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Abstract: Recently, deep learning (DL) has been widely used in the field of remaining useful life (RUL) prediction. Among
various DL technologies, recurrent neural network (RNN) and its variant, e.g., long short-term memory (LSTM) network, have
gained extensive attention for their ability to capture temporal dependence. Although existing RNN-based methods have
demonstrated their RUL prediction effectiveness, they still suffer from the following two limitations: 1) it is difficult for the RNN
to directly extract degradation features from original monitoring data and 2) most RNN-based prognostics methods are unable to
quantify RUL uncertainty. To address the aforementioned limitations, this paper proposes a new prognostics method named
residual convolution LSTM (RC-LSTM) network. In the RC-LSTM, a new ResNet-based convolution LSTM (Res-ConvLSTM)
layer is stacked with a convolution LSTM (ConvLSTM) layer to extract degradation representations frommonitoring data. Then,
under the assumption that the RUL follows a normal distribution, an appropriate output layer is constructed to quantify the
uncertainty of prediction results. Finally, the effectiveness and superiority of the RC-LSTM are verified using monitoring data
from accelerated bearing degradation tests.
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I. INTRODUCTION
Remaining useful life (RUL) prediction, as the effective tool in
reducing unplanned shutdowns caused by mechanical failures, is
widely utilized in modernized industries to ensure the safety of
machines and improve the production efficiency [1,2]. RUL pre-
diction methods can mainly be divided into two categories [3], i.e.,
model-based methods and data-driven methods. Model-based
methods aim to establish mathematical models to describe the
machines degradation process through analyzing the physical
failure mechanism. However, in practical cases, failure mecha-
nism-based degradation model is generally difficult to formulate,
and the mis-specification of degradation model will seriously
impact the accuracy of RUL prediction. Compared with model-
based methods, data-driven methods can adaptively model the
degradation process without clear physical failure mechanisms
through the utilization of machine learning (ML) technologies,
such as support vector machine [4], gaussian process regression
[5], artificial neural networks [6], etc. Therefore, data-driven
methods have gained increasing attention in recent years.

Nevertheless, the above-mentioned data-driven methods merely
use traditional ML methods, which results in limited prediction
accuracy. Compared with traditional ML methods, deep learning
(DL) methods have more powerful learning capabilities and possess
the capability of establishingmore complexmapping relationships [7]
between monitoring data and RUL. Therefore, DL is now widely

used in the field of RUL prediction [8–10]. Among various DL
technologies, recurrent neural network (RNN) [11,12] and its variant,
e.g., long short-term memory (LSTM) network [13–15], are able to
effectively capture the time dependence hidden in the degradation
process and have become the promising tool in RUL prediction.
Although the existing approaches have demonstrated their RUL
prediction effectiveness, they still suffering the following two
limitations:
1) Since RNN lacks consideration of spatial correlation [16], it

is difficult for RNN to extract directly degradation features
from original monitoring data. Therefore, most of the RNN-
based prognostic approaches are combined with hand-crafted
features, which affect the accuracy and generalization of the
forecast results, resulting in the fact that they are accurate
only in some specific scenarios.

2) The uncertainty quantification of prognostic result is pivotal
in making maintenance decisions, but most of the RNN-
based RUL prediction methods only provide a point estima-
tion. In the case of complex working conditions, the stability
of RUL prediction results is often compromised, which
would reduce the credibility of the method in providing
guidance for predictive maintenance scheduling. Further-
more, the existing DL-based uncertain quantification meth-
ods mainly include two types: bootstrap [17] and Monte
Carlo dropout [18] (MC dropout). Recently, Jason et al. [19]
and Liu et al. [20] quantified the uncertainty of predicted
RUL with bootstrap method. However, bootstrap-based
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is time-consuming. Peng et al. [21] and Wang et al. [22]
combined MC dropout with different neural networks to esti-
mate the uncertainty. But MC-dropout-based methods need to
run multiple times during the test stage, which is not efficient
enough and requires additional computational burden.

