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Abstract: Integrated with sensors, processors, and radio frequency (RF) communication modules, intelligent
bearing could achieve the autonomous perception and autonomous decision-making, guarantying the safety and
reliability during their use. However, because of the resource limitations of the end device, processors in the
intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural
network (CNN), which involves a great amount of multiplicative operations. To minimize the computation cost of
the conventional CNN, based on the idea of AdderNet, a 1-D adder neural network with a wide first-layer kernel
(WAddNN) suitable for bearing fault diagnosis is proposed in this paper. The proposed method uses the l1-norm
distance between filters and input features as the output response, thus making the whole network almost free of
multiplicative operations. The whole model takes the original signal as the input, uses a wide kernel in the first
adder layer to extract features and suppress the high frequency noise, and then uses two layers of small kernels for
nonlinear mapping. Through experimental comparison with CNN models of the same structure, WAddNN is able
to achieve a similar accuracy as CNN models with significantly reduced computational cost. The proposed model
provides a new fault diagnosis method for intelligent bearings with limited resources.

Keywords: adder neural network; convolutional neural network; fault diagnosis; intelligent bearings;
l1-norm distance

I. INTRODUCTION
Known as the “heart” of the rotary support system, bearings
are used in a wide variety of applications such as aerospace,
high-speed rail and automotive wheels, large rotors and
precision machine tools, etc. [1]. Machine performance is
heavily dependent on the health of the bearings, and bearing
failure can even carry a life-threatening risk. Therefore, it is
of great significance to accurately monitor and diagnose
bearings during operation [2]. In traditional fault diagnosis,
the condition monitoring of bearings mainly relies on
engineers’ long-term experience and expertise in the fault
diagnosis field. Attributed to the development of the artifi-
cial intelligence technology, bearing fault diagnosis moves
toward intelligent self-diagnosis so that the health status of
bearings can be automatically detected and identified [3].

Intelligent is the development trend of modern industry.
Under this background, the development of high-end bear-
ings is inevitably inseparable from the intelligent trend, and
intelligent bearings emerge at the historic moment [4,5]. The
intelligent bearing is based on the traditional bearing inte-
grated with different sensors, microprocessor, and control
system so that the combination into one and form a unique
bearing structure unit. Figure 1 shows a sketch of the system
structure. Compared with ordinary bearings, intelligent bear-
ings have the characteristics of self-sensing, self-decision,
and self-regulation. In terms of autonomous decision-making
of bearings, machine learning technology is usually used for
real-time state monitoring of bearings. However, these inte-
grated bearings usually adopt battery-powered or low-power

output self-powered technology due to the limitation of
industrial application environment. Therefore, intelligent
bearing fault diagnosis model needs to keep high precision
and reduce energy consumption.

In the field of intelligent bearing fault diagnosis, a
considerable number of traditional machine learning mod-
els have been effectively utilized, for example, classical
support vector machines (SVMs) [6], artificial neural net-
works (ANNs) [7], computationally simple probabilistic
graphical models (PGMs) [8], and k-nearest neighbors
(kNN) [9]. In these traditional classical fault diagnosis
methods, features are extracted manually by designing
the corresponding algorithms and then imported into
machine learning models to intelligently identify the bear-
ing health status. These traditional machine learning models
have achieved the intelligence of bearing diagnosis to a
certain extent, and the bearing health status can be obtained
without manual judgment. However, precise manual extrac-
tion of features is still required throughout the process to
obtain a high accuracy rate. Besides, with the development
of cloud technology and the advent of the era of big data, the
bearing data explode, and traditional machine learning
cannot achieve good generalization performance under
such volume of data, which reduces the accuracy of diag-
nosis. [10]. Therefore, the traditional machine learning
model cannot meet the needs of high-precision diagnosis
performance of high-end bearings.

As machine learning enters the era of deep learning,
bearing intelligent fault diagnosis also changes from tradi-
tional machine learning models to deep learning models
[11]. Deep learning techniques have achieved great success
in bearing fault diagnosis due to their powerful feature
extraction capability and end-to-end diagnostic approach.
By the deep mining of the initial signal features, the fault
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features hidden in the vibration signals can be extracted
accurately, and a fault recognition rate that far exceeds that
of traditional machine learning can be achieved. In addition,
the end-to-end diagnostic model frees human labor from
feature extraction [12].

