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Abstract: In this paper, a novel time–frequency (TF) analysis method, called the short-time Fourier transform using odd
symmetric window function (OSTFT), is proposed using odd symmetric window function to replace the conventional even
window function of STFT. Different from conventional STFT acquiring the amplitude maximum at time and frequency centers,
OSTFT acquires the minimum amplitude of 0. Hence, OSTFT can obtain a TF representation (TFR) with high TF resolution by
utilizing the leaked energy rather than restraining it. It is worth to mention that the proposed OSTFT can vitiate the effect of
window size we choose on the TFR obtained. Furthermore, it also has a good performance on signals with complex instantaneous
frequencies (IFs), even crossing IFs. Because we just replace the conventional window function of STFT, the time-consuming of
the proposed OSTFT is at the same level as the conventional STFT. The effectiveness of proposed OSTFT has been validated on
two complex multi-component simulated numerical signals and a signal collected from the brown bat.
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I. INTRODUCTION
Because of the wide existence of nonstationary signals, the time–
frequency (TF) analysis methods on analyzing these signals, such
as the short-time Fourier transform (STFT) [1], the Wigner-Ville
distribution (WVD) [2], and the continuous wavelet transform
(CWT) [3], have been developed for a long time. Much work
has been done by a number of researchers, aiming to obtain the TF
representation (TFR) with high TF resolution. In general, these
methods can be divided into three categories, which are the basis-
based TF analysis methods, the decomposition-based TF analysis
method, and the post-processing methods.

For the basis-based TF analysis methods, it is necessary to
construct the basis function in advance. Here, several classic basis-
based methods are introduced. The STFT is a type of linear
transform that employs a window function to truncate the raw
nonstationary signal to obtain a series of truncated signals. By
regarding these truncated signals as stationary signals and operat-
ing with Fourier transform on them, the TFR is obtained. For any
piece of truncated signal, because we operate with Fourier trans-
form on the product of the truncated signal and the window
function, the chosen window function has a significant effect on
the final TFR. Furthermore, the STFT is limited by the uncertainty
principle, that is, we cannot obtain favorable time resolution and
frequency resolution concurrently. One is acquired at the cost of the
other necessarily. The WVD is a type of bilinear transform that
does not need a window function to truncate the raw signal.
Therefore, the WVD can inherently obtain a TFR with high
resolution. However, because of its bilinear property, the TFR

obtained using WVD is interfered by the illusive frequency com-
ponents that generate from the crossing terms while analyzing
multi-component signals, which limits the application of WVD to
some extent. CWT is a type of TFR method whose wavelet basis is
generated by mother wavelet and father wavelet, not the traditional
Fourier basis. Different from STFT which uses the same window
width in whole frequency domain, CWT can adaptively change the
window width, that is, CWT uses the wide window width in low
frequency range and narrow window width in high frequency
range. By doing this, CWT can obtain a TFR with high TF
resolution. However, its parameters are difficult to set. The chirplet
transform (CT) is a type of method that aims to analyze the chirp-
like signals, which obtain a TFR with high TF resolution by
rotating the chirplets to match the instantaneous frequency (IF)
of target signal to make it more stationary [4]. However, it is only
suitable for the mono-component signals with linear IF. To im-
prove the limitations of the above methods, researchers have done a
lot of work. In order to improve the STFT, STFT with adaptive
window width based on the chirp rate (ASTFT) was proposed by
adopting adaptive widow width [5,6]. By making the standard
deviation of the Gaussian window function be a function of time
and frequency instead of an unchanged parameter in traditional
STFT, the window width in the ASTFT can adaptively vary with
time and frequency. Hence, ASTFT can obtain different TF
resolution at different time and frequency points. Although ASTFT
can improve the TF resolution to some extent, its parameters are
difficult to set. Furthermore, because it does not improve the
parameter for window size, the inherent limitation resulted from
the uncertainty principle remains. In order to improve the WVD,
the pseudo-WVD (PWVD) was proposed to restrain the crossing
terms by adding window function in time and frequency domain
[7]. Although the PWVD improves the bad effect of crossing termsCorresponding author: Tianyang Wang (e-mail: wty19850925@126.com)
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to some extent, this limitation is still not solved because of the
bilinear property of WVD. Furthermore, the inherently high TF
resolution is lost due to the added window function. In order to
improve the CT, many extending methods are proposed. To
expand the application scope, the polynomial CT (PCT) was
proposed to analyze the signals with nonlinear IF using polyno-
mial kernel to replace the linear kernel in tradition CT [8].
However, if the IF of target signal cannot be fitted by polynomial,
the PCT is not effective. Therefore, the spline-kernel CT (SCT)
was proposed using splined kernel, which can be suitable for any
complex IF [9]. However, PCT and SCT can only adapt to mono-
component signals. To make CT suitable for multi-component
signals, general linear CT (GLCT) was proposed [10]. GLCT
obtains a TFR with high TF resolution by generating a series of
sub-TFRs and fusing them into one. Because fusing rule is to
choose the maximum in all sub-TFRs at each time and frequency
center in whole TF plane, it inevitably produces the fake fre-
quency components. Furthermore, the smaller the frequency
interval between adjacent frequency component, the more serious
the illusive frequency component. To improve the smear effect,
the velocity synchronous linear CT (VSLCT) was proposed by
constructing the basis according to the rotating speed to make the
chirplets match the IFs better [11]. In this way, VSLCT can obtain
a TFR with high TF resolution. It is a good idea to vitiate the bad
effect of the uncertainty principle by utilizing an adaptive window
size. However, it performs not very well on analyzing the signals
with the crossing IFs.

