNN, relies on many samples, and the
models suffer from overfitting factors when the training
data is insufficient. Moreover, CNN is difficult to extract
signal features contaminated by noise in noisy
environments.

In traditional neural networks, each neuron is scalar
in feature transmission and does not carry spatial position
features, resulting in weak fault diagnosis capabilities.
The capsule network was first proposed by Sabour et al.
[22] in 2017, and its emergence solved this problem.
Specifically, each neuron in the capsule network is a
vector, not a scalar. This enables the capsule network
to extract more comprehensive detailed features from the
input data while reducing the loss of spatial feature
information. To effectively address the problem of tradi-
tional deep learning models being unable to effectively
extract spatial feature information when detecting fault
signals, decreasing fault diagnosis ability. In this paper,
we design a fault diagnosis method using convolutional
capsule networks (CCN), which combines CNN with
capsule networks capable of extracting more comprehen-
sive features to perform complete extraction of fault
features. The innovations and contributions of this paper
are summarized as follows:

(1) This article designs a fault diagnosis method based on
CCN, which avoids the drawbacks of manually ex-
tracting features and relying on expert experience. It
can adaptively learn features and provide a founda-
tion for implementing intelligent fault diagnosis.

(2) This article transforms the original vibration signal
into a time-frequency domain signal after CWT
processing, which can fully express the amplitude
characteristics and frequency components of nonsta-
tionary signals, making the network more capable of
learning features.

(3) This article improves the feature extraction layer of
the capsule network to a combination of the convolu-
tional layer and pooling layer, which can extract
deeper features and reduce the number of parameters.
However, the backend of CCN still uses the capsule
network to vectorize and mine the spatial information
of features.

(4) This article verifies the fault diagnosis ability of CCN
in noisy environments and under insufficient samples,
providing a foundation for solving the problem of
difficulty in collecting fault data in engineering prac-
tice and the presence of noise pollution during the
collection process.

The rest of this paper is organized as follows: Section II
describes the theory, and the methodology is introduced in
Section III; Section IV uses experimental datasets to verify
the effectiveness of the developed methodology; conclu-
sions are drawn in Section 5.

II. THEORY
A. CONVOLUTIONAL NEURAL NETWORKS

CNN was proposed by Lecun in 1998 [23] as one of the
representative algorithms of deep learning. It is a class of
feed-forward neural networks with a deep structure that
includes convolutional computation. CNN has achieved
proud results in several fields. In the field of fault diagnosis,
CNN is also gaining more and more attention. Typically,
CNN contains a convolutional layer, a pooling layer, and a
fully connected layer, and their basic framework is shown
in Fig. 1.

The role of the convolution layer is to extract informa-
tion from the input image, which is called image features;
these features are represented by each pixel in the image by
combining or independently, for example, the texture fea-
tures of the image and the color features. The image
convolution operation is shown in Fig. 2.

The convolution expressions are

f ðxÞ =
Xn
i,j

θi,j � xi,j + b (1)

In Equation (1), f ðxÞ represents the output feature and
θi,j represents the size of the convolution kernel elements in
the ith row jth column, the xi,j represents the ith row jth
column element size, * represents the convolution opera-
tion, and b is the bias.

The pooling layer is also one of the cores of CNN, and
the pooling layer usually comes after the convolutional
layer. The pooling operation can reduce a large number of
training parameters while ensuring the invariance of the
feature map space and can prevent the occurrence of over-
fitting. The feature map undergoes maximum and average
pooling operations, as shown in Fig. 3.

The fully connected layer acts as a classifier in a CNN,
transforming all feature matrices into one-dimensional
feature vectors. The fully connected layer is generally at
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the very end of the structure in a CNN and is responsible for
the final output of the model.

B. CAPSULE NETWORKS

Capsule networks are used for feature delivery by vector
neurons, which can well capture the position-relative rela-
tionship between features and avoid the loss of position
feature information.

The computational process of the capsule network can
be divided into three steps. In the first step, the prediction

vector ujji of the capsule network is the neuron ui multiplied
by the weight value wij, ui is the ith neuron, wij is the weight
matrix, and uj is the jth vector generated by the prediction of
the ith input feature. Then its formula can be expressed as

ujji = wijui (2)

In the second step, the output vector sj is obtained by
multiplying the prediction vector ujji by the coupling coeffi-
cient cij. The formula can be expressed by Equation (3) cij is
the coupling coefficient between the ith vector in the main
capsule layer and the jth vector in the digital capsule layer.