To address the above-mentioned limitations, this paper pro-
poses a new prognostic method named residual convolution long
short-termmemory (RC-LSTM) network for the RUL predictions of
machines. In the proposedmethod, a ResNet-based convolution long
short-term memory (Res-ConvLSTM) layer, which is improved
from convolution long short-term memory (ConvLSTM) network
[16], is first built to extract directly degradation representations and
capture time dependence information from monitoring data. Then,
an ordinary ConvLSTM layer is used to extract further degradation
information. After that, predicated on the RUL following a normal
distribution, an appropriate output layer is constructed to directly
quantify the uncertainty of the forecast result without additional
computational burden. Finally, the superiority of the proposed Res-
ConvLSTM is validated using vibration data from accelerated
degradation tests of rolling element bearings.

II. THE PROPOSED METHOD
The framework of RC-LSTM network is shown in Fig. 1. First,
Res-ConvLSTM layer and ConvLSTM layer are stacked with
batch normalization (BN) layer [23] to extract informative degra-
dation representations. Then, the representations are input into
normal distribution output layer to obtain the predicted RUL and to
quantify uncertainty.

In this section, we first introduce the ConvLSTM unit. Then,
Res-ConvLSTM, where a new core building unit, improved from
ConvLSTM, is further detailed. Finally, the normal distribution
output layer and its loss function are described in details.

A. ConvLSTM UNIT

It has been justified that LSTM lacks consideration of spatial
correlation, while in the meantime, CNN owns the capability of
extracting spatial features. Accordingly, it is considered to embed
CNN into LSTM to construct ConvLSTM unit to capture time series
information and extract degradation representations simultaneously.
The structure of ConvLSTM is shown in Fig. 2.

Given the current input xt, the hidden state ht−1 and the cell
state ct−1 at previous moment, the output representation ht can be
calculated as follows:

it = σðWðiÞ � xt þ UðiÞ � ht−1Þ: (1)

f t = σðWðf Þ � xt þ Uðf Þ � ht−1Þ: (2)

c 0t = tanh ðWðcÞ � xt þ UðcÞ � ht−1Þ: (3)

ct = f t ⋅ ct−1 þ it ⋅ c 0t : (4)

ot = σðWðoÞ � xt þ UðoÞ � ht−1Þ: (5)

ht = ot ⋅ tanh ðctÞ. (6)

where it, f t, and ot are input gate, forget gate, and output gate
respectively. � represents the convolution operator, c 0t is the current
input, ct is the current cell state, and Wand U are convolution
kernels of different gates.

Compared with the traditionally used LSTM, the main differ-
ence of ConvLSTM is that the fully connected structure in LSTM is

Fig. 2. The structure of ConvLSTM unit.

Fig. 1. Architecture of the proposed RC-LSTM.
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replaced with the convolutional structure, which comprehensively
utilizes the advantages of LSTM and CNN to extract simulta-
neously the local degradation feature and time dependence.

B. RES-ConvLSTM UNIT

As shown in Fig. 2, ConvLSTM uses single-layer convolution to
extract local features from the current input xt. However, for
complex original monitoring data, single-layer convolution is
not sufficient to extract sensitive degradation representations. To
address the above-mentioned problem, this paper constructs a Res-
ConvLSTM unit, which utilizes deep residual convolutional neural
network (Resnet) to replace single-layer convolution. The structure
of Res-ConvLSTM unit is shown in Fig. 3.

Compared to ordinary convolutional neural networks, Resnet
utilizes an identity mapping to address the problem of vanishing
gradient and gradient explosion, which ensures the stability of
network training when increasing the depth of network. Moreover,
the structure of basic Resnet unit is shown in Fig. 4.

Given the input vector x, The output HðxÞ of Resnet unit is
calculated as follows:

HðxÞ = FðxÞ þWsx: (7)

where FðxÞ is the output that ignores the identity mapping, and
Ws is a linear projection weight matrix, which aims to maintain the
uniform dimensions of x and FðxÞ.

Hence, by stacking RResnet units to substitute the single-layer
convolution, Res-ConvLSTM unit has greatly improved its local
feature extraction capabilities, thereby realizing effective proces-
sing of massive monitoring data.

