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Abstract: Bearing fault diagnosis stands as a critical component in the maintenance of rotating machinery. Many
prevalent deep learning techniques are tailored to Euclidean datasets such as audio, image, and video. However,
these methods falter when confronting non-Euclidean datasets, notably graph representations. In response, here
we introduce an innovative approach harnessing the graph convolutional network (GCN) to analyze graph data
derived from vibration signals related to bearing faults. This enhances the precision and reliability of fault
diagnosis. Our methodology initiates by deriving a periodogram from the unprocessed vibration signals.
Subsequently, this periodogram is mapped into a graph format, upon which the GCN is engaged for classification
purposes. We substantiate the efficacy of our approach through rigorous experimental assessments conducted on a
collection of ten bearing sets. Within these experiments, an accelerometer chronicles vibration signals across
varying load conditions. We probe into the diagnostic accuracy rates across diverse loads and signal-to-noise
ratios. Furthermore, a comparative evaluation of our method against several established algorithms delineated in
this study is undertaken. Empirical observations confirm that our GCN-based strategy registers an elevated
diagnostic accuracy quotient.
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I. Introduction
Bearings serve as foundational elements in rotating machin-
ery, yet they remain among the most susceptible to wear and
damage [1]. Faults in these bearings can critically jeopar-
dize machine operator’s safety and hinder industrial pro-
ductivity. This underscores the crucial importance of
bearing fault diagnosis within the overarching scope of
rotating machinery maintenance—a topic that has garnered
significant research interest over the past years [2].

At the heart of bearing diagnostic algorithms lie two
principal components: the extraction of signal features and
subsequent pattern classification. Various techniques facili-
tate signal feature extraction, including the fast Fourier
transform (FFT) [3], wavelet analyses [4], empirical mode
decomposition [5], and in-depth statistical signal evaluations
[6], among others. On the pattern differentiation front, an
array of algorithms has been devised, with notable mentions
being support vector machines [7], back-propagation neural
networks [8], Bayesian analytical tools [9], and proximity-
based classifiers [10].

Deep learning, a burgeoning subset of machine learn-
ing, has exhibited exceptional capabilities, often surpass-
ing human benchmarks, as evidenced by recent studies
[11–13]. Its integration into fault diagnosis has become
progressively pronounced. Diverging from conventional
fault diagnosis techniques, deep learning delves into multi-
layered networks, facilitating the incremental extraction of

input sample features. By leveraging nonlinear activation
functions at every layer, it accomplishes autonomous fea-
ture extraction and classification. Consequently, this di-
minishes the reliance on manual feature extraction,
substantially reducing the need for expert intervention
and specialized know-how.

The graph convolutional network (GCN) emerges as an
advanced deep learning methodology specifically tailored
to handle non-Euclidean datasets, characterized by their
unique nodes and interconnecting edges. Within GCNs, the
convolutional operations on graphs adeptly extract pivotal
features, harmoniously fusing local node attributes with
overarching graph architecture. This prowess has already
been evidenced in diverse domains, including image and
text identification [14], objective classification [15], and
motion detection [16].

The nascent intersection of graph theory with fault
diagnosis has only begun to unfold in recent scholarly
pursuits. For instance, the study in [17] adeptly converted
time-sequence signals linked with bearing faults into graph
structures, aiming to surveil the dynamic shifts in rotating
machinery. Similarly, [18] encapsulated the time-frequency
continuum of a bearing fault signal within a graph frame-
work, employing the K Nearest Neighbor for subsequent
classification. The research presented in [19] opted for an
undirected weighted graph to encapsulate the frequency
spectrum of a pertinent bearing fault signal. In [20], an
intelligent acoustic-based fault diagnosis algorithm is pro-
posed using deep graph neural network, the data collected
by microphones are transformed into graphs, and a deep
graph neural network is used to classify the fault bearings.Corresponding author: Xiaodong Li (e-mail: lxd@mail.ioa.ac.cn).
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In [21], time-domain signal segments of bearing are used as
the node features of a graph, and a graph convolutional
neural network is proposed to process the transformed
graph to make a classification. Nonetheless, these pioneer-
ing endeavors remain in their embryonic phases, and their
diagnostic precision has room for enhancement.

