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Abstract: Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles
(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linear
modelling is the key to representing the battery and its dynamic internal parameters and performance. This paper
proposes a smart scheme to model the lithium-polymer ion battery while monitoring its present charging current
and terminal voltage at various ambient conditions (temperature and relative humidity). Firstly, the suggested
framework investigated the impact of temperature and relative humidity on the charging process using the constant
current-constant voltage (CC-CV) charging protocol. This will be followed by monitoring the battery at the
surrounding operating temperature and relative humidity. Hence, efficient non-linear modelling of the EV battery
dynamic behaviour using the Hammerstein-Wiener (H-W) model is implemented. The H-Wmodel is considered a
black box model that can represent the battery without any mathematical equivalent circuit model which reduces
the computation complexity. Finally, the model beholds the boundaries of the charging process, not affecting on
the lifetime of the battery. Several dynamic models are applied and tested experimentally to ensure the
effectiveness of the proposed scheme under various ambient conditions where the temperature is fixed at
40°C and the relative humidity (RH) at 35%, 52%, and 70%. The best fit using the H-Wmodel reached 91.83% to
describe the dynamic behaviour of the battery with a maximum percentage of error 0.1 V which is in good
agreement with the literature survey. Besides, the model has been scaled up to represent a real EV and expressed
the significance of the proposed H-W model.

Keywords: battery identification; electric vehicles; EV fast charging; Hammerstein-Wiener; Lithium-polymer ion
battery

I. INTRODUCTION
Lithium-ion batteries (LIBs) with all categories have been
extensively utilized for most electronic equipment and
massively in electric vehicles (EVs). LIBs are commercial-
ized because of their high energy concerning their size, long
lifetime span, high efficiency, and low rate of self-dischar-
ging [1]. Due to the non-linear behaviour of the LIB while
charging, and the variety of the input parameters which
affect the charging process such as charging current, and
ambient conditions represented by temperature and relative
humidity, an accurate identification model of its dynamic
behaviour is required [1].

The environmental temperature has a main impact on
lithium-ion batteries’ charging and discharging operations.
The recommended ambient conditions were suggested to be
from 20°C to 45°C. Exceeding the upper limit may lead the
battery to an acceleration in the capacity degradation rate

and thermal hazards [2]. The temperature and capacity rates
are influencing the degradation rate of the battery. In the
range from 10°C to 60°C, the degradation rate raised while
implementing low C rates. Despite of this, the degradation
at 45°C is lower than that at 25°C while utilizing the 2C
rate. It is concluded that each temperature and C rate have
its own characteristics and battery representation [3]. In
[4,5], the charging operation of the lithium-polymer ion
battery is investigated at different ambient conditions to
recognize and classify the EV. In [6], the authors demon-
strated that the operation of the Li-O2 batteries has been
affected by the humidity where the water can collapse cyclic
and rate abilities. Consequently, EV batteries’ robust mon-
itoring and modelling are required at any ambient condition
to represent the non-linear dynamic behaviour and avoid the
hazard of fast charging. The variation in ambient conditions
created a direct need for an efficient and accurate non-linear
representation of the EV battery’s performance.

Models of the LIBs could be assorted into two major
classes: the electrochemical (EC) and the electrical equiva-
lent circuit (EEC) models. The EC model represents theCorresponding author: Peter Makeen (e-mail: peter.makeen@bue.edu.eg).
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physical-chemical internal reactions inside the battery [7,8]
and the EEC model expresses the battery through electronic
parameters such as resistors and capacitors. The equivalent
circuit models can be categorized into the Rint model,
Partnership for a New Generation of Vehicles (PNGV)
model, and RC transient models which are branched
from the 1st-order to nth-order transient model [9–12]. In
[13], electrical equivalent circuit models from 1RC to 5RC
transient models have been used to describe the LIB. The
parameters are evaluated at various temperatures of 0°C,
25°C, and 45°C. The 3RC EEC model ensured optimum
accuracy and minimum error of 1.8% using the non-linear
least square algorithm. In [14], the electrothermal model-
ling of lithium-ion batteries has been investigated by 1RC
ECM. In addition, the battery’s internal parameters at
different temperatures and current rates have been investi-
gated. An improved reduced-order electrochemical model
(IROEM) is proposed in [15]. In [16], a novel mesoscale
electrothermal modelling is presented. In [9,17–19], the
2RC transient circuit has been used in modelling the
lithium-polymer ion battery; however, multi-experimental
procedures are accomplished to calculate the EEC model
components such as ohmic internal resistance, and electro-
chemical and concentration polarization resistances and
capacitances.