C. NORMAL DISTRIBUTION OUTPUT LAYER

Different from the traditional point estimation-based methods, this
paper assumes that the predicted RUL follows a normal distribution
and correspondingly constructs the normal distribution output layer
to quantify uncertainty. The constructed layer is shown in Fig. 1,
which exploits two different fully connected layers (FCLs), NNμ
and NNσ , to obtain mean μ̂ and standard deviation σ̂. Among them,
the mean μ̂ denotes the mean value of predicted RUL, and the
standard deviation σ̂ represents the uncertainty of the predicted
result. Based on the above results, the conditional probability of
RUL is obtained as:

Pðyjx,NNμ,NNσÞ =
1ffiffiffiffiffiffiffiffiffiffi
2πσ̂2

p e−
ðy−μ̂Þ2
2σ̂2 : (8)

where y is the actual RUL and x is the input of normal distribution
output layer. Consequently, according to the mean μ̂ and standard
deviation σ̂, the prediction confidence interval (PI) corresponding
to ð1 − αÞ% can be obtained as follows:

PI = μ̂� z1−α=2σ̂: (9)

Furthermore, since the standard deviation σ̂ is an unknown
prior, the supervised learning method is incapable of adjusting the
parameters in NNσ . In view of this, the maximum likelihood
estimation method is utilized to optimize the network parameters.
Correspondingly, the log-likelihood loss function (LLF) L1 is
formulated as:

L1 =
1
2

Xn
i=1

�
ln ðσ̂i2Þ þ

ðyi − μ̂iÞ2
σ̂i

2

�
. (10)

where n is batch size. During the training process, the goal is to find
the optimal μ̂ and σ̂ that corresponds to the ascent direction of
actual RUL condition probability. However, it is difficult to
optimize simultaneously both mean μ̂ and standard deviation σ̂
for L1. Moreover, in some cases when actual RUL is known,
another feasible option is to utilize mean square error (MSE) to
optimize μ̂ to ensure the accuracy of the predicted mean, then LLF
can be further optimized with respect to both μ̂ and σ̂. The L2
loss function of the above-described optimization process is
defined as:

MSE =
1
n

Xn
i=1

ðyi − μ̂iÞ
2

(11)

L2 = k12MSEþ k22LLF. (12)

where k12 and k22 are the weights corresponding to MSE and LLF,
which are adjusted with the training epoch.

In addition, it is a commonsense that the more light-tailed the
distribution of PI is, the more effective the maintenance scheduling
can be. Based on this premise, the prediction interval averaged
width [24] (PIAW) indicator is introduced into L2 loss function to
further clarify the optimization direction of standard deviation σ̂,
The L3 loss function is correspondingly defined as follows:

Fig. 3. The structure of Res-ConvLSTM unit.

Fig. 4. The structure of basic Resnet unit.
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PIAW =
1
n

Xn
i=1

ðUi − LiÞ. (13)

L3 = k13MSEþ k23LLFþ k33PIAW: (14)

where Ui and Li are the upper and lower limits of PI, respectively,
and k13, k

2
3, andk

3
3 are the weights corresponding to MSE, LLF, and

PIAW, respectively.

III. CASE STUDY: RUL PREDICTION OF
ROLLING ELEMENT BEARINGS

To verify the effectiveness of the proposed RC-LSTM, vibration
data collected from accelerated degradation tests of rolling element
bearings are used, and four state-of-the-art prognostic approaches
are compared in this section.

A. DATA DESCRIPTION

The datasets used in this paper are the XJTU-SY Bearing Datasets
[3]. And the accelerated degradation tests of rolling element
bearings are conducted in the testbed as shown in Fig. 5, which
consists of an alternating current (AC) motor, a rotating shaft, a
support bearing, a test bearing, a hydraulic loading system, a motor
speed controller, etc. By controlling the speed and load, the testbed
is capable of conducting degradation tests of bearings under
different operating conditions.

As recorded in Table I, 15 LDK UER204 bearings were tested
under 3 different operating conditions. During each test, two PCB
352C33 acceleration sensors were mounted in the horizontal and
vertical directions of the test bearing to monitor the degradation
process of the rolling bearing. And during the experiments, the

sampling frequency was set to be 25·6 kHz, with the sampling time
of 1·28 s and the sampling interval of 60 s. Put otherwise, 32768
data points can be obtained per sampling. In this section, Bear-
ing1_4, Bearing2_4, Bearing3_4, Bearing1_5, Bearing2_5, and
Bearing3_5 are selected as the testing dataset, respectively. And the
remaining bearings are assigned as the training dataset.