Drawing inspiration from prior research and advance-
ments in the realm of fault diagnosis, this paper introduces a
novel deep learning approach rooted in GCN aimed at
enhancing the precision and resilience of bearing fault
diagnosis. Within this framework, vibration signals are
concurrently amassed via an accelerometer and subse-
quently transmuted into a periodogram. We then develop
a graph formulation technique to represent this period-
ogram. Conclusively, an innovative GCN architecture is
posited to manage these graph representations. Experimen-
tal validations ensue, juxtaposing the results garnered from
our approach against prevailing algorithms. Our findings
underscore the superior diagnostic precision our methodol-
ogy offers.

This study’s pivotal contributions can be distilled into
two main aspects: (1) The introduction of a novel GCN
configuration and (2) a fresh approach to encapsulating
bearing fault vibration signals within a graph-centric
paradigm.

The structure of this paper unfolds as follows:
Section II delves into the principles underpinning GCN.
Section III elucidates our novel technique of transfiguring
vibration signals into graph representations, in tandem with
a detailed exposition of our bespoke GCN algorithm.
Section IV embarks on an analytical journey through
bearing fault signals, showcasing results obtained via our
method, and subsequently benchmarking our method’s
performance against established algorithms across varied
loads and signal-to-noise ratios (SNRs). Section V culmi-
nates with our conclusive remarks.

II. GCN
A standard GCN is comprised of several layers: the input,
graph convolutional, graph-pooling, fully connected, and
output layers.

In the GCN’s input layer, non-Euclidean graphs are
adeptly processed. Such graphs encapsulate the inherent
geometry and structural nuances of data, often delivering
richer insights than traditional data configurations.

Delving into the graph convolutional layer, the con-
volutional kernel conducts convolutions on the data
received from the preceding layer. Coupled with a nonlinear
activation function, this layer crafts the resultant output
features. The product of each layer embodies the convolu-
tional synthesis of myriad input attributes. Its mathematical
framework is delineated in reference [22]:

Hðlþ1Þ = f ðbD−1=2bAbD−1=2HðlÞW ðlÞÞ (1)

where bA = Aþ I, in which A is the adjacency matrix, I
signifies the identity matrix, and bD represents the diagonal
node degree matrix of bA; the factorD−1=2AD−1=2 normalizes
nodes possessing a significant degree and is referred to as
the normalized adjacency matrix; HðlÞ is the feature matrix
at the layer l, whereas W ðlÞ stands for the weight matrix at
the same layer.

In order to further investigate the characteristics of the
graph convolutional operation, an analogy is made between

the 2D convolution operation and graph convolutional
operation. Figure 1(a) represents the 2D convolutional
operation on image data, and Fig. 1(b) represents the graph
convolutional operation. An image can be considered as a
special case of the graph in which pixels are connected by
adjacent pixels. Analogously, the image pixels and their
spatial relationships correspond to graph nodes and graph
edges, respectively, and 2D convolutional kernels are
extended to graph convolutional kernels so as to compute
the sum-of-product over neighboring nodes.

Subsequent to graph convolutional operations, an acti-
vation function introduces a nonlinear transformation to the
logits-value output for each convolution. This function’s
role is pivotal in transposing inherently linearly non-
separable multidimensional features into a space where
their linear separability is augmented. This study employs
the ReLU function as the chosen activation function, a
choice driven by its beneficial property: its derivative
remains constant at 1 for any input exceeding 0, effectively
addressing the gradient dispersion concern. The ReLU
function is represented as:

f ðxÞ = maxf0,xg (2)

To enhance the GCN’s efficiency by curbing its param-
eter count, the graph-pooling layer streamlines a substantial
graph into a more compact version through down-sampling,
thereby mitigating computational demand in subsequent
stages.

The fully connected layer extends the preceding layer’s
output into a unidimensional vector, serving as the input of
this layer. The layer then facilitates a comprehensive
linkage between the input and output, assimilating the
diversified local data from earlier graph convolutional or
graph-pooling layers.