The variety of the ambient conditions represented by
the temperature and relative humidity created a direct need
for an accurate model of the LIB with a minimum percent-
age of error and high accuracy to describe the battery in any
environmental circumstances. The EV battery modelling
research area is directed to focus on the system identifica-
tion methods [20–22] which were dealing with the battery
cells as a non-linear dynamic behaviour like most real
systems. Hence, the white box model and black box model
are utilized to express the systems [23]. In [24], the
Adaptive Neuro-Fuzzy Inference System (ANFIS) model
is utilized to express the LIB and is considered a black box
model. In [23], Hammerstein-Winer (H-W) model ensured
the best fit of 89.79%, 93.53%, and 94% for representing
the LIB at various driving cycles while the temperature is
fixed at 25°C. In [25], the authors used polynomial and
H-Wmodels for both the charging and discharging cycles to
ensure higher accuracy. However, the maximum error using
the H-W and polynomial models reached 10.6% and 10.8%,
respectively. In [26], the components of the 2RC model
have been identified using both the continuous and discrete
time models. In [27], mathematical models are used to
calculate the LIB’s unknown coefficients for efficient mon-
itoring and quick charging. However, the forementioned
models didn’t represent the dynamic behaviour of the LIB
under any environmental conditions. This paper suggests a
clear framework for expressing the lithium-polymer ion
battery’s non-linear charging operation by monitoring the
surrounding environmental circumstances. This is followed
by a set of recommendations for the EV’s user to avoid
overcharging current and voltage.

II. METHODOLOGY
An approach for monitoring the electric vehicles’ battery
dynamic behaviour is proposed in this article. This scheme
consists of multiple stages as shown in Fig. 1; Firstly, the
influence of various environmental conditions on the charg-
ing operation of the lithium-polymer ion battery is investi-
gated. Then sufficient identification and modelling of the

battery are obtained through full monitoring of the battery’s
dynamic behaviour at any ambient condition. Finally, a user
guide of the charging boundaries is suggested based on the
battery dynamic model to alleviate the degradation rate of
the battery and avoid hazardous operations.

A. HAMMERSTEIN-WIENER (H-W)
IDENTIFICATION MODEL

Instead of the electrochemical and electrical equivalent
circuit representation models, Hammerstein-Wiener (H-W)
identification model is implemented to express the output
non-linear performance of the LIB. It is extensively utilized
in non-linear industrial systems [28]. This model is
composed of a non-linear block which is called the
Hammerstein model followed by the linear block which
is called the Wiener [29]. The main stages of the H-W
identification model are represented in Fig. 2. The proce-
dure of these stages is started by converting the non-
linearity experimental input data to a dynamic linear block
which is called the Hammerstein model. This is followed by

Fig. 1. A flowchart of the proposed approach.

Fig. 2. Schematic representation of the H-W identification
model [4].
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the Wiener model which converts the linear model to the
output non-linear required results. The main equations are
expressed in [23,29,30] and presented as follows

wðtÞ = f ðuðtÞÞ (1)

xðtÞ = B

F
wðtÞ (2)

yðtÞ = hðxðtÞÞ (3)

where wðtÞ and xðtÞ are the input and output of the dynamic
linear block, respectively, and yðtÞ is the output of the H-W
identification model.

B. DATA COLLECTION

In this study, the EV is presented by a small-scaled lithium-
polymer ion battery of 1,000 mAh with a working temper-
ature from 0°C to 40°C and the charging and discharging
cut-off voltage of 4.2 ± 0.05 V and 2.75 V, respectively.

The influence of varying the temperature and relative
humidity on the charging operation is scrutinized by testing

the battery in different ambient conditions using a con-
trolled chamber as in our previous research articles [4,5]
and presented in Fig. 3(a). The constant current stage
followed by the constant voltage stage (CC-CV) charging
protocol is used to charge the battery as shown in Fig. 3(b).
The battery’s VI characteristics (charging current and the
corresponding terminal voltage) are scrutinized at 30°C and
40°C while fixing the RH of 52%. The temperature/RH
sensor used is the DHT11 and located inside the chamber
and far from the lithium-polymer ion battery under the test
by almost 2 cm.