In the field of deep learning, convolutional neural net-
works (CNNs) have been widely used in the field of bearing
fault diagnosis [13,14,15,16,17]. Compared with other deep
learning models such as stacked autoencoder (AE) [18] and
deep belief network (DBN) [19], CNNmodels can accurately
capture useful features from the original vibration signal
directly. More importantly, the CNN-based models share
weights, thus drastically reducing the number of parameters
and facilitating the training and storage of the models. These
advantages make CNN models known as the first choice for
bearing diagnosis [20]. However, the convolutional opera-
tions and multilayer network architecture cause extremely
high computational cost for CNNs, resulting in much higher
requirement for the processor in the energy and computa-
tional power. Therefore, the implementation of CNNs usu-
ally requires high-performance graphics processing unit
(GPU) and application-specific integrated circuit (ASIC),
and they are hard to be applied in end devices of the Internet
of Things (IoT) system with a low-performance micropro-
cessor. To overcome these problems, it is worth exploring
how to effectively reduce the computational cost of deep
learning fault diagnosis models for bearings.

It is well known that the four basic operations in
mathematics are addition, subtraction, multiplication, and
division. Among them, the multiplication operation is more
expensive to perform in the microprocessor than the addi-
tion operation [21]. However, most of the operations in
deep learning models are multiplications between floating
point numbers. Therefore, there are a large number of
papers investigating how to replace the multiplication
with addition and thus reduce the computational cost of
the model. Courbariaux et al [22] presented BinaryConnect,
which enables addition to replace multiplication operations
in the network by adjusting the weight parameters through-
out the network to binary. Hubala et al [23] proposed a
binarized neural network (BNN) network that binarized the
weights and activation functions. In addition, Rastegari et al
[24] added a scale factor to implement binary convolution
operations. Cai et al [25] proposed a half-wave Gaussian
quantizer for forward approximation, thus improving the
accuracy of the model. Although the binary network re-
duces the computational cost of the model, the accuracy of
the model is not satisfactory. Therefore, Chen et al. [26]
proposed a network called AdderNets for converting the
multiplication in deep neural networks, especially in CNNs,

into the simpler additive operations. The researchers used
the l1-norm distance between the filter and the input features
as a feedback for the output. To achieve better performance,
the researchers constructed a special backpropagation
method and found that this neural network, which uses
almost exclusively additive methods, can converge effi-
ciently with excellent speed and accuracy.

With the development of intelligent bearing technol-
ogy, autonomous diagnosis of bearing ends has become a
development trend. Based on the idea of AdderNet, this
paper proposes a 1-D wide first-layer kernel adder neural
network model for bearing fault diagnosis to reduce the
computational cost. We use l1-norm distance instead of
mutual correlation in the whole network to measure the
relevance between features and filters, thus making the
whole network almost free of multiplication operations.
The following contributions of this paper are summarized
from the above discussion:

(1) Aiming at the problem that the mainstream CNN
diagnosis model cannot be applied to the end proces-
sor of the bearing due to the excessive computation,
based on the idea of AdderNet, this paper proposes
the bearing fault diagnosis model WAddNN to effec-
tively reduce the computation of the model while
ensuring the diagnosis accuracy.

(2) WAddNN uses l1 norm to extract features, which
makes the feature extraction layer in the model
contain only additive operations, thus significantly
reducing the computational overhead of the network.

(3) The effectiveness of WAddNN is verified through
experiments. It is shown that the WAddNN proposed
in this paper can effectively extract features from
vibration signals, showing its great potential to be
applied to end processors of bearings.

The rest of the paper is divided into the following
sections. In Section II, the theoretical background of Ad-
derNet is discussed. Section III introduces the principle and
steps of the WAddNN method. In Section IV, the effec-
tiveness of the proposed WAddNN is verified by the
experimental data. Section V draws the final conclusions.