For the decomposition-based methods, the core idea of these
methods is to decompose the multi-component signal into a series
of mono-component signals without constructing basis function in
advance. Here, several decomposition methods are introduced.
Hilbert–Huang transform as well as the improved methods, such
as ensemble empirical mode decomposition [12] and ensemble
local mean decomposition [13], is a type of classic decomposition
method [14], which needs no prior knowledge. However, it is only
suitable for the signals whose IF varies with time slowly. Mode
mixing is serious while analyzing the signals whose IF varies with
time violently. Adaptive iterative generalized demodulation
method is a type of decomposition-based method using surrogate
test to decompose the multi-component signal [15]. It needs prior
knowledge in advance, for example, the changing trend of IF with
time. Furthermore, when the signals contain too many frequency
components, it is not efficient. The variational nonlinear chirp
mode decomposition is another type of decomposition-based
method that considers the target signals as a whole and does not
separate the sub-components successively [16]. Although its cor-
responding decomposition is efficient, it not only needs the number
of frequency components in advance but also the changing trend
with time for all frequency components to assign initial iterative
values.

For the post-processing methods, such as reassignment
method [17], synchro-extracting method [18], and synchro-
squeezed wavelet transform [19], their performance mainly de-
pends on the original TFR obtained by traditional methods, such as
STFT and CWT. It is worth to mention that post-processing
methods can obtain a TFR with high TF resolution, when tradi-
tional methods can obtain relatively nice results. However, if the
TFR obtained by traditional methods is not in a favorable level, the
results obtained using post-processing methods are not satisfying
as well. Furthermore, for the signal with crossing IFs, there exists
signal distortion at the intersection of IFs in the TFR obtained using
post-processing methods.

In this paper, we propose a novel TF analysis method called
OSTFT by replacing the even symmetric window function with
odd symmetric function. By acquiring minimum amplitude of 0 at
time and frequency center, OSTFT can obtain a TFR with high TF
resolution. Different from the TFR obtained using STFT whose TF
resolution deteriorates because of the energy leakage, the TFR
obtained using OSTFT acquires high TF resolution by utilizing
energy leakage. In addition, it is worth to mention that the proposed
OSTFT can vitiate the effect of window size that we choose on
the TFR obtained. Furthermore, it has a nice performance on the
special signals, for example, the signals with crossing IFs. The
effectiveness of OSTFT has been validated on two numerical
signals with complex IFs and an experimental signal collected
from a brown bat [20].

The rest of paper is structured as follows: A succinct descrip-
tion of the main limitation of windowed transforms and a detailed
discussion of the proposed OSTFT are provided in Section II, the
effectiveness of the proposed method is examined using numerical
signals and an experiment signal in Section III and IV-A, respec-
tively, a discussion part is displayed in Section IV-B, and the
conclusions that can be drawn from this study are presented in
Section V.

