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Abstract: Tool condition monitoring (TCM) is a key technology for intelligent manufacturing. The objective is to
monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid
significant damage to workpieces and reduce manufacturing costs. Recently, an innovative TCM approach based
on sensor data modelling and model frequency analysis has been proposed. Different from traditional signal
feature-based monitoring, the data from sensors are utilized to build a dynamic process model. Then, the nonlinear
output frequency response functions, a concept which extends the linear system frequency response function to the
nonlinear case, over the frequency range of the tooth passing frequency of the machining process are extracted to
reveal tool health conditions. In order to extend the novel sensor data modelling and model frequency analysis to
unsupervised condition monitoring of cutting tools, in the present study, a multivariate control chart is proposed
for TCM based on the frequency domain properties of machining processes derived from the innovative
sensor data modelling and model frequency analysis. The feature dimension is reduced by principal component
analysis first. Then the moving average strategy is exploited to generate monitoring variables and overcome
the effects of noises. The milling experiments of titanium alloys are conducted to verify the effectiveness of the
proposed approach in detecting excessive flank wear of solid carbide end mills. The results demonstrate the
advantages of the new approach over conventional TCM techniques and its potential in industrial applications.

Keywords: intelligent manufacturing; multivariate control chart; Nonlinear Autoregressive with eXogenous Input
modelling; Nonlinear Output Frequency Response Functions; tool condition monitoring

I. INTRODUCTION
Tool condition monitoring (TCM) is important in advanced
manufacturing as cutting tool anomalies often compromise
product quality and machining efficiency [1,2]. With the
application of the Internet of Things techniques in industry,
many researchers are dedicated to developing indirect TCM
methods, which monitor tool conditions by analysing
sensor signals such as vibration, force, acoustic, sound,
etc [3–5]. A typical indirect TCM system consists of data
collection, feature extraction, and tool condition identifica-
tion [6]. The features that are associated with tool condi-
tions can be obtained in the time domain, frequency
domain, and time-frequency domain. However, a signal
feature-based method has limited adaptability to variable
machining environments. And it is even more complicated
to determine what features should be used among numerous
candidates.

Recently, Liu et al. [7] have proposed a novel TCM
approach based on an innovative idea known as sensor data
modelling and model frequency analysis. Instead of ex-
tracting features from the sensor signals directly, this
approach builds nonlinear models that represent a dynamic
relationship between two different vibration sensor signals.
Then, the model’s frequency domain properties are ana-
lysed and used as the features for TCM. Analysis shows that

compared to conventional signal feature-based TCM, this
approach can better adapt to external changes including tool
replacement and process parameter variations and have
better generalization capability. Condition monitoring
based on sensor data modelling and model frequency
analysis has been widely investigated in beam crack detec-
tion [8], structure health monitoring [9], and rotor system
fault diagnosis [10]. The current study presents another
practical application of this strategy and demonstrates, for
the first time, how to apply this strategy in unsupervised
TCM in advanced manufacturing.

In order to implement the proposed TCM system,
multivariate statistical process control charts such as,
Hotelling’s T2 chart [11] are applied. This method is easy
to implement in a manufacturing setting and its perfor-
mance in TCM based on signal features has been widely
reported [5,12–14]. However, as signal features are over-
sensitive to external noises, it is often challenging to
reliably identify anomalies induced by worn cutting tools.
The proposed TCM system can resolve this problem as,

1. Instead of sensor data features, physically more mean-
ingful model frequency features are used to build a
TCM control chart that can, in principle, more accu-
rately represent the tool wear state.

2. A moving window is introduced to build a subgroup
observations-based control chart, which can further
reduce the influence of external variations and reflect
tool wear trend.Corresponding author: Zepeng Liu (e-mail: z.lang@sheffield.ac.uk).
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Overall, the proposed approach consists of sensor data
modelling, model frequency analysis, and a control chart-
based worn tool detection. A milling experiment is con-
ducted to validate the performance of the proposed TCM
system in detecting the working conditions of three cutters.
The results demonstrate the effectiveness of the proposed
approach and the advantage of the approach over traditional
signal feature-based TCM techniques.