Fig. 1. Convolutional neural network framework diagram.

Fig. 2. Schematic diagram of the convolution operation.

Fig. 3. Schematic diagram of maximum and average pooling.
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sj =
X
i

cijujji (3)

In the third step, the output vector vj is calculated by the
nonlinear transformation of the total output vector sj. sj
denotes the total output vector at the jth layer. The nonlinear
transformation function is shown in Equation (4).

vj =
ksjk2

1þ ksjk2
sj
ksjk

(4)

The coupling coefficient cij is obtained by a dynamic
routing operation, the purpose of which is to allow the input
neurons to be intelligently selected for transmission to the
next layer of neurons according to the features they carry. It
is calculated as in Equation (5) and Equation (6)

cij =
ebijP
k e

bik
(5)

bij = bij + vjuji (6)

Figure 4 shows the operation process of the dynamic
routing algorithm, in which the initialization of the paranoid
coefficients bij is done using 0 pairs, and the coupling
coefficient cij is calculated using Equation (5) to derive
the output vector vj. The value of the new paranoid coeffi-
cients bij is calculated using Equation (6) to calculate the
value of the new cij and the value of sj is further modified by
the dynamic routing algorithm to change the value of the
output vector vj. The value of the output vector vj is further
modified by the dynamic routing algorithm.

C. CONTINUOUS WAVELET TRANSFORM

CWT is a signal processing method that is gaining popu-
larity in the field of fault diagnosis [24]. The CWT can be
implemented by the following operations [25]:

cwtða,bÞ =
1ffiffiffi
a

p
ð
+∞

−∞
xðtÞφ�

�
t − b

a

�
dt (7)

In Equation (7), a is the scale parameter, b is the
translation parameter, xðtÞ is the original time-domain
signal, φ is the wavelet function, and φ� is the complex
conjugate of φ.

The time–frequency map obtained by CWT can
observe both time domain and frequency domain signals,
so CWT plays an essential role in signal processing

III. PROPOSED METHODS
A. STRUCTURE OF THE MODEL

This paper proposes combining a CNN and a capsule
network to form a CCN, which can effectively extract
information from two-dimensional time-frequency maps.
CCN, its network structure is shown in Fig. 5.

As shown in Fig. 5, the data need to be processed
before being input to the CCN, and the original signal is first
acquired for data processing to convert into a time–fre-
quency image. The CCN mainly consists of two convolu-
tional layers, a pooling layer, and a capsule layer, and the
model has a simple structure with relatively few layers. The
front end of the network uses the convolutional layer to
extract feature information pooling layer to reduce the
number of parameters. The back end uses the capsule
network to convert the extracted features into vector neu-
rons and the dynamic routing algorithm to achieve the
transfer of features. After the second convolutional layer,
CCN retains the pooling layer of the CNN. Here, the
pooling operation is mainly used to reduce the number
of parameters of the model and further improve the training
speed of the model. Moreover, the pooling layer can also
effectively prevent the occurrence of overfitting and im-
prove the model’s generalization ability. The primary cap-
sule layer contains the convolution operation, while the
convolution result is constructed as a capsule in vector form
as the input of the digital capsule layer. The digital capsule
layer accurately categorizes fault features by calculating the
correlation between capsule layers through dynamic routing

Fig. 4. Dynamic routing algorithm operation process diagram.

Fig. 5. CCN structure.
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algorithms. The CCN front-end combines a convolutional
layer and a pooling layer, which can reduce training
parameters and extract fault characteristics at a deeper level.
The backend of CCN uses a set of capsule structures to
vectorize and mine the spatial information of features. In the
process of feature transmission in CCN, neurons are vector
neurons that can carry spatial position features. CCN can
extract more effective spatial position features in different
operating conditions. Therefore, it performs excellently in
fault diagnosis under different operating conditions.