II. OSTFT
A. LIMITATION OF WINDOWED TRANSFORM

In this subsection, we begin our study with uncertainty principle
limiting the performance of windowed transform, which is given as
follows:

Ex =
ð
jxðtÞj

2
dt =

ð
jXðωÞj

2
dω (1)

where x(t) is a certain signal, X(ω) is the Fourier transform (FT) of
x(t), and Ex is the energy of signal x(t).8>><

>>:
tc =

1
Ex

ð
tjxðtÞj2dt

ωc =
1
Ex

ð
ωjXðωÞj2dω

(2)

where tc is time center and ωc is the frequency center.8>><
>>:

σt
2 =

1
Ex

ð
ðt − tcÞ2jxðtÞj2dt

σω
2 =

1
Ex

ð
ðω − ωcÞ2jXðωÞj2dω

(3)

where σt is the time bandwidth and σω is the frequency bandwidth.
By calculations, we can obtain

σtσω ≥ 1=2 (4)

According to (4), we know that the time resolution and frequency
resolution cannot obtain the best levels concurrently, that is, one
achieves a high level at the cost of the other necessarily. Among
most of applications, we always hope that high frequency resolu-
tion is obtained to recognize the significant frequency component.
However, because of the nonstationarity of nonstationary signal,
we analyze a series of windowed signals in a short time using a
window function to truncate the raw signal. Therefore, high
frequency resolution is difficult to obtain under this condition.
Furthermore, it is worthy of mentioning that the bad resolution is
shown as the form of energy leakage. Here, we use a numerical
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signal with a sampling frequency of 200 Hz to present it further,
which is constructed as the following expressions:

x1ðtÞ = sin

�
2π

ð
vðtÞdt

�
(5)

where v(t) is the IF, which is given as follows:

vðtÞ = −18t2 + 72t + 18 (6)

In this case, we use STFT with window size of 128 to analyze
this signal, whose corresponding analyzing results are shown in
Fig. 1. Figure 1(a) shows the resulting TFR. Here, we take the time
center at 1 s as an example. As per (6), the true IF at 1 s is 72 Hz. By
observing Fig. 1(a), it can be seen that the leaked energy distributes
in a range from 72-Δf to 72þ Δf, where Δf is a certain frequency
interval. The amplitude spectrum at 1 s shown in Fig. 1(b) presents
the same results clearly.

According to the above analysis, we can find that the leaked
energy leads to the TFR with bad TF resolution. And in this paper,
we mainly aim to resolve this problem to obtain a TFR with high
TF resolution.

B. REVIEW OF STFT

In this subsection, we take the STFT as an example. By in-depth
analysis of STFT, we can know the reason why STFT cannot obtain
a TFR with high TF resolution. The STFT of a signal sðuÞ ∈ L2ðRÞ
is represented as the following expression:

STFTsðtc,ωcÞ =
ðþ∞

−∞
sðuÞgðu − tÞ expð−jωcuÞdu (7)

where tc ∈ R is the time center, ωc ∈ R is the frequency center,
j denotes

ffiffiffiffiffiffi
−1

p
; and g denotes window function which is usually

taken as Gaussian function, which is represented as the following
expression:

gσðuÞ =
1ffiffiffiffiffi
2π

p
σ
exp

�
−
1
2

�
u

σ

�
2
�

(8)

where σ is the standard deviation.
Because STFT is a windowed transform, it can be explained in

a single window. Therefore, we can obtain

STFTs,tcðtc,ωÞ =
ð
tcþΔ

tc−Δ
sðuÞgðu − tcÞ expð−jωuÞdu (9)

where tc is the time center of a certain window and Δ is the half
window length.

To clearly present our core idea, we first regard s(u), in (9),
as a mono-component signal with IF of v(u). In a certain
window (a short time), based on Taylor’s theorem, v(u) can be
represented as

vðuÞ ≈ vðtcÞ + v 0ðtcÞðu − tcÞu ∈ ðtc − Δ,tc + ΔÞ (10)

where v(tc) is the IF at time center tc; v′(tc) is the first-order
derivative of v(u) at time center tc, and the remainder is ignored.