II. METHODOLOGY
The proposed methodology consists of sensor data model-
ling, model frequency analysis, and process monitoring.
The sensor data modelling produces a NARX (Nonlinear
AutoRegressive with eXogenous Input) model that repre-
sents the dynamic relationship between two different vibra-
tion sensor signals. Then, the frequency properties of the
NARX model are extracted to represent physically mean-
ingful features of the milling process. It is expected that
cutting tool anomalies will lead to changes in process
dynamics that can be represented by the NARX model’s
frequency domain features. Moreover, a multivariate con-
trol chart based on the NARXmodel’s frequency features is
constructed to monitor the cutting tool status.

A. SENSOR DATA MODELLING

Sensor data modelling here is also known as system iden-
tification, which is a data-driven modelling technique aim-
ing to find a dynamic relationship between the input and
output of a process or system. Let uðtÞ and yðtÞ, t =
1,2, : : : , Γ, be the vibration signals collected from a
machining process by two accelerometers fitted on the
spindle and supporting base of the workpiece, respectively.
The number of samples is Γ and the sampling rate is f s.
Using the NARX model, the relationship between uðtÞ and
yðtÞ can be expressed by

yðtÞ = Fl½yðt − 1Þ, yðt − 2Þ, : : : , yðt − δyÞ,
uðt − 1Þ, uðt − 2Þ, : : : , uðt − δuÞ� + eðtÞ

(1)

where Fl½·� is the polynomial function with the maximum
polynomial degree l ∈ ℤ+, and eðtÞ denotes the noise and
unmodelled dynamics. Moreover, δu and δy are the maxi-
mum lags for the input uðtÞ and output yðtÞ, respectively.

The NARX model is essentially a linear-in-the-param-
eter model that can be written as

yðtÞ =
XM
m=1

θmdmðtÞ + eðtÞ (2)

where θm is the parameter associated with the model term
dmðtÞ and M indicates the total number of candidate
terms. These terms are monomials composed of yðt− 1Þ,
yðt− 2Þ, : : : , yðt− δyÞ, uðt − 1Þ, uðt − 2Þ, : : : , uðt − δuÞ such
as yðt − 1Þuðt − 1Þ and y3ðt − 1Þ.

Assume there are Γ samples in total, Eq. (2) can be
further represented in the following matrix format:

y = DΘ + Ξ (3)

where y = ½yð1Þ, : : : ,yðΓÞ�T is a model output vector,
Θ = ½θ1, : : : ,θM �T is a model parameter vector, and Ξ =
½eð1Þ, : : : ,eðΓÞ�T is the error sequence. The model input
matrix, D = ½d1, : : : ,dM �, also known as a dictionary
matrix, has M column vectors with dm = ½dmð1Þ, : : : ,
dmðΓÞ�T.

As the matrix D usually contains redundant terms, the
term selection is a key step in NARX model-based nonlin-
ear system identification [15]. In this study, we use the
Forward Regression with Orthogonal Least Squares
(FROLS) algorithm to select the most important model
terms from the dictionary matrix D [9]. At each step, the
termwith the strongest capability to represent the output y is
selected. Let the selected terms consist ofW = ½d1, : : : ,dM0

�
(generally M0 ≪ M), the final model becomes

y = Wα + Ξ (4)

where α = ½θ1, : : : ,θM0
�T is a FROLS parameter vector. In

this study, α is calculated by solving the following l2-norm
regularization problem.

α = argmin
α

n
kWα − yk22 + λkαk2

o
= ðWTW + λIÞ−1WTy

(5)

where λ is the penalty parameter and I is an M0 ×M0
identity matrix. The penalty parameter controls the trade-off
between bias and variance in the estimator. An evolutionary
algorithm is exploited to tune λ such that the built model
meets the stability, robustness, and accuracy requirements.
Details about the parameter tuning procedure can be found
in [7].

B. MODEL FREQUENCY ANALYSIS

After a NARX model has been identified, the NOFRFs
(Nonlinear Output Frequency Response Functions) of the
built NARX model can be extracted to investigate the
frequency behaviours of the system [8]. Because the choice
of λ guarantees the identified model is stable at zero
equilibrium, the system can be described by the Volterra
series in the discrete-time domain, see [9]. The correspond-
ing frequency domain representation can be written
as [16]

ℱðyðtÞÞ = YðjωÞ ≈
XN
n=1

YnðjωÞ =
XN
n=1

GnðjωÞUnðjωÞ (6)

where ℱð·Þ represents Fourier transform and ω is the
frequency variable. YnðjωÞ = ℱðynðtÞÞ and UnðjωÞ =
ℱðunðtÞÞ are the nth order output and input frequency
spectrum, respectively. GnðjωÞ is the nth order NOFRFs,
which allows the system nth order output frequency
response YnðjωÞ to be described in a manner similar to
the description for the output frequency response of linear
systems.