II. A BRIEF INTRODUCTION TO
AdderNet

Addition is faster than multiplication in a microprocessor,
and the computational cost of addition is much lower than
that of multiplication. However, multiplication between
floating point numbers takes up almost the entire deep
neural network, imposing a huge computational cost. For
this reason, an additive network (AdderNet) has been
proposed in [26] to exchange these large-scale multiplica-
tions in deep neural networks, especially CNNs, in order to
obtain easier additions to reduce the computational cost. We
will present additive neural networks for 2-D image recog-
nition in this section.

A. 2-D ADDER NETWORK LAYER

The convolution operation in CNN is to compute the mutual
correlation between the features and the convolution kernel
[27]. As the mutual correlation is a distance metric, the
convolution operation can be seen as a way to measure the
distance between the features and the convolution kernel.

FIGURE 1. Intelligent bearing system.
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Given an intermediate convolution kernel
F ∈ ℝd×d×vin×vout and the input features X ∈ ℝH×W×vin , where
d represents the volume size of the convolution kernel, vin
represents the input channel, vout is the output channel, and
H and W are the length and width of the features, respec-
tively, the output features of the convolution operation can
be calculated as:

Yðm,n,tÞ =
Xd
i=0

Xd
j=0

Xcin
k=0

SðXðmþ i,nþ j,kÞ,Fði,j,k,tÞÞ (1)

where Sð· , ·Þ represents the distance metric function, and
here it is the mutual correlation metric Sðx,yÞ = x × y.

In fact, there are many other metric functions besides
the mutual correlation which can be used to extract the
relationship between the filter and the input features; how-
ever, most of them contain multiplication, which brings a
large computational cost. Therefore, using l1-norm dis-
tance, which contains only additive operations, instead of
convolutional operations, can reduce the computational
cost of the CNN network effectively. By using l1-norm
distance, the output features is calculated as:

Yðm,n,tÞ = −
Xd
i=0

Xd
j=0

Xvin
k=0

jXðmþ i,nþ j,kÞ

− Fði,j,k,tÞj (2)

The l1-norm distance (2) and the cross-correlation (1),
which are also used to measure the distance between the
filter and the input features, still have some differences in
their outputs. The most obvious difference is that the output
of the convolution filter represents a weighted sum, which
has both positive and negative results. Whereas the results
of the additive filter are only negative as can be seen in (2).
So using the same calculation process leads to a continuous
increase in the output of the additive layer. For this reason,
the additive network uses batch normalization (BN) tech-
niques in the calculation process to keep the output constant
to a range that is conducive to network training optimiza-
tion. By changing the metric to the l1-norm distance, it is
possible to use only adders in the network to extract features
and build adder neural networks on top of this.

B. OPTIMIZATION METHOD

In the training process of neural networks, the gradients of
the parameters are obtained by backpropagation and then
optimized by the gradient descent method. Similarly in
additive neural networks, gradient descent is also used.
Therefore, the partial derivatives of the output features Y
with respect to the filter F are calculated as:

∂Yðm,n,tÞ
∂Fði,j,k,tÞ = sgnðXðmþ i,nþ j,kÞ − Fði,j,k,tÞÞ (3)

where sgnð·Þ represents the sign function.
As can be seen from (3), the output of the partial

derivative has only three values, i.e.,þ1, 0, or −1. Thus, (3)
is optimized by a method called signSGD. However, the
signSGD does not descend along the optimal path during
optimization, and more seriously, the optimal path deviates
more from the model after the dimensionality increases,
which is detrimental to the optimization of the model. For
this reason, Chen [26] suggested using (4) to update the
gradient:

∂Yðm,n,tÞ
∂Xðmþ i,nþ j,kÞ = Xðmþ i,nþ j,kÞ − Fði,j,k,tÞ (4)