According to (10), the phase function of s(u) in a certain
window is obtained, which is given as the following expression:

φðuÞ = vðtcÞuþ
v 0ðtcÞ
2

ðu − tcÞ2 (11)

Hence, s(u) can be represented as the following equivalent
form:

sðuÞ = AðuÞ cosðφðuÞÞ (12)

where A(u) is the instantaneous amplitude and ϕ(u) is the instanta-
neous phase.

According to Euler’s formula, (12) can be written as the
following expression:

sðuÞ = AðuÞ e
jφðuÞ + e−jφðuÞ

2
(13)

Substituting (11) into (13) produces

sðuÞ = AðuÞ e
jðvðtcÞu+v 0ðtcÞðu−tcÞ2=2Þ + e−jðvðtcÞu+v 0ðtcÞðu−tcÞ2=2Þ

2
(14)

For the sake of the convenience in next deduction, we take
some mathematical skills as follows:

sðuÞ = s1ðuÞ + s2ðuÞ (15)

s1ðuÞ = AðuÞejðvðtcÞu+v 0ðtcÞðu−tcÞ2=2Þ=2 (16)

s1oðuÞ = AðuÞejðv 0ðtcÞu2=2Þ=2 (17)

s2ðuÞ = AðuÞe−jðvðtcÞu+v 0ðtcÞðu−tcÞ2=2Þ=2 (18)

s2oðuÞ = AðuÞe−jðv 0ðtcÞu2=2Þ=2 (19)

Here, the reason why STFT cannot achieve a pretty favorable
TFR for nonstationary signals is uncovered. According to the
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Fig. 1. Analyzing results of x1(t): (a) TFR using STFT and (b) amplitude
spectrum at time center of 1 s.
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convolution transform [21], (9) can be written in the following
form:

STFTs,tcðtc,ωÞ =
1
2π

FTsðωÞ ∗ FTgðu−tcÞðωÞ (20)

where * denotes convolution calculation, FT denotes Fourier
transform, and

FTsðωÞ =
ð
tc+Δ

tc−Δ
sðuÞ expð−jωuÞdu (21)

FTgðu−tcÞðωÞ =
ð
tc+Δ

tc−Δ
gðu − tcÞ expð−jωuÞdu (22)

According to (15), (16), and (18), based on the linear property
of FT, we can obtain

FTsðωÞ = FTs1ðωÞ + FTs2ðωÞ (23)

where s1 is (16) and s2 is (18).
Substituting (23) into (20) produces

STFTs,tcðtc,ωÞ =
1
2π

ðFTs1ðωÞ + FTs2ðωÞÞ ∗ FTgðu−tcÞðωÞ (24)

Here, we first only consider the FTs1(ω) in (24). According to time
and frequency shifting properties of FT, we can obtain

FTs1ðωÞ = FTs1oðω − vðtcÞÞ expð−jωtcÞ (25)

FTgðu−tcÞðωÞ = FTgðuÞðωÞ expð−jωtcÞ (26)

where s1o is (17) and g(u) is (8).
According to (24), (25), and (26), we can obtain

STFTs1,tcðtc,ωÞ =
1
2π

�
FTs1oðω − vðtcÞÞ : : :

�FTgðuÞðωÞ
�
expð−jωtcÞ (27)

where s1 is (16) and s1o is (17).
According to (27), we can obtain

jSTFTs1,tcðtc,ωÞj =
���� 1
2π

FTs1oðω − vðtcÞÞ ∗ FTgðuÞðωÞ
���� (28)

Carrying out the same operations as FTs1(ω), we can get the
similar result of FTs2(ω) in (24).

jSTFTs2,tcðtc,ωÞj =
���� 1
2π

FTs2oðωþ vðtcÞÞ ∗ FTgðuÞðωÞ
���� (29)

Because FTgðuÞðωÞ, FTs1oðω − vðtcÞÞ, and FTs2oðω + vðtcÞÞ are
even symmetric functions with symmetric axes of ω=0, ω=v(tc),
and ω=-v(tc), respectively, jSTFTs1ðtc,ωÞj and jSTFTs2ðtc,ωÞj are
even symmetric functions with symmetric axes of ω=v(tc) and
ω=-v(tc), respectively. And jSTFTs,tcðtc,ωÞj is composed by both
two parts as shown in Fig. 2 clearly. The result shown in Fig. 2 is in
accordance with the result shown in Fig. 1.