In this study, a recently proposed Generalized Associ-
ated Linear Equations (GALEs) method is employed to
calculate NOFRFs [17]. This method decomposes the
NARX model into a series of linear difference equations
such that the NOFRFs can be evaluated from the first order
to an arbitrarily high order. Consider the general form of the
polynomial NARX model [18]

yðtÞ =
XJ
j=1

Xj

p=0

XL
l1, : : : ,lp+q=1

cp,qðl1, : : : ,lp+qÞ

×
Yp
i=1

yðt − liÞ
Yp+q
i=p+1

uðt − liÞ
(7)

where J, L ∈ ℤ+, p + q = j, and cp,qðl1, : : : ,lp+qÞ repre-
sents the model coefficient.
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The GALEs of the NARX model are defined as

ynðtÞ =
XL
l1=1

c1,0ðl1Þynðt − l1Þ

+
XL
l1,ln=1

c0,nðl1,:,lnÞ ×
Yn
i=1

uðt − liÞ

+
Xn−1
q=1

Xn−q
p=1

XL
t1,tp+q=1

cp,qðl1, : : : ,lp+qÞyLn−q,pðtÞ

×
Yp+q
i=p+1

uðt − liÞ +
Xn
p=2

XL
l1,lp=1

cp,0ðl1, : : : ,lpÞyLn,pðtÞ

ð8Þ
where n = 1, : : : ,N, L = ðl1, : : : ,lnÞ and(

yLn,pðtÞ =
Pn−ðp−1Þ

i=1 yiðt − lpÞyLn−i,p−1ðtÞ
yLn,1ðtÞ = ynðt − l1Þ

(9)

With the GALEs obtained, the NOFRFs can be calcu-
lated by evaluating the nth order system output response
y�nðtÞ to a specified input signal u�ðtÞ. Then, the nth order
NOFRFs of the system, G�

nðj�ωÞ, under the input excitation
u�ðtÞ can be calculated as

G�
nðj�ωÞ =

ℱ½y�nðtÞ�
ℱ½u�nðtÞ�

=
ℱ½y�nðtÞ�

ℱf½u�ðtÞ�ng

=
Y�
nðj�ωÞ

U�
nðj�ωÞ

,

�
n = 1, : : : , N

�ω ∈ �Ωn

(10)

where �Ωn indicates the frequency range of U�
nðj�ωÞ.

In this study, the data collected from different tool
conditions are used to build corresponding NARX models.
The same input excitation signal is used to evaluate the
NOFRFs of these NARX models. It is expected that the
changes in tool conditions can be reflected by the evaluated
NOFRFs. As a result, the NOFRFs G�

n, n=1,2, : : : can be
used as representative features for TCM.

C. NOFRFs FEATURE DIMENSION
REDUCTION

In the resulting NOFRFs G�
nðj�ωÞ, �ω indicates the frequency

variable belonging to the frequency range of �Ωn, which can
be calculated based on �Ω1 as shown in [19]. G�

nðj�ωÞ may
have multiple frequency ranges. The present study selects
the magnitude of NOFRFs over characteristic frequency
range as representative features, i.e., fn = ½jG�

nðj�ω�
1Þj, : : : ,jG�

nðj�ω�
�Kn
Þj� where �ω�

k ∈ �Ω�
n indicates the kth frequency

point in the nth order NOFRFs and k = 1, : : : ,�Kn, �Ω�
n ⊆ �Ωn.

The determination of �Ω�
n usually depends on the physical

process of interest. Concatenating the feature vectors ex-
tracted from up to Nth order NOFRFs produces a final
feature vector x = ½f1, : : : ,fN �, which has a dimension of
1 × R, and R = �K1 + : : : + �KN .