It is observed that the battery is fully charged at
4,742 sec and 4,919 sec at 30°C and 40°C, respectively,
as shown in Fig. 4(a) and (b). Hence, while raising the
temperature the charging time is increased. In addition,
another test has been performed on the battery while
maintaining the temperature at 40°C and varying relative
humidity. The interval time required for the battery to reach
full capacity is 4,606 sec, 4,938 sec, and 5,690 sec for the
RH of 35%, 52%, and 70%, respectively, as shown in
Fig. 4(c) and (d). Hence, whenever the RH is increased the
charging time is increased. In addition, as declared in
Fig. 4(c) the charging process could be split into the CC
stage and CV stage. Whenever the RH increased, the
interval time of the CC stage becomes very short with
respect to low RH conditions. However, the CV stage took
longer interval time than the low RH conditions. Conse-
quently, high RH directs the lithium-polymer ion battery to
take more time while charging.

Based on the proposed experiments, it is observed that
whenever there is any change in the ambient conditions
represented by temperature or/and relative humidity, the
charging pattern differs from one case to another, so a
sufficient lithium-polymer ion battery identification model
must be obtained. In this paper, the H-W identification
model is used to represent the dynamic performance of the
battery under any circumstances as will be scrutinized in the
following sections.

III. EV BATTERY DYNAMIC
BEHAVIOUR MODELLING

The H-W identification model has been used to estimate the
dynamic performance of the lithium-polymer ion battery
with a model structure of one numerator order and three
denominator order utilizing various search methods. Three
ambient conditions of the battery have been utilized in this
study where the temperature is kept constant at 40°C and the
RH is varied to be 35%, 52%, and 70%. The CC-CV
protocol is used with a current stage of 0.9A to charge
the lithium-polymer ion battery in all conditions. The
relationship between the experimental and simulated model
output using the H-W identification model of all conditions
is presented in Fig. 5. Each charging process at a specific
ambient condition could be represented with different VI
characteristics (charging current and the corresponding
battery’s terminal voltage) which will be reflected in the
interval time. Consequently, the H-W identification model
tries to represent the battery’s dynamic performance in any
environmental condition and tracks all the curvatures on the
graph to reach the optimum fit of performance. The best-fit
results for all the mentioned conditions are 90.98%,
91.83%, and 82.24%, respectively, using the Levenberg-
Marquardt (LM), Gauss-Newton (GN), and Adaptive

Fig. 3. (a) The proposed test rig and (b) the CC-CV charging
protocol [4,31].
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Gauss-Newton (GNA) search methods, respectively. The
selection of the search method is automatically performed
using the Matlab/SIMULINK Program to reach the opti-
mum solution.

A. HAMMERSTEIN-WIENER (H-W) MODEL
VALIDATION

The effectiveness of the suggested non-linear identification
model is presented in Fig. 5 which declares the variance
between the experimental and simulated battery terminal
voltage for each ambient condition. The battery’s terminal
voltage error at a specific temperature of 40°C and various
RH of 35%, 52%, and 70% reached almost 0.05 V, 0.05 V,

Fig. 4. The charging VI characteristics of the utilized battery (a),
(b) at different temperatures of 30°C and 40°C while maintaining
the RH constant at 52%, (c), and (d) at various RH of 35%, 52%,
and 70% while maintaining the temperature constant at 40°C [4].

Fig. 5. Battery identification and modelling using the H-W
identification model of 1,000 mAh lithium-polymer ion battery
at different RH of 35%, 52%, and 70%, respectively, while
maintaining the temperature at 40°C.
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and 0.1 V, respectively, which is almost equivalent to
1.35%, 1.35%, 2.7% of the battery nominal voltage
(3.7 V) as observed in Fig. 6, respectively. These values
prove the good performance of the H-W identification
model concerning the literature survey [25].

The results that represent the battery dynamic behav-
iour identification best fit, the search method using the H-W
model, and the terminal voltage error at different ambient
conditions are represented in Table I.

To validate the H-W model, the temperature is fixed at
40°C and the RH at 35%. The battery has been charged by the
CC-CV charging protocol by 0.5 A where the terminal
voltages of the simulated and measured battery are expressed
in Fig. 7(a). In addition, Fig. 7(b) declares the output

difference between the modelled and experimental represen-
tations, ensuring the high performance of the suggestedmodel
where the maximum error reached 0.176 V which is equiva-
lent to 4.757% of the battery nominal voltage (3.7 V).

The final stage of the presented model depends on the
sufficient identification model estimated in the previous
stage. This stage expresses the permitted charging current
and output terminal voltage of the battery at any ambient
condition to prevent battery degradation and avoid any
hazardous operation.