B. CONSTRUCTING THE MODEL LOSS
FUNCTION

During the training of the model, the weight parameters of
the model are updated by a backpropagation algorithm. And
back propagation requires a loss function that can calculate
the spacing of the model’s output from the true value. The
loss function is used in the training process, and the
parameters of the model’s weight values are updated con-
tinuously by back propagation. In this paper, the expression
of the loss function used is

Lc = Tc max
�
0, m+ − pc

�
2

+ λ
�
1 − Tc

�
max

�
0, pc − m−

�
2

(8)

where pc is the final output of the model with ten probability
values, and the subscript c is the cth digit of the output; Tc is
the classification indicator function, assuming that the Kth
digit of the output indicates the failure category K, the digit
is responsible for predicting the probability of category K.
Then when the input sample is of category K and c = k
when Tc = 1, otherwise Tc = 0, m+ is the upper bound,
here taken as a fixed value of 0.9, and when the probability
value pc > 0.9 when the loss function is set to 0, and m− is
the lower bound, where it takes a fixed value of 0.1, and the
loss function is set to 0 when the probability value pc < 0.1,
λ is a proportionality factor and takes a value of 0.5.

IV. EXPERIMENTSANDANALYSISOF
RESULTS

To verify the applicability and generalization of the meth-
odology proposed in this paper. Therefore, this article
selected the Case Western Reserve University Bearing
Dataset [26] and the Patburn University Bearing Dataset
[27] for simulation.

A. MODEL PARAMETER SETTINGS

Table I shows the model parameters of CCN, where the
input time–frequency map size is 32*32. CCN uses two

convolutional layers to extract features and one pooling
layer for parameter reduction. The pooling layer is set with a
small perceptual field, mainly to reduce the parameters
without losing too many features. The two convolutional
layers perform scale transformation, and feature extraction
on the data, and the extracted data are sent to the capsule
module for the initial capsule construction. The data of the
digital capsule layer are finally output after squeezing, and
the final output is ten probability values corresponding to
ten types of faults.

B. INTRODUCTION TO THE COMPARISON
METHODS

To evaluate the performance of the proposed method, this
paper verifies the feature extraction capability of the CCN
by comparing it with other deep learning models. The
compared models are all traditional CNN, which are intro-
duced as follows:

1. LeNet-5 was proposed by LeCun in 1998 to solve the
handwritten digit recognition problem and is consid-
ered one of the seminal works in CNN [23]. This
network was one of the first neural networks to be
widely used for digital image recognition and one of
the milestones in deep learning.

2. VGG16 is a classical CNN architecture [28]. VGG was
developed to increase the depth of CNNs to improve
the model performance.

3. ResNet18 is the model proposed by He et al. [29]. The
innovation of the residual structure is to increase the
depth of the CNN and to make the convergence of
the CNN faster. It also allows the CNN to have
significantly fewer parameters at deeper layers than
previous deep CNN.

C. CASE STUDY 1

1) INTRODUCTION AND DATA ANALYSIS. As shown in
Fig. 6, the test bench consists of a motor on the far left, a
torque transducer in the middle, a force gauge on the right,
and control electronics. The bearing under test is a motor
support bearing, type SKF6205 bearing with deep
groove balls.

The three operating conditions of the data set are
presented in Table II. Data A is the data collected at a
bearing speed of 1772 rpm and a load of 1 HP. Data B is
collected when the bearing speed is 1750 rpm, and the load
is 2HP. Data C is collected when the bearing speed is
1730 rpm, and the load is 3HP.

As shown in Table III, each data set contains nine fault
types and one normal status type, for a total of 10 fault
types. A damage degree of 0.007 inches indicates mild
damage, 0.014 inches is moderate, and 0.021 inches is

Table I. Description of model parameters

Serial number Module name Layer name Core size/step size Output size

1 Convolution Module I Convolutional layer 1 (3,3)/1 64*30*30

2 Convolution Module II Convolutional layer 2 (3,3)/1 256*28*28

Maximum pooling layer (2,2)/1 256*14*14

3 Capsule Module Main capsule layer \ 288*8

Digital capsule layer \ 10*16

4 Output Module Output layer \ 10
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severe. Each sample is labeled using a ten-dimensional one-
hot coding vector, where only one of the ten numbers in the
vector has a value of 1, and the rest are 0. The location index
with a value of 1 indicates a category.