Assuming there are P available data segments in total, a
feature vector xp = ½f1,p, : : : ,fN,p� can be extracted from the
pth data segment. Let the features of the first P1 segments
consist of the training data set. The feature matrix can be
written as

X =

2
64

x1
..
.

xP1

3
75 =

2
64

f1,1, : : : ,fN,1
..
.

f1,P1
, : : : ,fN,P1

3
75 (11)

where the dimension of X is P1 × R.
The multivariate process monitoring scheme assumes

that the samples from in-control processes follow a multi-
variate normal distribution. The process behaviour is re-
flected by the shift in the mean of these variables. Thus, the
control chats’ capability of timely detecting mean shifts will
decrease if the number of variables is very large [11].
Besides, the existence of multi-collinearity sometimes
can lead to numerical instability. It is, therefore, necessary
to reduce the dimension of variables and eliminate multi-
collinearity before implementing the control chart.

To achieve this, in the present study, the principal
component analysis (PCA) is applied to X[20]. Firstly, X is
standardized to obtain X 0 with zero-mean and one-standard
deviation variables. Then the covariance matrix is com-
puted as C = 1=ðP1 − 1ÞX 0TX 0. The eigendecomposition
of C is C = PΛPT , where P = ½p1, : : : ,pR� consists of all
eigenvectors and Λ = diagðλ1, : : : ,λRÞ is a diagonal matrix
with corresponding eigenvalues λ1 ≥ λ2 : : : ≥ λR. This
indicates the first component p1 explains the largest amount
of variance in X. The second component p2 is orthogonal
to p1 and explains the largest amount of the remaining
variance, and so on. The first R 0 (generally R 0 ≪ R)
components are selected as principal ones when
ðPR 0

i=1 λi=
P

R
i=1 λiÞ × 100% exceeds a pre-set threshold,

e.g., 99%. Finally, the feature vector is transformed into
a new subspace spanned by the first R 0 eigenvectors,

T = XP 0 = X½p1, : : : ,pR 0 � ∈ ℝP1×R 0
(12)

For any subsequent feature vector xp, the transformed
vector is calculated by tp = xpP 0, with p = P1 + 1,
P1 + 2, : : : . These transformed feature vectors are then
used to build multivariate control charts.

D. TCM

The multivariate control chart-based condition monitoring
involves both training and monitoring stages. The training
stage aims to construct a baseline description of in-control
processes. The mean vector and covariance matrix are
estimated based on “normal” samples. The control limits
are determined as well. Then, the subsequent process is
monitored. The control limit determined in the training
stage is used to judge if any operation condition falls outside
these limits, which could indicate an out-of-control process.

Machining is a very complicated process involving
variations induced by inconsistent material properties,
changing process dynamics, increasing tool wear, and so
on. All these factors result in uncertainty in the collected
signals, reflected by the extracted features. Hence, a moni-
toring solution purely relying on these features will inevi-
tably suffer from either false alarms or missing faults.
However, the long-term shift of feature vectors is still
dominated by the increase of tool wear. A natural way to
grasp the trend of a series of data and overcome local
variations is to use the moving window strategy.

In this study, we adopt a subgroup observations-based
Hotelling’s T2 control chart [11]. The subgroup contains the
samples within a moving window. The mean of the samples
in each subgroup is used to calculate the statistics of the
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control chart such that the influence of external noises is
eliminated. To be specific, the mean and covariance matrix
of the kth subgroup samples are calculated by�

zk = 1
k

P
k
p=1 tp

Ck = 1
k

P
k
p=1 ðtp − zkÞTðtp − zkÞ , 1 ≤ k ≤ w

�
zk = 1

w

P
k
p=k−wþ1 tp

Ck = 1
w

P
k
p=k−wþ1 ðtp − zkÞTðtp − zkÞ , w < k

(13)

where w denotes the window length. As the training data set
contains P1 samples, the mean and covariance matrix
representing in-control processes are given as

z =
1
P1

XP1

k=1

zk, C =
1
P1

XP1

k=1

Ck (14)

Therefore, the Hotelling’s T2 statistic of zk is calculated
by

T2
k = R 0ðzk − �zÞ�C−1ðzk − �zÞT (15)

Regarding the determination of control limits, if the
assumption of multivariate normality of the measurements
is true, the control limits can be determined theoretically as
the statistics should follow a standard distribution. How-
ever, in practice, it is more reliable to determine the control
limit according to the distribution of available statistic
values. This study uses kernel density estimation (KDE)
to estimate the control limit [5]. This approach treats the T2

statistic as a random variable and estimates the probability

density function pdf ðT2Þ of T2 statistic based on kernel
smoothing and available samples fT1

2, : : : ,TP1

2g. Then,
the upper control limit (T2

UCL) is determined via the follow-
ing equation

PðT2 < T2
UCLÞ =

ð
T2
UCL

−∞
pdf ðT2ÞdT2 = δ (16)

where δ ∈ ½0,1� and 1 − δ is the significance level, indicat-
ing the probability of the T2 statistic falling beyond the
upper control limit when the process is “in control.”