The above analysis mainly aims to explain mono-component
signals. As for the multi-component signal, we can regard it as
the summation of its every frequency component, which is repre-
sented as

smultiðtÞ =
Xn
i=1

smono,iðtÞ (30)

where n is the number of intrinsic mode functions, and smono,I is the
ith intrinsic mode function.

Based on the linear property of FT, the FT of smulti is the
summation of FT of smono,i. Therefore, the above explanation
results of the mono-component signal are suitable for the multi-
component signal as well.

By observing (28) and (29), we can find that the
jSTFTs1,tcðtc,ωÞj and jSTFTs2,tcðtc,ωÞjmainly depend on FTgðuÞðωÞ,
the FT of window function. And among nearly all windowed
transforms, the even symmetric window function is employed,
which inevitably leads to energy leakage resulting in TFR with
bad TF resolution. Aiming to resolve this problem, we propose a
novel algorithm called the OSTFT, whose detailed explanations are
shown in Section II-C.

C. PROPOSED OSTFT APPROACH

To resolve the above problem, completely different from conven-
tional TF analysis methods employing the even symmetric window
function, we employ the odd symmetric window function. It is
worthy of mentioning that the proposed method aims not to restrain
the leaked energy but to utilize it. By doing this, OSTFT can obtain
a TFR with high TF resolution. This idea is suitable for all TF
analysis methods based on FT. Here, we still take STFT as an
example.

There exist many suitable odd symmetric window functions.
However, in this study, we take a constructed window function
called Gaussian-like window function (GL-window function),
which is presented as the following expression:

lðtÞ = au expð−b2u2Þ (31)

where a and b are positive parameters, respectively. In this study, a
and b are taken as 200 and 10, respectively.

According to (31), we can obtain the FT of l(t),

FTlðωÞ = −
a

ffiffiffi
π

p
b2

jω

2
eð

jω
2 Þ2 (32)

By observing (31) and (32), it can be seen that FTl(ω) has the
same expression as l(t).

Here, replacing g(u-tc) with l(u-tc) in (9) produces

OSTFTs,tcðtc,ωÞ =
ð
tc+Δ

tc−Δ
sðuÞlðu − tcÞ expð−jωuÞdu (33)

where l(u-tc) is an odd symmetric function with symmetric center
(tc, 0).

In addition, FT of l(u-tc) can also be calculated, which is given
as follows:

v(tc)-v(tc)

Frequency (rad/s)

A
m

pl
itu

de

|STFTs1,tc||STFTs2,tc|

Fig. 2. Amplitude spectrum of s(u) obtained using STFT at time
center tc.
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FTlðu−tcÞðωÞ = FTlðuÞðωÞ expð−jωtcÞ (34)

where l(u) is (31) with symmetric center (0, 0).
By the similar deductions shown in Section II-B, we can obtain

the results with similar expression like (27) for OSTFT,

OSTFTs1,tcðtc,ωÞ =
1
2π

�
FTs1oðω − vðtcÞÞ : : :

∗FTlðuÞðωÞ
�
expð−jωtcÞ (35)

OSTFTs2,tcðtc,ωÞ =
1
2π

�
FTs2oðω − vðtcÞÞ : : :

∗FTlðuÞðωÞ
�
expð−jωtcÞ (36)

where s1 is (16), s1o is (17), s2 is (18), s2o is (19), and l(u) is (31).
Based on (35) and (36), we can obtain

jOSTFTs1,tcðtc,ωÞj =
���� 1
2π

FTs1oðω − vðtcÞÞ ∗ FTlðuÞðωÞ
���� (37)

jOSTFTs2,tcðtc,ωÞj =
���� 1
2π

FTs2oðωþ vðtcÞÞ ∗ FTlðuÞðωÞ
���� (38)