In deep learning, due to the powerful fitting ability of
artificial neural networks, too few samples in the training set
can lead to overfitting of the model on the training set and a
decrease in accuracy on the test set. To avoid overfitting,
many samples are usually required as the training set.
Therefore, this paper uses overlapping sampling to con-
struct the dataset. The acquisition starts from the beginning
of the original vibration signal, and each time 1024 data

points are acquired, the acquisition is moved backward by
400 data points and continues. This is done until the
complete original data is collected.

The original signal vibration waveform is plotted as
shown in Fig. 7. After plotting the original vibration
waveform, the segmented signal is subjected to a CWT
CWT process. Cmor3-3 wavelet is selected as the CWT
wavelet basis function. Figure 8 shows its corresponding
time–frequency graph after compression processing. The
size of the picture is 32*32. After pre-processing, 300
wavelets of each condition are obtained, of which 240
are selected as training samples and the remaining 60 as
test samples.

This article develops the proposed model under the
Python framework. The experimental equipment used was a
desktop computer based on a 64-bit operating system under
Windows 11, with a running memory of 16GB, an Intel (R)
Core (TM) i5-10400 CPU, and an NVIDIA GeForce
RTX3060Ti GPU. During the model’s training, the optimi-
zation was performed using the Adam optimization algo-
rithm with a batch setting of 64 and a learning rate of
0.001; the number of iterations of the model training was set
to 50.

Table II. Introduction of various working conditions

Date Rotational speed(rpm) Load(HP)

A 1772 1

B 1750 2

C 1730 3

Table III. Introduction of the data set

Label State Degree of damage(inch)

0 Ball fault 0.007

1 Inner ring fault 0.007

2 Outer ring fault 0.007

3 Ball fault 0.014

4 Inner ring fault 0.014

5 Outer ring fault 0.014

6 Ball fault 0.021

7 Inner ring fault 0.021

8 Outer ring fault 0.021

9 Normal state \Fig. 6. Case Western Reserve University bearing data set
collection system.

Fig. 7. Original vibration signal waveform.
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2) RESULTS ANALYSIS. This section comprehensively
analyzes and discusses the CCN model designed in this
paper. Specifically, firstly, we conduct experiments on the
model under different working conditions and prove that
the model has good generalization and robustness. Sec-
ondly, we conduct experiments on the model under differ-
ent signal-to-noise ratios to verify the noise immunity of the
designed model. Finally, we conduct experiments with
insufficient training data to verify the powerful feature
extraction capability of the CCN designed in this paper.

• (1) FAULT DIAGNOSIS UNDER DIFFERENT
WORKING CONDITIONS. In practical application sce-
narios, rolling bearings typically operate at different speeds
and loads. [30–32]. Therefore, it is of great practical
engineering importance to evaluate the fault diagnosis
capability of the model under different working conditions
[33–36]. To verify the fault diagnosis performance of the
model under different working conditions, data from three
different working conditions are selected for testing. The
training and testing sets selected for this experiment are
under the same working conditions and divided into three
different working conditions for discussion.

The accuracy curves of multiple deep learning models
at a load of 1hp (data A) are shown in Fig. 9. From Fig. 9, it
can be seen that: in terms of the diagnostic capability of the
network, the CCN can reach a smooth convergence state
quickly, and the diagnostic accuracy is much higher com-
pared to other models, indicating that the proposed method
has more robust feature extraction capability compared to
other deep learning network models.

In this paper, the processed time–frequency map is
used as input to verify the effectiveness of the proposed
method by diagnosing its fault classes. To reduce the
influence of random factors and verify the stability of the

proposed method, the method and other deep learning
network models are repeated five times under three different
operating conditions. Meanwhile, to quantitatively compare
the diagnostic accuracy of the four diagnostic methods, the
diagnostic accuracy of each test and the average diagnostic
accuracy are listed as shown in Table IV.

As shown in Table IV, the average test accuracy of the
CCN was 100% under the three different working condi-
tions. Compared with VGG16, ResNet18, and LeNet-5, it
improved by 1.53%, 1.83%, and 7.81%, respectively. The
experimental results show that the proposed model has a

Fig. 8. Time-frequency diagram of the continuous wavelet transform.

Fig. 9. Model accuracy curve.
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more stable diagnostic performance and has a good classi-
fication effect for multiple types of faults in different
working conditions.