The control limit is obtained in the training stage. In the
monitoring stage, the condition is monitored by comparing
T2 statistic with the limit T2

UCL. Even though the moving
windowmethod has been used to cope with local variations,
this system cannot fully avoid false alarms. To further
improve the reliability of the detection result, in the deci-
sion-making step, we set the alarm-triggering condition as
the occurrence of several successive samples exceeding the
control limit.

Figure 1 shows the flowchart of the proposed TCM
system. The whole procedure contains two stages. The
feature extraction processes are the same for the training
and monitoring stages, including NARX model identifica-
tion, NOFRFs extraction, and PCA dimension reduction.
Then, a moving window is used to create subgroup samples,
whose mean vector is used to determine the monitoring
T2statistic. In offline training, the mean, covariance matrix,
and control limit are obtained to represent the normal
process conditions. In the monitoring stage, the T2 statistics
of new samples are calculated and compared with the

Fig. 1. The flowchart of the proposed TCM system based on NOFRFs and multivariate control chart.
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control limit. The system will trigger alarms when several
successive samples are identified as out-of-control pro-
cesses. Otherwise, the machining process continues.

III. EXPERIMENTAL STUDY
To validate the effectiveness of the proposed TCM method
in TCM, a run-to-failure experiment has been carried out at
the Advanced Manufacturing Research Centre, University
of Sheffield. The proposed method is applied to the col-
lected vibration signals. As a comparison, traditional signal
features are extracted and used for TCM. The experimental
details and results are presented in this section.

A. EXPERIMENTAL SETUP

The dynamic milling strategy was adopted in the experi-
ment. As shown in Fig. 2(a), the machining was run on a 5-
axis milling machine (DMG MORI’s DMU 40evo). The
material of the workpiece is TC4 titanium alloy. The type of
cutting tool is Sandvik CoroMill Plura 1630 solid carbide
square shoulder end mill with a diameter of 16 mm. This
cutting tool has 4 flutes. In the experiment, we used three
cutters in total (referred to as T1, T2, and T3). Fig. 2(b)
shows the machining process. The milling of one cylinder
workpiece was conducted layer by layer. Each layer con-
sists of 6 round cuts (referred to as R1∼R6) from outer to
inner. To coincide with the machining condition in a real
manufacturing process, the rotational speed was set as
2586.3 rpm, the feed rate was 1055.2 mm/min, and the
radial and axial cutting depth were 1.6 mm and 20 mm,
respectively.

Two accelerometers were mounted on the spindle and
workpiece supporting base to collect vibration signals,

which were used as input and output for sensor data
modelling. This setting coincides with the transmission
of power from the spindle to the workpiece. Thus, the built
models are able to represent the dynamics of milling
processes. Table I lists the sensor types and specifications.
A relatively high-sensitivity sensor was mounted on the
workpiece supporting base so as to record the base vibration
better. The signals were acquired by NI CompactDAQ
systems with a sampling rate of 51200 Hz.

After each round cut, the tool wear was measured by a
microscope as shown on the left of Fig. 2(c). As the
experiment was a run-to-failure one, each tool was used
to complete one and a half workpieces, i.e., six layers
(referred to as L1∼L6). As shown in Fig. 2(c), the maxi-
mum flank wear of all tools reached 395.3 μm, 421.1 μm
and 489.9 μm finally. In practice, 300 μm is typically used
as the threshold for excessive tool wear. During the experi-
ment, the flank wear of all three tools exceeded 300 μm at
Layer 5.