IV. COMPARATIVE STUDY
As shown in Fig. 8, the output battery terminal voltage while
charging by 0.9 A is expressed throughout the three men-
tioned conditions. The batteries reached the nominal voltage

Fig. 6. The variance between the experimental and simulated
battery’s output terminal voltage at a fixed temperature of 40°C
and different RH of 35%, 52%, and 70%, respectively.

Table I. Battery identification comparative study at
different ambient conditions using the H-W model

Ambient condition
(Temp, RH) (%)

Best
fit (%)

Terminal
voltage
error (V)

Search
method

40°C, 35 90.98 0.05 LM

40°C, 52 91.83 0.05 GN

40°C, 70 82.24 0.1 GNA

Fig. 7. H-W model validation at 40°C and RH at 35% (a) the
charging current using the CC-CV and terminal voltage of the
simulated and measured results and (b) the variance between
the experimental and simulated outcomes.
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after 635.465 sec, 750.423 sec, and 220.337 sec, respectively.
Besides, the 3rd case study which represents the battery at
40°C and RH of 52% reached its cut-off voltage at 2,111 sec.
Hence, whenever you exceeded the permitted battery’s ter-
minal voltage, you accelerate the degradation factor rate and
shorten the cycle life which may cause the battery’s hazard.

V. EV LITHIUM-ION BATTERY
SCALING-UP REPRESENTATION

In this section, the lithium-polymer ion battery is scaled up to
match the 2015 Chevrolet Spark EV specifications [31]. This
category uses the LGChem lithium-ion batterywith a nominal
cell voltage of 3.7V, a nominal systemvoltage of 355.2V, and
192 cells of 6 modules. In our case study, we will implement
the same configurationwith our lithium-polymer ion battery of
1,000 mAh to investigate the importance of the H-W identifi-
cation model in any environmental condition. However, the
internal heat impact of the cells on each other was considered
constant in the proposed model. The utilized modules in real
EVs are specified with high energy capacity rates reached to
200 kAh [31]. In our case study, we used a lithium-polymer
ion battery with a 1,000 mAh battery capacity to format the
module. The EV battery is composed of 16 cells in series and
parallels with another 16 series cells to format the module.
This category has 6 modules in a series connection.

Three H-W identification models are implemented as
shown in Fig. 9(a). The scaling-up ensured the best fit of
90.3%, 91.23%, and 83.37% for the mentioned case studies,
respectively. The EV battery terminal voltage variance
between the simulated and scaled-up data reached 5 V,
5 V, and 7 V, respectively, which means an error of 1.4%,
1.4%, and 1.97%, respectively, with respect to the nominal
voltage of the battery (355.2 V). This representation is
based on the assumption that the ambient conditions of the
battery’s pack are the same as the 1,000mAh battery used in
the previous sections. As observed in Fig. 9(b), the three
conditions have been charged with the same charging
current and reached the nominal voltage in 547.958 sec,
690.903 sec, and 207.611 sec, respectively. In addition, the
3rd case study reached the cut-off voltage (403.2 V) in
2,719 sec; however, the other cases did not reach the upper

limit till the end of the simulation time 2,750 sec. The
degradation rate will be increased when you exceed the cut-
off voltage as mentioned in the literature survey.

VI. CONCLUSION
A novel schematic charging framework based on the moni-
toring and modelling of the lithium-polymer ion battery is
suggested and investigated in this article. A non-linear
black box model for a lithium-polymer ion battery of
1,000 mAh is proposed based on the Hammerstein-Wiener
(H-W) identification model. The non-linear H-W model
represented the EV battery’s electrical dynamic behaviour
at different environmental circumstances of temperature
and RH. The proposed model ensured the best fit of
90.98%, 91.83%, and 82.24% for different ambient condi-
tions with a maximum error of 0.05 V, 0.05 V, and 0.1 V,
respectively. A comparative study between the different
models has been established while charging by the same
current to indicate the importance of accurate modelling
accompanied by the minimum percentage of error. In
addition, a scaling-up case study is proposed based on
the EV battery specification in the market. This could be
a smart warning flag for the EV’s user while charging to

Fig. 8. The output terminal voltage while charging by 0.9 A on
the proposed H-W identification models at the proposed ambient
conditions.

Fig. 9. The EV battery terminal voltage after scaling up at various
ambient conditions.
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improve the storage security, safety operation, and battery
management performance. The proposed model could be
supported by artificial intelligence algorithms to estimate all
the required models at the remaining ambient conditions.
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