To better verify the advantages of the proposed
method, the extracted features are reduced to two dimen-
sions using the T-SNE method and plotted. The results of
data A are shown in Fig. 10, and the dots of different colors
indicate different faults. Among them, the classification
effect of the LeNet-5 network is relatively poor, and the
classification effect of CNN and ResNet18 is relatively
good, but the distance between the features is close. The
classification ability and the distance between capsule
network features are better than the other models.

Figure 11 shows the confusion matrix obtained by
different models using date A. leNet-5, VGG16, and Re-
sNet18 all have incorrect samples, while the CCN has no
incorrect samples. This result indicates that the CCN has the
best classification performance.

• (2) FAULT DIAGNOSIS UNDER NOISE CON-
DITIONS. Due to the fact that rolling bearings are usually
located in complex environments, they are inevitably

affected by noise interference during actual equipment
operation. Therefore, it is of great practical engineering
importance to evaluate the noise immunity performance of
the model in a noisy environment. To verify the fault
diagnosis performance of the model in a noisy environment,
add additive Gaussian white noise with different signal to
noise ratio (SNR) to the test data set. The SNR is an
important index to evaluate the amount of noise contained
in the signal. Its calculation formula is

SNR = 10 log
Psignal

Pnoise
(9)

where Psignal is the original vibration signal power, Pnoise is
the noise signal power, and SNR is the signal-to-noise ratio.

In the noise resistance experiments, Gaussian white
noise with different signal-to-noise ratios is chosen to be
added to the data set A for the experiments. The diagnosis
results of different algorithms in different noise environ-
ments are shown in Fig. 12.

The diagnostic performance of LeNet-5 in the noisy
environment is significantly lower than the other three

Table IV. Recognition accuracy of different algorithms

Methods

Data A Accuracy Data B Accuracy Data C Accuracy Average accuracy rate

/% /% /% /%

CCN 100 100 100 100

VGG16 98.00 98.78 98.63 98.47

ResNet18 97.64 98.24 98.64 98.17

LeNet-5 92.13 92.24 92.19 92.19

Fig. 10. Visualization results of data A classification features. features of (a) LeNet-5, (b) ResNet18, (c) VGG16, (d) CCN.
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networks, as shown in Fig. 13. In the environment with
SNR= 10, the recognition accuracy of VGG16, ResNet18,
and LeNet-5 all start to show a serious decline. At SNR=
10, the accuracy rates of VGG16, ResNet18 and LeNet-5
were only 85.21%, 79.96% and 64.28%, respectively.
Compared with the other network models, CCN only
replaces the fully connected layer with the capsule layer,
but the noise immunity has been improved significantly.
This also shows that using vector neurons can extract more
detailed information, enabling it to maintain a high recog-
nition rate even in noise-polluted signals.

To better reflect the fault diagnosis performance of the
CCN in the noisy environment, Fig. 13 shows the classifica-
tion results of each fault for different models. As can be seen
from the figure, the accuracy of each classification of LeNet-5
in the noisy environment is significantly lower than the
other three networks. At SNR = 20, the classification ability
of VGG16, ResNet18, and CCN showed relatively stable
performance. However, in the SNR= 10 environment, the
classification accuracies of VGG16 and ResNet18 all start to
show a severe decline, and CCN can still accurately classify
seven types of faults. On the other hand, it proves that CCN

Fig. 11. Confusion matrix plots obtained for different models using test set A (a) LeNet-5, (b) ResNet18, (c) VGG16, (d) CCN.

Fig. 12. Comparison of recognition accuracy under different
noisy environments.
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has a more vital feature extraction ability and better noise
immunity than other deep learning models.

• (3) FAULT DIAGNOSIS UNDER INSUFFICIENT
SAMPLES. In practical engineering, due to the difficulties
in collecting rolling bearing data, we are unable to obtain
sufficient fault data. Therefore, verifying the model’s per-
formance in fault diagnosis with insufficient samples has
important practical significance. Therefore, different num-
bers of the training set samples in date A were selected for
testing. The numbers of training samples in each category in
the experiment are 15, 30, 45, and 60, respectively, and the
number of samples in each test set is 150.