B. PROGNOSTIC METRICS

In this part, apart from the two commonly used prognostic metrics,
RMSE and score function [25], two other metrics, i.e., α − λ accuracy
[26] (Aα−λ) and average interval score [27] (AIS), are also utilized to
evaluate quantitatively the prediction performance. Aα−λ is a binary
metric that evaluates whether the prediction result falls within
α − bounds at time λ. In this paper, α and λ are set to 0·3 and 0·5,
respectively. The AIS is employed to evaluate the comprehensive
performance of the prediction interval, which is defined as follows:

ξðαÞi = UðαÞ
i − LðαÞi . (15)

SðαÞi =

8<
:

−2αξðαÞi − 4ðLðαÞi − yiÞ, if yi < LðαÞi

−2αξðαÞi , if LðαÞi < yi < UðαÞ
i

−2αξðαÞi − 4ðyi − UðαÞ
i Þ, if yi < UðαÞ

i

. (16)

AIS =
1
n

Xn
i=1

SðαÞ. (17)

where α is the confidence level, ξ is the interval length of the i-th PI,
and S is the corresponding interval score that will impose punishment
if the actual RUL is outside the PI. According to this definition, AIS is
always a negative value that shares the positive correlation along with
change of the convergence rate.

C. CONFIGURATION OF RC-LSTM

Firstly, time window embedding is conducted on the monitoring
data. Then, in RC-LSTM, the hyperparameters determined by grid
search are summarized in Table II, and Adam optimizer is adopted

Fig. 5. Testbed of rolling element bearings.

Table I. Dataset description

Radial force
Rotating

speed/rpm Bearing datasets

12 kN 2100 rpm Bearing1_1 Bearing1_2 Bearing1_3

Bearing1_4 Bearing1_5

11 kN 2250 rpm Bearing2_1 Bearing2_2 Bearing2_3

Bearing2_4 Bearing2_5

10 kN 2400 rpm Bearing3_1 Bearing3_2 Bearing3_3

Bearing3_4 Bearing3_5

Table II. Configuration of RC-LSTM

Hyperparameter Size Hyperparameter Size

Number of Resnet units 9 Number of neurons
in NNμ and NNσ

100

Number of kernels
in Res-ConvLSTM

256 Number of kernels
in ConvLSTM

256

Kernels size in
Res-ConvLSTM

3 × 1 Kernels size in
ConvLSTM

3 × 1

Time step 7 epoch 100

Batch size 64 Learning rate 0·001

Table III. Weights in different loss functions

Epoch L2 L3
[0, 30] k12 = 0.8,k22 = 0.2 k13 = 0.8,k23 = 0.2,k33 = 0

(30, 60] k12 = 0.5,k22 = 0.5 k13 = 0.5,k23 = 0.5,k33 = 0.1

(60, 80] k12 = 0.3,k22 = 0.7 k13 = 0.3,k23 = 0.7,k33 = 0.6

(80, 100] k12 = 0.1,k22 = 0.9 k13 = 0.1,k23 = 0.9,k33 = 1

Residual convolution LSTM network for machines remaining useful life prediction and uncertainty quantification 5
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to minimize the loss function. In addition, the weights in different
loss functions are shown in Table III.

D. RUL PREDICTION FOR BEARINGS. In this section, the ad-
vantages from the proposed loss function are first investigated and
discussed. Then, the proposed RC-LSTM is compared with other
state-of-the-art prognostics methods to demonstrate its superiority.

1) DISCUSSIONOFLOSSFUNCTION. In addition to the ordinary
LLF L1 defined in, this paper proposes two different loss functions,
i.e., L2 defined in and L3 defined in. To illustrate the advantages of
L2 and L3, all three loss functions are used to predict the RUL of
bearings. Fig. 6 shows the prediction results of Bearing 3_5 under
different loss functions. Meanwhile, the performance estimation
results under all three scenarios are tabulated in Table IV where the
bolded values are the best evaluation results.

It can be observed from Table IV and Fig. 6 that in the RUL
prediction of bearings, compared with ordinary LLF L1, both L2
and L3 achieve lower RMSE score values and higher Aα−λ values,
which indicates that by introducing MSE and prioritizing the
optimization of prediction mean μ̂, the performance of network
can be effectively improved, and the mean value μ̂ of RUL
prediction results can be obtained with higher accuracy. Moreover,
it can also be clearly seen that by considering the directional
optimization of prediction standard deviation σ̂, the PI correspond-
ing to L3 is significantly narrower than that of L1 and L2, which
means L3 is able to reduce sufficiently the uncertainty of prediction

results and provide a more applicable PI. As a result, benefiting
from introducing the MSE and PIAW, the proposed loss function
effectively improves the performance of prognostics model.