Because FTs1oðω − vðtcÞÞ and FTs2oðω + vðtcÞÞ are even sym-
metric functions with symmetric axes ω=v(tc) and ω=−v(tc), respec-
tively, and FTlðuÞðωÞ is an odd function, OSTFTs1,tcðtc,ωÞ and
OSTFTs2,tcðtc,ωÞ are odd symmetric functions with symmetric cen-
ters (v(tc), 0) and (−v(tc), 0), respectively. Hence, jOSTFTs1,tcðtc,ωÞj
and jOSTFTs2,tcðtc,ωÞj are still even symmetric functions with
symmetric axes ω=v(tc) and ω=−v(tc), respectively. But, completely
different from conventional STFTwhose amplitude functions, shown
in (28) and (29), acquire maximums at ω=v(tc) and ω=−v(tc),
respectively, the amplitude functions using OSTFT, shown in (37)
and (38), acquire minimums of 0 at ω=v(tc) and ω=−v(tc), respec-
tively, as shown clearly in Fig. 3. In this way, the TFR obtained using
OSTFT can obtain the high TF resolution.

Here, we still use the signal of x1(t) to further explain the idea
of OSTFT. The parameter for window size is set to 128. And the
corresponding analyzing results are shown in Fig. 4. Figure 4(a)
shows the TFR using OSTFT. According to Fig. 4(a), it can be seen
that OSTFT can obtain a TFR with quite high TF resolution by
utilizing the leaked energy. Furthermore, the estimated IF is nearly
overlapped with the true IF. Figure 4(b) shows the amplitude
spectrum at 1 s. From Fig. 4(b), the result is perfectly in accordance
with the result shown in Fig. 3.

In fact, if the peak of each IF curve of the TFR using STFT can
be well extracted, they are extremely close to the curves obtained
by OSTFT. However, these curves should be extracted manually.
The IF curves of the TFR of OSTFT can be easily contained
because they are zeros in the TFR.

III. SIMULATION EVALUTION
In this section, two simulated numerical signals with complex IFs
are employed to verify the performance of OSTFT.

A. CASE 1

In this subsection, the first multi-component signal with complex
IFs is used to evaluate the performance of OSTFT, which is
constructed as the following expression:

x2ðtÞ =
X3
i=1

3 cos

�
2π

ð
t

0
viðuÞdu

�
(39)

where 8<
:

v1ðuÞ = 70
v2ðuÞ = 370 − 150 sinð6πuÞ − 50 cosð4πuÞ
v3ðuÞ = −480u2 þ 480uþ 600

(40)

The corresponding analyzing results are displayed in Fig. 5.
Figure 5(a) and (b) shows the waveform with sampling rate of
1·8 kHz and the corresponding IFs, respectively. TFRs obtained
using STFT and OSTFT with window size of 128 are shown in
Fig. 5(c) and (e). According to Fig. 5(c), because of relatively
serious energy leakage, the TFR obtained using STFT cannot
obtain the high TF resolution. However, the TFR obtained using
OSTFT shown in Fig. 5(e) shows sharp IF trajectories, which
proves that OSTFT can obtain the TFR with high TF resolution. By
observing estimated IFs (red curves) and true IFs (black curves) in
Fig. 5(d), it can be seen that estimated IFs can track true IFs very

v(tc)-v(tc)

Frequency (rad/s)

A
m

pl
it

ud
e

|OSTFTs2,tc |
|OSTFTs1,tc |

Fig. 3. Amplitude spectrum of s(u) obtained using OSTFT at
time center tc.
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well. Hence, the value of the Error is low. It proves that OSTFT can
acquire satisfactory accuracy, even for this kind of complex signal.

B. CASE 2

In this subsection, the other numerical signal with crossing IFs is
constructed to evaluate the ability of OSTFT in analyzing special
signals, which is constructed as the following expression:

x3ðtÞ =
X2
i=1

sin

�
2π

ð
t

0
viðuÞdu

�
(41)

where �
v1ðuÞ = 25 − 5 cosðuÞ
v2ðuÞ = 25þ 15 cosðuÞ (42)

The corresponding analyzing results are displayed in Fig. 6.
Figure 6(a) and (b) shows the waveform with sampling rate of
100 Hz and the corresponding IFs, respectively. TFRs obtained
using STFT and OSTFT with window size of 128 are displayed in
Fig. 6(c) and (d), respectively. According to Fig. 6(c), TFR
obtained using STFT is very blurred, which leads to bad TF
resolution. Furthermore, because of the relatively energy leakage,
it is difficult to determine whether the IFs are truly intersected or
not. However, from the TFR obtained using OSTFT, shown in
Fig. 6(d), the IF trajectories in the TFR are clear, sharp, and
accurate by comparing with true IFs in Fig. 6(b). Furthermore,
according to Fig. 6(d), it can be seen that the TFR using OSTFT
can not only acquire the high TF resolution but also show the
intersection of the IFs shown in the red square can be captured
accurately.