As shown in Fig. 14, the diagnostic performance of
LeNet-5 in the under-sample condition is significantly
lower than the other three networks. When the training
samples are 30 to 60. the accuracy rates of VGG16,
ResNet18 and CCN are relatively stable. However, when
the training sample is 15, the fault diagnosis accuracies
of VGG16, ResNet18, and LeNet-5 are 92.81%, 92.12%,
and 78.67%, respectively. While CCN still maintains
99.21% recognition accuracy, which is 6.4%, 7.09%, and
20.54% higher compared to VGG16, ResNet18, and

LeNet-5, respectively. The results show that CCN has
stronger feature stunning performance, enabling it to main-
tain high fault diagnosis ability even under insufficient
samples.

D. CASE STUDY 2

1) INTRODUCTION AND DATA ANALYSIS. The data for
the Paderborn University bearing data set Alpha were
collected from the modular test stand shown in Fig. 15,
where (1) is the motor, (2) is the torque measurement shaft,
(3) is the rolling bearing test module, (4) is the flywheel, and
(5) is the load motor.

The various working conditions of the constructed
dataset are shown in Table V. Data D is the data collected
when the bearing speed is 1500 rpm, the torque is 0.1 Nm,
and the radial load is 1000 N. Data E is the data collected
when the bearing speed is 1500 rpm, the torque is 0.7 Nm,
and the radial load is 400 N. Data F is the data collected
when the bearing speed is 1500 rpm, the torque is 0.7 Nm,
and the radial load is 1000 N.

As shown in Table VI, each data set contains five types
of faults and one normal state type, for a total of 6 fault
types. N represents the normal state, IF represents the inner
ring fault, and OF represents the outer ring fault, where a
damage degree of 1 indicates mild damage, 2 is moderate

Fig. 13. Classification accuracy per class of faults for each model with different noise: (a) SNR= 10, (b) SNR= 15, (C) SNR= 20.

Fig. 14. Fault diagnosis accuracy of each model with different
samples.

Fig. 15. Experiment rig of the Paderborn dataset.

Table V. Introduction of various working conditions

Date
Rotational speed

(rpm)
Torque
(N.m)

Radial load
(N)

D 1500 0.1 1000

E 1500 0.7 400

F 1500 0.7 1000
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damage, and 3 is severe damage. Each sample is labeled
using a six-dimensional one-hot coding vector, where only
one of the six numbers in the vector has a value of 1, and the
rest are 0. The location index with a value of 1 indicates a
category.

The overlapping sampling method is used to construct
the data set, starting from the beginning of the original
vibration signal, acquiring 1024 data points each time, and
then moving backward 500 data points to continue acquir-
ing after the acquisition is completed until 300 samples of
the original data are collected. The rest of the experimental
parameters are consistent with the data set of Case 1.

2) RESULTSANALYSIS. To verify the generalization and
robustness of the model, we also analyzed the fault diag-
nosis capability of the method under different operating
conditions, noisy conditions, and insufficient samples in
Case 2 and compared it with other deep learning models.

• (1) FAULT DIAGNOSIS UNDER DIFFERENT

WORKING CONDITIONS. The accuracy of various
models for the fault diagnosis experiments under different
operating conditions is shown in Table VII.

The accuracy of various models under data set D is
shown in Fig. 16.

To better verify the advantages of the model, we used
data D for testing, and the extracted features were reduced
to two dimensions and visualized using the T-SNE method,
and the visualization results are shown in Fig. 17.

Figure 18 shows the confusion matrix obtained for the
different models using the test set D.

• (2) FAULT DIAGNOSIS UNDER NOISE CON-
DITIONS. Since Case 2 has six fault types, the difficulty of
fault diagnosis is lower compared to Case 1, with ten fault
types, so a smaller signal-to-noise ratio is chosen. The
accuracy of various models under different noise conditions
is shown in Fig. 19.

• (3) FAULT DIAGNOSIS UNDER INSUFFICIENT
SAMPLES. The accuracy of various models under different
samples is shown in Fig. 20.