2) COMPARISON WITH THE STATE-OF-THE-ART PROGNOS-
TICS METHODS. In this section, three other state-of-the-art point
estimation prognostics approaches are firstly implemented to pre-
dict RUL for bearings for comparison, which are named as N1, N2,
and N3, respectively. Among them, N1 [28] first converts the time
domain signal into the frequency domain, then inputs it into one-
dimensional CNN and simple recurrent unit network to realize
RUL prediction. N2 [29] utilizes LSTM and attention mechanism
to learn degradation representations from original monitoring data
and predict RUL. N3 [30] is a prognostics method that combines
CNN, LSTM, and attention mechanism. Table V summarizes the
evaluation metrics of different networks.

The result shows that the proposed RC-LSTM gets the lowest
RMSE values in all cases and the lowest score values in all
cases but one. This signifies the superiority of RC-LSTM, com-
pared to the three state-of-the art methods in RUL prediction
accuracy. More importantly, RC-LSTM is capable of providing
a probabilistic distribution to quantify uncertainty, which over-
comes the limitation of traditional point estimation prognostics
approaches. Therefore, the prediction performance of RC-LSTM is
more useful in applications than the other three methods.

To further verify the performance of the proposed method, we
also compare the proposed method with other DL-based uncer-
tainty quantification methods, including Bayesian multiscale CNN-
based method [21] (BMSCNN) and Bayesian recurrent convolu-
tional neural network [22] (BRCNN). Among them, BMSCNN
combine Monte Carlo dropout with deep multiscale CNN to
achieve uncertainty quantification. BRCNN first constructs a net-
work structure named recurrent convolutional neural network and
then utilizes MC dropout to quantify the uncertainty. The compar-
ison results are tabulated in Table VI.

From this table, it can be clearly seen that the proposed method
gets lower score RMSE values and higher Aα−λ values, which
indicates the proposed RC-LSTM achieves higher prediction accu-
racy than BMSCNN and BRCNN. Furthermore, the AIS value of the
proposed method is significantly higher than other uncertainty
quantification methods, and this means that the proposed RC-
LSTM achieves a better trade-off between the prediction interval
coverage and the interval width. Based on the above analyses,
the RC-LSTM has a slightly better performance than other DL-based
uncertainty quantification methods in RUL prediction of bearings.

Fig. 6. RUL prediction results of Bearing3_5 under different loss functions. (a) L1 loss function. (b) L2 loss function. (c) L3 loss function.

Table IV. The performance estimation results of these three
loss functions

Metrics L1 L2 L3
Bearing 1_5 RMSE 8.04 5.91 5.78

Score 22.28 18.73 17.64

AIS −23.21 −21.83 −19.96
Aα−λ 53.48% 69.44% 71.57%

Bearing 2_5 RMSE 30.21 29.40 21.77

Score 3358.18 3165.99 1348.43

AIS −131.65 −123.88 −115.85
Aα−λ 52.69% 53.30% 64.67%

Bearing 3_5 RMSE 5.85 5.35 4.31

Score 32.53 25.24 20.56

AIS −35.97 −33.42 −27.69
Aα−λ 59.26% 64.81% 68.52%
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IV. CONCLUSION
This paper proposed a new prognostics method named RC-LSTM
to predict machine RUL. In the RC-LSTM, a residual convolution
long short-term memory layer was constructed to extract degrada-
tion representations from monitoring data. Then, a ConvLSTM
layer was stacked to capture subsequent time dependence. After
that, through constructing a normal distribution output layer and an
improved loss function, the proposed method could effectively
quantify the uncertainty of prediction results. Finally, bearing
vibration data were employed to evaluate the proposed RC-
LSTM, and prediction results were compared with some state-
of-the-art prognostics methods. Experimental results indicated the
effectiveness and superiority of the proposed method. Moreover,
different from traditional point estimation based prognostics ap-
proaches, the RC-LSTM can provide probabilistic prediction
results, which facilitates making maintenance decisions effective.
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