After processing the gradient of the filter F, the same
needs to be done for the gradient of the input feature X to
facilitate the optimal update of the parameters. However,
using (4) to calculate the gradient of X, the obtained results
will exceed [−1, þ1], which is unbeneficial to the optimi-
zation of the network. If Fn and Xn are used to denote the
filter and input features of the nth layer, respectively, then
the gradient calculation of ∂Y=∂Fn will only have an effect
on the gradient of Fn itself. While ∂Y=∂Xn will have an
effect on the gradients of all previous network layers in the
chain rule. In particular, using (4) to calculate the gradient
of input Y can easily lead to a serious consequence of
gradient explosion when the number of layers increases.
Therefore, the gradient of input X needs to be limited within
[−1, +1]. The calculation formula is calculated as:

∂Yðm,n,tÞ
∂Xðmþ i,nþ j,kÞ = HðFði,j,k,tÞ − Xðmþ i,nþ j,kÞÞ (5)

where Hð·Þ represents the function of HardTanh:

HðxÞ =
8<
:

1 x > 1
x −1 < x < 1,
−1 x < −1:

(6)

C. ADAPTIVE LEARNING RATE SCALING

The gradient in AdderNets is too small compared to the
gradient of the filter in CNNs to provide the required parame-
ter update rate for the whole network due to the difference in
calculation methods. To address this problem, Chen [26]
proposed an adaptive algorithm that takes a different learning
rate for each layer in the adder network. The learning rate of
the nth layer in the network is calculated as:

ΔFn = ε × ϕn × ΔLðFnÞ (7)

where ε represents the global learning rate, including the
additive and BN layers, ΔL(Fn) represents the gradient of the
filter at the nth layer, andϕn represents the local learning rate at
the nth layer. The purpose of subtracting the additive filter and
the input features is to obtain useful feature information from
the input features, so it is necessary to keep the size of the filter
and the input features within the same range as much as
possible. The input features have been normalized after BN
layers, so only the normalization operation needs to be
performed for each layer of the filter. The local learning
rate is calculated as:

ϕn =
ϕ

ffiffiffi
d

p

kΔLðFnÞk
(8)

where d represents the number of elements in the nth layer
filter andϕ is a hyperparameter to control themagnitude of the
learning rate. Adjusting the learning rate by the adaptive
algorithm enables the whole additive network to be trained
more efficiently.

III. PROPOSED WAddNN
INTELLIGENT DIAGNOSIS METHOD

In comparison with traditional fault diagnosis methods,
deep learning methods represented by CNN models have
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powerful feature mining capabilities and the ability to build
end-to-end diagnosis systems. Therefore, CNNs have a
wide range of applications in the field of bearing fault
diagnosis. However, with the development of intelligent
bearings, the end processors embedded in bearings cannot
directly apply deep learning models to complete fault
autonomous diagnosis because of the limitation of compu-
tational resources and energy. To solve the above problems,
this paper proposes the WAddNN model to reduce the
consumption of computational resources. Using the adder
layer instead of the convolutional layer in WAddNN, the
whole network contains only additive operations compared
to the CNN model without losing diagnostic accuracy. In
microprocessors, the operation cycle of multiplication is
much larger than that of addition, so WAddNN uses addi-
tion instead of multiplication to effectively save the work-
ing time of the processor and reduce the consumption of
computational resources.

A. WAddNN

The model structure of WAddNN is shown in Fig. 2. In
order to reduce the calculating cost of the model, we use all
the additive layers in the three-layer network model, thus
avoiding the multiplication operation of the whole model.
Meanwhile, 64 × 1 wide kernels are used in the first layer
of the model to extract the effective information in the low-
frequency band. The use of wide kernels can effectively
reduce the depth of the model and reduce the complexity
of the network. Then, two 3 × 1 small kernel adder layers
were used to obtain a better feature representation. Finally,
the extracted features were used for fault classification. BN
was implemented after each adder layer to speed up the
training process. We name the model WAddNN, where W
stands for the wide kernel in the first layer and AddNN
represents the adder neural network with almost no mul-
tiplication operations. The model parameters are shown in
Table I.