Through the above analysis, we can know that, even for this
type of special signal, OSTFT can have a favorable performance.

Based on the above analysis of two cases, OSTFT can acquire
TFR with pretty satisfying TF resolution for multi-component
signals with not only complex IFs but also crossing IFs, which
cannot be well resolved by traditional STFT.

IV. EXPERIMENT
In this section, an echolocation signal emitted by a large brown bat
collected from real life is employed to test the effectiveness of
OSTFT in Section A. Furthermore, two significant points about
OSTFT are discussed in Section B.

A. EXPERIMENTAL CASE 1

In this subsection, the signal collected from a brown bat is analyzed
using OSTFT, which is a multi-component signal with four time-
varying IFs. STFT is chosen as a comparison method. In this case,
the parameter for window size is set to 128 for both methods. The
corresponding analyzing results are displayed in Fig. 7. Figure 7(a)
shows the waveform with sampling period of 7 μs. TFRs obtained
using STFT and OSTFT are shown in Fig. 7(b) and (c), respectively.
According to Fig. 7(b), we can find that IF trajectories in the TFR
obtained using STFT are blurred, resulting in bad TF resolution.
However, IF trajectories, deep blue curves indicated by red arrows
shown in Fig. 7(c), are very clear and sharp, which proves that
OSTFT can acquire a TFR with high TF resolution by utilizing the
leaked energy. By the above analysis, it can be seen that OSTFT has
a good performance on obtaining a TFR with a high TF resolution.
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B. EXPERIMENTAL CASE 2

As rotation machineries become increasingly complex, TF analysis
methods are an effective tool to diagnose faults in the machinery.
A vibration signal collected from a water turbine is analyzed here.
The sampling frequency of this signal is 16 Hz, and the number of
sampling points is 1024. Figure 8(a) and (b) shows the correspond-
ing waveform and rotation frequency, respectively. Then, the STFT
and OSTFT are used for comparison. Figure 8(c) and (d) shows that
the TFR is composed of several harmonics with regard to the
rotation frequency; these harmonics can reveal the health condition
of the water turbine.

It can be seen that more harmonics with higher resolution can
be found in Fig. 8(d) compared with the STFT-based TFR shown in
Fig. 8(c).

C. DISCUSSION

In this subsection, we mainly discuss two important issues. One is
the effect of the parameter for window size we choose on the TFR

obtained using OSTFT. The other is about the amplitude informa-
tion at time and frequency centers ignored by OSTFT.

Firstly, we discuss the first significant issue. Based on the
analysis in Section II, because the window function has a main
effect on the energy leakage, and the OSTFT acquires the mini-
mums of 0 at the time and frequency center, we can know that the
TFR obtained using OSTFT is not sensitive to the window size, that
is, the OSTFT vitiates the effect of window size on the TFR

0 1 2 3

-0.2

-0.1

0

0.1

Time (ms)

(a)
edutilp

m
A

0 0.5 1 1.5 2 2.5

2

4

6

Time (ms)

(b)

01(
ycneuqerF

4 H
z)

0 0.5 1 1.5 2 2.5

2

4

6

Time (ms)

(c)

v1

v2

v3

v4

01(
ycneuqe rF

4 H
z)

Fig. 7. Analyzing results of signal collected from brown bat:
(a) waveform, (b) TFR obtained using STFT, and (c) TFR obtained
using OSTFT.