Fig. 1. 2D convolution vs. graph convolution: (a) 2D convolution,
(b) graph convolution.
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Typically, the output layer employs the softmax clas-
sifier to generate classification labels. Recognized as a
prevalent linear classifier, the softmax classifier emerges
as a variant of multi-class classification, rooted in logistic
regression. Here,

softmax ðzoðjÞÞ = ez
oðjÞ

ΣM
k=1e

zoðkÞ (3)

where zoðjÞ designates the logits emanating from the jth

neuron at the output layer, while M denotes the aggregate
category count.

III. PROPOSED METHOD
The proposed GCN-centric framework for diagnosing bear-
ing faults is structured around three pivotal components,
detailed as follows: (1) Periodogram Extraction, (2) Graph
Formulation, (3) Implementation of the GCN.

A. PERIODGRAM EXTRACTION

As illustrated in [23], various bearing fault manifestations –
including defects in the outer ring, inner ring, and rolling
elements – are discernible within the periodogram derived
from condition monitoring signals. Consider a signal,
x(n), procured by a sensor where n spans [0, N−1] and
N signifies the total sampling points within the time-domain
signal. The signal’s discrete Fourier transform can be
expressed as:

YðkÞ =
X

N−1
n=0

x½n�ω�½n −M�e−j2πkΔf n (4)

where Δf symbolizes the frequency interval, YðkÞ denotes
the output at frequency kΔf for 0 < k < K, the “*” indicates
conjugation, and ω represents a window function, tailored
based on the original signal’s attributes and the requisite
balance between frequency and time resolution [19]. In this
study, the periodogram is extracted utilizing the Hanning
window. However, a detailed discourse on window selec-
tion lies beyond the purview of this paper.

Given the discrete Fourier transform of the initially
captured signal, the periodogram, represented as Fk, can be
computed as:

Fk =
1
T
jYðkÞj2 (5)

where Fk stands for the periodogram’s output at the fre-
quency kΔf with 0 < k < K, and T indicates the duration of
the window function (Fig. 2).

B. GRAPH FORMULATION

The graph model, characterized by its unique assembly of
nodes and edges, provides a distinct representation of
datasets through interconnected points and lines. This
specific framework endows the graph model with two
salient attributes:

1) It offers a holistic representation of the entire
periodogram.

2) It elucidates the interrelations between frequency
sampling points, facilitating this by crafting weighted
edges through the integration of specific edges.
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Fig. 2. A visual comparison of periodogram shifts across various
bearing conditions: (a) normal, (b) inner-ring defect contrasted
against the normal state, (c) outer-ring defect juxtaposed with the
normal state, and (d) rolling element defect in comparison to its
normal counterpart.
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To construct a representative structure for a given
periodogram (Fig. 3), one can follow this systematic
four-step procedure:

a) Treat each frequency sampling point as an individual
node within the graph model;

b) Establish a weighted edge, denoted as Lij, between
every pair of sampling points, Fi and Fj;

c) Assign a specific weight, represented as eij, to each of
these weighted edges;

d) Illustrate the resulting graph using an adjacency
matrix A, i.e., A = feijg.

Within the graph’s architecture, the weighted edges
serve as indicators of the interconnectedness and correlation
among nodes. Crucially, the pivotal aspect of this modeling
hinges on the apt selection of weights for these edges. In the
context of diagnosing bearing faults in rotating machinery,

this research introduces a specific weighting criterion as
outlined:

eij = DisfFi,Fjg (6)

where Disð:,:Þ represents the Euclidean distance.
These weights uniquely gauge the disparities between

the frequency sampling points, with eij encapsulating the
periodogram’s frequency data.

With this, the graph representation of vibration signals
associated with bearing faults is effectively finalized.

B. IMPLEMENTATION OF GCN

In this study, we introduce an algorithm rooted in the GCN
for pinpointing bearing faults. This technique leverages
graph data, derived from vibration signals, and employs
a novel classification method to detect the nature of bearing
faults.

The GCN approach we put forward can be primarily
segmented into two stages: feature extraction and subse-
quent classification. During the feature extraction stage, a
dual-layer graph convolution structure is employed to
extract pertinent graph features, which entails conducting
graph convolutions on vibration signal-derived graph data
twice consecutively. In the classification stage, these dis-
cerned graph features are channeled into a softmax layer
tasked with the classification of bearing fault signals. The
comprehensive architecture of the proposed methodology is
illustrated in Fig. 4.