B. 1-D ADDER NETWORK LAYER

In this paper, the proposed 1-D adder network uses mainly
1-D arrays as kernel and feature maps compared to 2-D
adder networks [28]. The traditional convolutional layer
uses inner product to calculate the similarity of the feature
map to the convolutional kernel, which is given by:

Y lði,tÞ =
XH
m=0

Xvin
k=0

�
Xl-1ðiþ m,kÞ × Fl-1ði,k,tÞ

�
(9)

In contrast, in the one-dimensional adder layer, the
similarity between the feature map and the convolution
kernel is computed using the l1 norm, thus changing all the
multiplication operations for computing the inner product to
additive operations for computing the l1 norm. Therefore,
compared with the convolutional layer, the adder layer can
effectively reduce the consumption of computational re-
sources. The equation of the adder layer is calculated as:

Ylði,tÞ = −
XH
m=0

Xvin
k=0

jXl-1ðiþ m,kÞ − Fl-1ði,k,tÞj (10)

Two fully connected layers in the classification stage are
used for the final classification of the extracted features. Since
the faults are divided into 10 categories, the softmax function
is transformed using 10 neurons to obtain the probability
distribution. The softmax function is expressed as:

qðzjÞ =
ezjP
10
k ezk

(11)

where zj denotes the logarithm of the jth output neuron.

FIGURE 2. Architecture of the proposed WAddNN model.

TABLE I Details of WAddNN model

No.
Layer
type

Kernel size/
stride

Kernel
number

Output size
(width×
depth)

1 Adder
layer1

64 × 1/16 × 1 16 60 × 16

2 BN1 / / 60 × 16

3 Pooling1 2 × 1/2 × 1 16 30 × 16

4 Adder
layer2

3 × 1/1 × 1 32 28 × 32

5 BN2 / / 28 × 32

6 Pooling2 2 × 1/2 × 1 32 14 × 32

7 Adder
layer3

3 × 1/1 × 1 64 12 × 64

8 BN3 / / 12 × 64

9 Pooling3 2 × 1/2 × 1 64 6 × 64

10 Flatten / / 384 × 1

11 Softmax / / 10 × 1
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C. TRAINING OF THE WAddNN

The structural design of WAddNN is mainly based on the
one-dimensional characteristics of the vibration signal,
which leads to the establishment of a one-dimensional
additive network model. Meanwhile, the backpropagation
algorithm is used in the training process of the model. In this
subsection, the training process of the model is described.

As the loss function of the whole network, cross-
entropy is an effective function used for the classification
task. Let p(x) denote the target distribution, q(x) denote the
estimated distribution, and the cross-entropy between p(x)
and q(x) is

Loss = HðP,QÞ = −
X
x

PðxÞ logQðxÞ (12)

The neural network uses BP to calculate the gradient of
the filter and stochastic gradient descent to update the
parameters. In adder neural networks, in order to improve
the training speed, the following equation is used to perform
the gradient operation on the filter F:

ΔLðFl−1Þ = ∂Xlði,,tÞ
∂Fl−1ðm,k,tÞ

= Xl−1ðiþ m,kÞ − Fl−1ðm,k,tÞ (13)

At the meantime, the gradient of the input feature Xl−1

is also important for the parameter update. To avoid gradi-
ent explosion, the input features are truncated when per-
forming the derivation on them as follows:

ΔLðXl−1Þ = ∂Xlði,tÞ
∂Xl−1ðiþ m,kÞ

= HðXl−1ðiþ m,kÞ − Fl−1ðm,k,tÞÞ (14)

The iteration of gradient descent updates the parame-
ters as follows:

Xl−1 = Xl−1 − θ × ΔLðXl−1Þ (15)

Fl−1 = Fl−1 − θ × ΔLðFl−1Þ (16)

where θ is the global learning rate of the whole network. To
improve the training speed of the model, we likewise use an
adaptive learning rate of (8) for the filter F. So the iterative
formula for F becomes

Fl−1 = Fl−1 − θ × αl−1 × ΔLðFl−1Þ (17)

The whole network can be better optimized after
scaling the learning rate using the adaptive algorithm.

IV. EXPERIMENTAL VERIFICATION
With the development of intelligent bearing technology,
edge computing and remote autonomous diagnosis become
the development trend. In this paper, we propose WAddNN
with adder layers as the main structure, aiming to reduce the
computational load of the fault diagnosis model, thus
reducing the energy consumption and the area used by
the bearing end processor. In this section, we build a CNN
model with the same structure as WAddNN for comparison
and validate the effectiveness of the proposed approach in
fault diagnosis on two bearing datasets.