Analysis of experimental results: It can be observed
from the above experimental results that the conclusions we
got in case 1 have been proved successful. Firstly, in

experiments under different working conditions, the accu-
racy rate of the method designed by us reaches 100%, which
proves that the method has good generalization and robust-
ness. Secondly, in the experiments under the condition of
noise and the condition of insufficient training samples, the
method designed in this paper performs better than other
traditional deep learning models. It is again proved that the
method designed in this paper has a specific antinoise
ability and strong feature extraction ability in the case of
insufficient samples

E. IMPACT OF ITERATION TIMES ON
DYNAMIC ROUTING ALGORITHMS

The dynamic routing algorithm is the core algorithm of
capsule networks, used to calculate the similarity weight
coefficients of capsules and update similarity. The dynamic
routing algorithm is equivalent to doing a fully connected
mapping, where each path requires a fully connected
mapping of all dimensions of the upper and lower capsules,
resulting in a vast number of parameters. Too many itera-
tions of dynamic routing algorithms can lead to excessive
training parameters, while too few iterations can lead to
incomplete mapping and insufficient diagnostic ability.
Therefore, evaluating the number of iterations of dynamic
routing algorithms for stopping CCN is of great signifi-
cance. This section selects data with SNR= 10 in date A for
validation, and the results are shown in Table VIII.

The first column in Table VIII shows the number of
iterations of the dynamic routing algorithm, the second

Table VII. Recognition accuracy of different algorithms

Methods

Data D Accuracy Data E Accuracy Data F Accuracy Average accuracy rate

/% /% /% /%

CCN 100 100 100 100

VGG16 98.61 99.13 98.72 98.82

ResNet18 98.24 98.57 98.26 98.36

LeNet-5 95.17 95.69 95.12 95.32

Fig. 16. Model accuracy curve.

Table VI. Introduction of the data set

Label State Bearing Degree of damage

0 N K004 \

1 IF K121 1

2 IF K118 2

3 IF K116 3

4 OF KA04 1

5 OF KA16 2
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column shows the accuracy of diagnosis, and the third
column shows the execution time of each training round.
The table shows that the accuracy is highest when the
number of iterations is 3, and the execution time is also
in an intermediate position. Therefore, the dynamic routing
algorithm selected in this article has an iteration number
of 3.

V. CONCLUSION
This article designs a rolling bearing fault diagnosis method
based on CCN, and the conclusions are summarized as
follows:

(1) Compared to other traditional machine learning mod-
els, the method proposed in this paper can adaptively
extract fault features, avoiding the drawbacks of
manual feature extraction and relying on expert expe-
rience, and providing a foundation for implementing
intelligent fault diagnosis.

(2) This article transforms the original vibration signal
into a time–frequency domain signal after CWT
processing as input to the network model. The net-
work can learn features more fully to fully express the
amplitude characteristics and frequency components
of nonstationary signals.

(3) The CCN front-end combines a convolutional layer
and pooling layer, which can reduce training

parameters and extract fault characteristics at a
deeper level. The backend of CCN uses a set of
capsule structures to vectorize and mine the spatial
information of features. In the process of feature
transmission in CCN, neurons are vector neurons
that can carry spatial position features. CCN can
extract more effective spatial position features in
different operating conditions. Therefore, it performs
excellently in fault diagnosis under different operat-
ing conditions.

(4) To address the difficulties in collecting fault data in
engineering practice, such as the lack of training
samples and the presence of noise, experiments
were conducted in small samples and noisy environ-
ments. The experimental results show that the accu-
racy of the proposed method in this paper still
maintains a high level even in the presence of insuf-
ficient training samples and noise.

(5) To verify the applicability and generalization of the
method proposed in this article, data from six operat-
ing conditions from two datasets were used for vali-
dation. The results indicate that the fault diagnosis
ability is stable in various working conditions, and the
diagnostic accuracy is significantly higher than other
comparison methods.

Although capsule networks have good diagnostic per-
formance under noisy conditions and insufficient samples,

Fig. 17. Visualization results of data D classification features. features of (a) LeNet-5, (b) ResNet18, (c) VGG16, (d) CCN.
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they still have the problem of difficult training due to
large training parameters. In future research and learning
processes, the capsule network model will be improved

to address the drawback of high equipment requirements
due to the large parameters of the capsule network
model.

Fig. 18. Confusion matrix plots obtained for different models using test set D (a) LeNet-5, (b) ResNet18, (c) VGG16, (d) CCN.

Fig. 19. Comparison of recognition accuracy under different
noisy environments.

Fig. 20. Fault diagnosis accuracy of each model with different
samples.
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