The associated loss function is characterized by the
cross-entropy discrepancy between the predicted softmax
output’s probability distribution and the desired class’s
probability distribution [24]. The mathematical representa-
tion of the loss function is:

Hðp,qÞ = −
X

x pðxÞ log qðxÞ (7)

where pðxÞ delineates the target distribution, while qðxÞ
indicates the estimated distribution.

IV. EXPERIMENTS AND RESULTS
A. BEARING FAULT PLATFORM

In this study, we have developed an experimental platform
tailored for gathering data on bearing faults, as visualized in
Fig. 5. This platform primarily comprises a motor, a B&K
type 4397 accelerometer, an advanced data acquisition
system (utilizing the NI controller PXIe-8135 coupled
with the NI acquisition board PXIe-6358), and an array
of ten N205-type bearings. These test bearings are seg-
mented into ten categories based on distinct fault condi-
tions: a normal bearing; bearings showcasing inner-ring
defects of 0.22 mm, 0.44 mm, and 0.66 mm; those with
outer-ring aberrations of the aforementioned measure-
ments; and those presenting rolling element irregularities
of the same dimensions (further details provided in Fig. 6,
Table I).

B. EXPERIMENTAL METHOD AND DATA
COLLECTION

To evaluate the efficacy of the introduced approach, vibra-
tion signals from the ten distinct bearing sets are captured
using an accelerometer. The motor operates at a speed of

Fig. 3. The transformation of a vibration signal into a graph
model: (a) original vibration signal; (b) derived periodogram;
(c) constructed graph; and (d) the corresponding adjacency matrix.
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1,490 rpm. With a sampling rate set at 48 kHz, each
gathered signal spans a total of 1,920,000 data points.

Figure 7 illustrates the signal waveforms acquired from
the ten bearing sets.

Fig. 4. The proposed GCN algorithm.

Fig. 5. Experimental setup for bearing fault data acquisition:
(a) testing apparatus, (b) data acquisition ensemble.

Fig. 6. Array of test bearings, categorized as (a) a flawless
bearing, (b) those with inner-ring faults at 0.22 mm, 0.44 mm,
and 0.66 mm, (c) those affected by outer-ring anomalies of
0.22 mm, 0.44 mm, and 0.66 mm, and (d) those revealing
rolling element deformities of 0.22 mm, 0.44 mm, and 0.66 mm.
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Subsequently, a dataset is constructed from these
vibration signals. From each bearing group, 200 samples
are secured, with every sample encompassing 8,192 vibra-
tion signal data points, as displayed in Fig. 8. These
vibration signals, gathered from the ten bearing groups,

are then categorized from 1 through 10. A comprehensive
dataset is then assembled, integrating all these samples,
detailed in Table II.

C. DIAGNOSTIC PRECISION OF THE
PROPOSED METHOD

This section delves into the diagnostic precision of the
introduced method across varying radial loads. We
employee the original dataset from Table II, considering
three distinct radial loads: 0 N, 50 N, and 100 N.

We further explore the correlation between the meth-
od’s precision and the iteration count. From this point
forward, “accuracy” pertains to the proportion of samples
that the classifier aptly categorizes relative to the complete
sample count in a specific test dataset. This metric
provides direct insight into the algorithm’s classificatory
efficacy. After each iteration, a unique accuracy value
emerges, resulting in 100 distinct values post 100 iterations.
Figure 9(a)–(c) delineates the accuracy trajectory of our
method across varied loads.

Figure 9(a)–(c) demonstrates that as the iteration count
ascends, the accuracy curves consistently rise. This sug-
gests that across all load scenarios, an increased number of
iterations consistently enhances the diagnostic precision of
the proposed method.

Table I. Bearing specifications employed in the
experimental trials

Bearing
type

Pitch
diameter

Roller
diameter

Roller
number

N205 38.5 (mm) 6.5 (mm) 13

Fig. 7. Waveforms from the ten distinct bearing sets.

Fig. 8. Depiction of vibration data sampling from bearings.