A. CASE I: CWRU DATASET

1) DATA DESCRIPTION. The data for this experiment
were obtained from the Case Western Reserve University
(CWRU) Bearing Data Center [29]. The signals were
collected from a motor-driven mechanical system with
an accelerometer sampling frequency of 12 kHz as shown
in Fig. 3. In total, there are four types of bearing states:
normal state, ball failure, inner ring failure, and outer ring
failure. In each category of bearing failure, there are divided
into different degrees of failure of 0.007 inch, 0.014 inch,
and 0.021 inch, respectively. So there are a total of 10
categories of bearing status. In this experiment, each sample
contains 1024 data points and has 7000 training samples
and 1000 test samples. The details of all data are shown in
Table II.

2) COMPARISON MODEL. WAddNN uses additive op-
erations instead of multiplicative operations, thus reducing
the computational cost of the processor to accommodate the
energy and area constraints of terminal autonomous diag-
nosis. The adder layer in WAddNN uses the l1-norm
distance metric to measure the similarity between the input
and the filter to extract fault features of the input data. The
CNN model, on the other hand, uses mutual correlation to
extract fault features and has been used with great success in
previous fault diagnosis studies. In order to verify the
diagnostic capability of WAddNN for bearing faults, a
CNN model with the same structure as WAddNN is built
in this paper for comparison experiments. The specific
parameters of the CNN model are shown in Table III.

3) COMPARISON EXPERIMENTS. For an objective com-
parison, we trained and tested both models under the same
conditions. Both models use the dataset described above,
7000 samples for training the models and 1000 samples for
testing the accuracy of the models. In this process, the same
computer device was used to train both models. The
training process was optimized using the stochastic gradient
descent with a learning rate of 0.005, a momentum of 0.9,
and a weight_decay of 0.0005. After training the same
epoch, the final models were obtained and the model
accuracy was tested on the test set, and Table IV shows
the fault classification results for both models. The number
of multiplication and addition operations required for
WAddNN and CNN is related to the structure of the
network itself. So for a fair comparison, both models are
the same network structure. The number of multiplication
and addition operations required for one of the CNNs is
related to the input of each layer, the size of the convolu-
tional kernel, and the step size.

The whole CNN network consists of three convolu-
tional layers and a fully connected layer. Since the
comparison of CNN model used in this paper is a one-
dimensional convolutional network, the number of multi-
plications in one of the convolutional layers is calculated by
the formula:

FIGURE 3. Motor driving mechanical system used by CWRU.
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Cin × Cout ×
�ðH − KÞ

S
þ 1

�
× K (18)

where Cin and Cout are the input and output channels,
respectively, S is the step size, H is the input feature length,
and K is the convolution kernel size. The number of
multiplications in the fully connected layer is calculated
by multiplying the number of input neurons I with the
number of output neurons O: I ×O.

Therefore, the multiplication computation of the first
convolutional layer of the CNN in this paper is 61440, the
second convolutional layer is 46080, the third layer is
86016, and the multiplication computation of the final fully
connected layer is 3840.The total multiplication computa-
tion of the CNN is 194 k, while the corresponding number
of addition operations is equal to the multiplication opera-
tions. After the first three convolutional layers are replaced
with adder layers, the whole WAddNN contains only the
multiplication operations of the last fully connected layer,
and the corresponding multiplication operations are con-
verted to additive. Finally, the number of operations in all
layers is summed to get the result in Table IV.

Table IV shows that the number of multiplications and
additions required for CNN and WAddNN with the same
structure are different. 194 k multiplications and 194 k
additions are required for CNN to complete a diagnosis,
while only 4 kmultiplications are required forWAddNN, and
the rest of the multiplications are converted to additions

(194 k + 190 k). Taking the Intel Pentium CPU as an exam-
ple, the 16-bit multiplication operation requires 10 timesmore
instruction cycles than the addition operation. Therefore,
converting multiplication operations in the network to addi-
tion operations can effectively reduce the processor’s running
time. Hence, WAddNN can reduce the consumption of
processor resources, and the reduction of instruction cycles
enables the model to run more quickly and complete the
diagnosis, thus reducing the time consumption during the
diagnosis and improving the real-time performance.