(a) (b)

(c)
(d)

Fig. 8. Vibration signal and TFRs of a water turbine: (a) waveform and
(b) rotation frequency, (c) TFR obtained using STFT, and (d) TFR
obtained using OSTFT.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

100

200

300

400
500

600

700

800
900

Time (s)

(a)

v1

v2

v3

)z
H(ycneuq erF

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

100

200

300

400
500

600

700

800
900

Time (s)

(b)

v1

v2

v3leaked energy

)z
H(ycneuqerF

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

100

200

300

400
500

600

700

800
900

Time (s)

(c)

)z
H(ycneuq erF

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

100

200

300

400
500

600

700

800
900

Time (s)

(d)

)z
H(ycneuqe rF

Fig. 9. Analyzing results for the first significant point: (a) TFR obtained
using STFT with window size 100, (b) TFR obtained using OSTFT with
window size 100, (c) TFR obtained using STFTwith window size 300, and
(d) TFR obtained using OSTFT with window size 300.
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obtained. Here, we still use the numerical signal x2(t) to further
explain it. The sampling rate of x2(t) is 1800 Hz, which lasts for 1 s.
Hence, the total size of data points is 1800. Here, we use the
OSTFT to analyze this signal by setting different window sizes as
100 and 300, respectively. The latter window size is three times as
large as the former. In this case, we still take the STFT as a
comparison method. The corresponding analyzing results are dis-
played in Fig. 9. By comparing TFRs obtained using STFT with
window size of 100 and 300, respectively, as shown in Fig. 9(a) and
(c), we can find that this parameter for window size has a serious
effect on the TFRs. Furthermore, the larger the window size, the
relatively higher the TF resolution. Although the large window size
can help to acquire a relatively high TF resolution, it is not suitable
for strong nonstationary signals. As shown in Fig. 9(c), the IF
trajectory of v2 is more blurred than that of v1, because of their
different levels of nonstationarity. However, through comparing
Fig. 9(b) and (d), we can find that the TFRs obtained using OSTFT
can acquire high TF resolution, whether the window size is set as
100 or 300. Furthermore, according to TFRs obtained using
OSTFT, it can be also seen that the parameter for window size
only has an effect on leaked energy. By the above analysis, we can
know that OSTFT can vitiate the effect of window size on TFR
obtained.

Secondly, we discuss the other significant point. According to
the analysis shown in Section II-C, the OSTFT inevitably ignores
the amplitude information at time and frequency centers, because
OSTFT acquires the minimums of 0 at time and frequency centers
in the TF plane. Although the OSTFT loses the amplitude infor-
mation at time and frequency centers, the amplitude changing trend
of different frequency components can be obtained according to
that of leaked energy. Here, we construct a numerical signal similar
with x2(t) to further explain it by changing the coefficients of
different intrinsic modes of x2(t). And the rest of parameters of x2(t)
remain unchanged. The constructed signal is given as the following
expression:

x4ðtÞ =
X3
i=1

Ai cos

�
2π

ð
t

0
viðuÞdu

�
(43)

where Ais are 5, 1, and 10, and when is are 1, 2, and 3, respectively.
In this case, we still take the STFT as the comparison method.

The corresponding analyzing results are displayed in Fig. 10.
According to the TFR obtained using STFT shown in Fig. 10(a),
we can obtain the amplitude changing trend of different IFs based
on the color bar, for example, the amplitude of v3 is high than that of
v1. As for the TFR obtained using OSTFT shown in Fig. 10(b),
even though we cannot directly acquire the amplitude changing
trend of different IFs at time and frequency centers, we can know
their changing trend according to the amplitude changing trend of
leaked energy of different IFs.

V. CONCLUSION
In this paper, we presented a novel TF analysis method called
OSTFT by replacing the even symmetric window function with
odd symmetric window function. Therefore, OSTFT can obtain a
TFR with high TF resolution by acquiring minimum of 0 at time
and frequency centers in the TF plane. It is worth to mention that
the OSTFT can vitiate the effect of window size that we choose on
the TFR obtained. Furthermore, the OSTFT has a satisfying
performance on signals with complex IFs, even crossing IFs.
The OSTFT has been validated by two numerical signals with
complex IFs and two signals collected from a brown bat and from
wind turbine vibration in the real life. The proposed OSTFT
inevitably has its limitations. Because of the inherent property
ignoring the amplitude information at time and frequency center, it
is difficult for the OSTFT to reconstruct the signal.
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