Table II. Dataset details of the bearing faults

Bearing types Label category

normal bearing 1

Inner-ring fault 0.22 mm 2

Inner-ring fault 0.44 mm 3

Inner-ring fault 0.66 mm 4

Outer-ring fault 0.22 mm 5

Outer-ring fault 0.44 mm 6

Outer-ring fault 0.66 mm 7

Rolling body fault 0.22 mm 8

Rolling body fault 0.44 mm 9

Rolling body fault 0.66 mm 10
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D. PERFORMANCE OF THE PROPOSED
METHOD IN VARIED NOISE CONDITIONS

To align our testing closer with real-world situations,
we evaluate our proposed method on signals across a range
of SNRs. These are generated by introducing varying
degrees of white Gaussian noise to the baseline dataset.

The SNR definition is based on the formulation presented in
reference [24]:

SNRdB = 10log 10

�
Psignal

Pnoise

�
(8)

Fig. 9. Accuracy curves across three radial loads: (a) Load= 0 N,
(b) Load= 50 N, and (c) Load= 100 N.

Fig. 10. Diagnostic accuracies across varying SNRs: (a) Load=
0 N, (b) Load= 50 N, (c) Load= 100 N.
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where Psignal and Pnoise are the power of the signal and noise,
respectively.

In this study, the introduced method is assessed under
six distinct SNRs: SNR =−20 dB, SNR=−12 dB, SNR=
−6 dB, SNR= 0 dB, SNR= 6 dB, and SNR= 12 dB. We
aim to shed light on the diagnostic accuracy of the method
within noisy conditions. To conduct this evaluation, the
foundational dataset from Table II is subjected to three
varying loads, each being superimposed with noise to
emulate the six aforementioned SNRs. The algorithm’s
accuracy rates are computed across these SNRs, and the
collective findings are illustrated in Fig. 10.

Observing Fig. 10(a)–(c), it becomes evident that under
each of the three radial loads, the diagnostic accuracy of the
GCN algorithm improves as the SNR rises. A plausible
reason is that at higher SNRs, the amplitude energy of
frequency sampling points in periodograms remains prom-
inent, not overshadowed by noise. Consequently, the re-
lationships among these frequency sampling points are
delineated with greater precision.

E. COMPARISON WITH ESTABLISHED
ALGORITHMS

While the efficacy of the proposed method for fault diag-
nosis has been validated earlier, we aim to further contex-
tualize its proficiency in bearing fault diagnosis by

juxtaposing its accuracy against established algorithms in
this realm. Particularly, we benchmark our method
against renowned diagnostic algorithms including Graph-
KNN [19], GCN Benchmark [21], WDCNN [13], FFT-BP
[8], and FFT-SAE [25], all of which leverage vibration
signals.

Taking a specific scenario where the dataset is charac-
terized by “Load = 100N” and “SNR= 0 dB” as input
parameters, our proposed method demonstrates an impres-
sive accuracy rate of 97.82% post 100 iterations. In
comparison:

The Graph-KNN algorithm, after converting vibration
signals to graph data and subsequently feeding it into the
KNN classifier, achieves an accuracy of 97.65% within the
same iteration count.

The GCN Benchmark algorithm, after converting
vibration signal to graph data by representing splitted
time-domain signal segments as graph node features, and
subsequently feeding it into the GCN Benchmark algo-
rithm, achieves an accuracy of 92.77% within the same
iteration count.

Using unprocessed vibration signals under identical
load and SNR conditions, the WDCNN algorithm, upon
channeling this data into its network, posts an accuracy
score of 93.82% post 100 iterations.

The FFT-SAE algorithm, upon applying an FFT trans-
formation to time-domain signals garnered from the

Table III. The diagnostic accuracy of the proposed method versus other algorithms at “Load= 0N”

Algorithm

SNR (dB)