In summary, the computational cost of addition is
much lower than that of multiplication. Most of the multi-
plication operations in WAddNN are replaced by addition
operations, so the computational cost of WAddNN is lower
than that of the CNN model. Meanwhile, the fault recogni-
tion rate of WAddNN reaches more than 99%, and the

TABLE II Description of rolling element bearing datasets

Fault location None Ball Inner race Outer race Load

Category labels 0 1 2 3 4 5 6 7 8 9 /

Fault diameter (inch) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021 0

Number of train data 700 700 700 700 700 700 700 700 700 700 /

Number of test data 100 100 100 100 100 100 100 100 100 100 /

TABLE III Details of CNN model used in experiments

No. Layer type
Kernel

size/stride
Kernel
number

Output size
(width×
depth)

1 Convolution1 64 × 1/16 × 1 16 60 × 16

2 BN1 / / 60 × 16

3 Pooling1 2 × 1/2 × 1 16 30 × 16

4 Convolution2 3 × 1/1 × 1 32 28 × 32

5 BN2 / / 28 × 32

6 Pooling2 2 × 1/2 × 1 32 14 × 32

7 Convolution3 3 × 1/1 × 1 64 12 × 64

8 BN3 / / 12 × 64

9 Pooling3 2 × 1/2 × 1 64 6 × 64

10 Flatten / / 384 × 1

11 Softmax / / 10 × 1

TABLE IV The fault classification results of CNN and
WAddNN

Model #Mul. #Add. Accuracy

CNN 194 k 194 k 99.90%

WAddNN 4 k 384 k 99.50%

FIGURE 4. The confusion matrix: (a) WAddNN and (b) CNN.
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accuracy rate is similar to the CNN model. In conclusion,
WAddNN can achieve similar diagnostic accuracy as CNN
with less computational cost, and it also verifies the feasi-
bility of using additive layer instead of convolutional layer
in bearing fault diagnosis.

4) VISUALIZATION OF RESULTS. The WAddNN model
uses l1-norm distance instead of mutual correlation, which
in turn reduces the model computation by using additive
operations instead of multiplicative operations. However,
the sensitivity of WAddNN to fault features needs to be
verified. Therefore, we performed the visual experimental
analysis of the two models to further explore the ability of
WAddNN to extract features in fault identification.

Figure 4 shows the classification accuracy of both
models for each category of labels. The CNN model has
a 99% accuracy on label 1, misclassifying 1% of label 1 as
label 0. It has 100% accuracy on the other labels. The
WAddNN model also misclassifies 4% of label 1 as label 0,
while mislabeling 1% of label 8 as label 1, and 100%
accuracy on the rest of the categories. It can be concluded
that both models have high classification accuracy. Mean-
while, the categories of misclassification are all related to
label 1, indicating that the two models have similarity in
classification mechanism. Therefore, WAddNN has the
same fault classification capability as the CNN model.

We visualized the first-layer filters of both network
models in Fig. 5. Since the first layer used 16 64 × 1 wide
kernels, the visualization resulted in 16 filters with different
waveforms. Although WAddNN and CNN utilized differ-
ent distance metrics, the filters of the proposed WAddNN
network (see Fig. 5(a)) still shared similar patterns with the
convolutional filters (see Fig. 5(b)). Both models extracted
features at different frequencies of the signal and captured
the fault information effectively. Figure 5 shows that the
CNN filter is higher in frequency than WAddNN, while the
WAddNN model focuses more on low-frequency features,
which helps reduce the influence of local high-frequency
features. The visualization experiments further demon-
strated that the WAddNN filter could effectively extract
useful information from the input signal.