−20 −12 −6 0 6 12
Proposed
method

39.39% ±
0.0483%

74.87% ±
0.0128%

93.53% ±
0.0031%

93.71% ±
0.0042%

96.84% ±
0.0093%

96.55% ±
0.0014%

Graph-KNN 38.95% ±
0.0261%

67.40% ±
0.0341%

87.45% ±
0.0412%

92.75% ±
0.0017%

92.85% ±
0.0015%

93.85% ±
0.0013%

GCN
benchmark

33.41% ±
0.0061%

66.34% ±
0.0473%

86.10% ±
0.0429%

93.34% ±
0.0093%

96.23% ±
0.0108%

93.53% ±
0.0070%

WDCNN 62.52% ±
0.0024%

63.82% ±
0.0015%

75.87% ±
0.0013%

86.38% ±
0.0012%

92.82% ±
0.0012%

94.34% ±
0.0011%

FFT-SAE 33.35% ±
0.0050%

47.19% ±
0.0065%

69.38% ±
0.0026%

88.43% ±
0.1454%

90.92% ±
0.3578%

94.40% ±
0.0011%

FFT-BP 49.27% ±
0.0016%

63.56% ±
0.0013%

75.29% ±
0.0012%

87.40% ±
0.0011%

92.64% ±
0.0011%

93.67% ±
0.0010

Table IV. The diagnostic accuracy of the proposed method versus other algorithms at “Load= 50N”

Algorithm

SNR (dB)

−20 −12 −6 0 6 12
Proposed
method

36.55% ±
0.0216%

78.55% ±
0.0144%

95.84% ±
0.0045%

98.44% ±
0.0013%

99.22% ±
0.0019%

98.70% ±
0.0014%

Graph-KNN 38.80% ±
0.0327%

70.80% ±
0.0245%

92.40% ±
0.0089%

97.40% ±
0.0024%

98.45% ±
0.0031%

98.30% ±
0.0015%

GCN
benchmark

38.82% ±
0.0061%

67.48% ±
0.0473%

81.19% ±
0.0429%

90.47% ±
0.0093%

96.70% ±
0.0108%

94.64% ±
0.0070%

WDCNN 75.43% ±
1.3604%

82.69% ±
0.0003%

80.85% ±
0.0019%

96.24% ±
0.0009%

97.70% ±
0.0011%

98.26% ±
0.0012%

FFT-SAE 41.28% ±
0.0095%

62.80% ±
0.0085%

80.36% ±
0.0044%

90.14% ±
0.0014%

95.87% ±
0.0011%

98.51% ±
0.0012%

FFT-BP 51.86% ±
0.0009%

77.19% ±
0.0004%

88.99% ±
0.0012%

93.26% ±
0.0016%

94.06% ±
0.0012%

94.48% ±
0.0010%
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accelerometer (under similar load and SNR), manages an
accuracy of 90.10% after its 100th iteration once the FFT
results are processed through the SAE network.

Lastly, the FFT-BP algorithm, when processing the
frequency-domain signals acquired from the accelerometer
under the same conditions, records an accuracy of 91.99%
after 100 iterations.

These algorithms are also assessed across the remain-
ing SNRs and loads, with all findings compiled in
Tables III–V. It is noteworthy that the diagnostic perfor-
mances of these algorithms exhibit disparities when sifting
through the bearing fault signal dataset. Across all six
SNRs, especially at relatively elevated SNR values, our
proposed method, heralded as a novel diagnostic
approach, not only outperforms the Graph-KNN and
GCN Benchmark algorithm but also demonstrates super-
ior accuracy rates against other counterparts like
WDCNN, FFT-SAE, and FFT-BP that harness vibration
signals.

V. CONCLUSION
Maintaining rotating machinery necessitates precise bear-
ing fault diagnosis. While established deep learning meth-
ods excel in handling Euclidean data forms, including
audio, image, and video, they falter when encountering
non-Euclidean datasets, such as graphs. This study intro-
duces an approach for bearing fault diagnosis: the GCN
algorithm. This innovative technique classifies bearing
faults by interpreting graphs derived from their vibration
signals. Comprehensive experimental assessments shed
light on its diagnostic precision across various loads and
SNRs. Additionally, a comparative analysis positions the
GCN algorithm vis-à-vis established algorithms like Graph-
KNN, GCN Benchmark, WDCNN, FFT-SAE, and FFT-
BP. Empirical results accentuate the superior diagnostic
efficacy of our proposed method compared to the main-
stream algorithms enumerated.

By ingeniously converting vibration signals into graph
formulations and subsequently employing the GCN algo-
rithm for classification, this research makes a significant
contribution in refining bearing fault diagnostic accuracy. It
is our aspiration that this avant-garde approach will pave the
way for future innovations in the domain of intelligent fault
diagnosis.
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