The adder layer in WAddNN used l1-norm distance
instead of mutual correlation to measure the similarity
between the input and the filter for extracting fault features
of the input data. Therefore, it is necessary to further explore
the feature space of WAddNN and CNN. t-distributed
stochastic neighbor embedding (t-SNE) was used to inves-
tigate the feature distribution learned in each layer of the
two models in Fig. 6. From the first layer of the WAddNN
and CNN networks (see Fig. 6(a), (d), respectively), it can
be seen that both models separate label class 3 and label
class 7, and the other types are in a mixed state. After the
second layer of the network, all 10 classes of labels in the
WAddNN network are basically separable (see Fig. 6(b)),
with labels 0, 4, and label 1 partially mixed. After the third
layer of the network, the 10 class labels of both networks are
already divisible (see Fig. 6(c), (f), respectively). From the
feature visualization experiments of each layer in the
network, it can be seen that the adder layer in the WAddNN
model has the same fault classification capability as the
convolutional layer in the CNN.

B. CASE II: XJTU-SY DATASET

1) DATA DESCRIPTION. The entire dataset XJTU-SY
[30] was obtained from Xi’an Jiaotong University and

FIGURE 5. Visualization of filters in the first layer:
(a) WAddNN and (b) CNN.

FIGURE 6. Feature visualization via t-SNE: (a) first layer of WAddNN, (b) second layer of WAddNN, (c) last layer of WAddNN,
(d) first layer of CNN, (e) second layer of CNN, and (f) last layer of CNN.
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Changxing Sumyoung Technology Co. The entire dataset
contains 15 bearings operating under three different operat-
ing environments (1. Speed: 35 Hz, Load: 12 kN; 2. Speed:
37.5, Hz Load: 11 kN; 3. Speed: 40 Hz, Load: 10 kN) until
failure. The sampling frequency during the acquisition was
2.56 kHz. The acquisition time was 1 min. Therefore, the
diagnostic task for this dataset is a 15 classification task. The
principle of dividing the training and test sets remains the
same as in the previous experiments.

2) COMPARISON EXPERIMENT. In this subsection, we
continue to use the same structure of CNN and WAddNN
networks. To further validate the effectiveness of the
proposed method, Gaussian white noise of different inten-
sities was added to the dataset to test the robustness of the
model to noise. Gaussian white noise is added to the
original signal to synthesize signals with different signal-
to-noise ratios (SNRs). The definition of SNR is shown
below:

SNRdB = 10log10

�
Psignal

Pnoise

�
(19)

where Psignal and Pnoise are the power of the signal and
noise, respectively. If the SNR of the composite noise signal
is 0 dB, the power of the noise is equal to the power of the
original signal.

The accuracy of the two models under different noises
is shown in Table V. The accuracy of the CNN model
decreases as the noise intensity increases. The accuracy of
WAddNN is lower than that of CNN by about 2% in
different cases, and it is also robust to noise. On the
XJTU-SY dataset, WAddNN significantly reduces the
computational consumption compared to CNN with a
certain loss of accuracy. The lost accuracy is acceptable
in edge fault diagnosis. The experiments on both datasets
validate the effectiveness of WAddNN, which can signifi-
cantly reduce the reliance of the model on computational
resources.

V. CONCLUSION
In this paper, a new WAddNN bearing fault diagnosis
model is proposed to reduce the computational cost of
the deep learning model, which accommodates the current
development of intelligent bearing technology.

WAddNN extracts features using the l1-norm distance,
thus making the adder layer contain only additive opera-
tions. The use of the adder layer substantially reduces the
computational cost in the feature extraction layer, demon-
strating the great potential of the proposed method for
autonomous diagnosis of bearings. Through comparison
experiments with the same structured CNN model,
WAddNN can obtain comparable diagnostic accuracy,
which proves the powerful feature extraction capability
of the adder layer while reducing the computational effort.
The results show that the adder layer can replace the
convolutional layer in bearing faults. This shows that the

adder layer can be a basic building block for edge-end
diagnostic models with limited computational resources.

However, the current WAddNN is still a bit lower in
accuracy than the traditional CNN model. In the later work,
we will study to further improve the accuracy of WAddNN
and apply the additive network to the actual hardware fault
diagnosis.
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