B. MONITORING RESULTS

From the signals collected for each round cut, a 1-second
snapshot is taken every 5 seconds. After pre-processing, the
signal segments are used for sensor data modelling. Con-
sidering the tooth passing frequency is 172.41 Hz (=
2586.27/60×4), to investigate the nonlinear characteristics
at this frequency, an input excitation with the frequency
range from 167 Hz to 177 Hz is designed to evaluate the
corresponding NOFRFs of each identified NARX model.
The designed input excitation is

u�ðtÞ = 3
2π

sinð2 × 177πtÞ − sinð2 × 167πtÞ
t

(17)

where −1 ≤ t ≤ 1. Therefore, the features of the NOFRFs
under input (15) are determined to evaluate the status of
cutting tools. The magnitudes of the first three order
NOFRFs jG�

1ðj�ωÞj,jG�
2ðj�ωÞj,jG�

3ðj�ωÞj, covering 41, 81,
and 121 frequency points, respectively, are used as the
NOFRFs features. The frequency range is determined
according to the new frequency generation phenomenon
occurring with a nonlinear system [16]. Hence, the dimen-
sion of one NOFRFs feature vector is 1 × 243. Since each
tool has completed 36 round cuts and 30 NARXmodels are
identified from each round, the total number of feature
vectors over the tool’s lifecycle is 1080.

Figure 3 shows all the extracted NOFRFs-based feature
vectors of T1, T2, and T3. One line corresponds to one
feature vector consisting of jG�

1ðj�ωÞj, jG�
2ðj�ωÞj, and

jG�
3ðj�ωÞj. As can be seen, the NOFRFs magnitudes become

larger as the order of nonlinearity increases. To compare the
difference of NOFRFs features under different tool wear
conditions, the feature vectors from L1-2 and L3-6 are
drawn separately in Fig. 3. In all three figures, the green
lines on the left-hand show the distribution of NOFRFs

Fig. 2. (a) Experimental setup, (b) illustration of the machining
process, (c) measurement of tool wear (right: the images of flutes
before and after machining).

Table I. List of sensors and specifications

Sensor Type Sensitivity
Frequency

range

Accelerometer
(spindle)

PCB, 356A02 10 mV/g 1–5000 Hz

Accelerometer
(base)

PCB, 356A17 500 mV/g 0.5–3000 Hz

Tool Condition Monitoring Based on Nonlinear Output 247
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features from L1 and L2 representing slightly wear condi-
tion, and the red lines on the right are from L3 to L6
corresponding to severe tool wear. Intuitively, one can find
that the NOFRFs magnitudes are larger when the tool gets
worn, indicating that the NOFRFs can reflect the change in
tool conditions.

TCM was carried out using both NOFRFs-based fea-
tures and signal features for comparison. In the proposed
TCM framework, the data collected from the initial stage
when the tool is not severely worn was used for training. As
the number of finished layers is 6 during the experiment, it
is reasonable to select the data from Layers 1 and 2 for
training and the remaining for monitoring. It should be
noted that the selection of training samples is more difficult
when the lifecycle of one tool is unknown. In this case, a
priori knowledge or expert experience is necessary, which
is out of the scope of this paper.

For the proposed NOFRFs-based method, in the
dimension reduction step, the components whose cumula-
tive variance percentage exceeds 99% are determined as
principal ones. To create subgroup samples, the length of
the moving window is set to 20. The significance level in
KDE-based control limit determination is 0.1%, which
means there is a very tiny possibility for the T2 statistic
of an in-control state exceeding the control limit. If 7
successive samples exceed the control limit, the system
will trigger alarms.

For the signal features-based method, 8 statistics are
extracted from one vibration signal, including average,
variance, skewness, kurtosis, entropy, median, range, and
crest factor. The dimension reduction is not performed in
this case as the dimension of signal feature vectors is
relatively small. Except that, the subsequent procedures
such as control chart construction and parameter setting are
the same as those applied for the NOFRFs feature-based
condition monitoring.

Figures 4–6 present the monitoring results for the three
cutters. As can be seen, the statistic of NOFRFs is overall
stationary in the initial monitoring stage and tends to
increase when the tool wear reaches a value of around
300 μm. In other words, the proposed NOFRFs features do
not change a lot when the tool is slightly worn, compared
with the distribution of features in the training stage. The
alarms are triggered at the last several round cuts of Layer 4
when tool wear is between 268 μm and 285 μm. However,
when using the signal feature-based control chart, the
monitoring statistic is always increasing, making it difficult
to identify whether tool wear exceeds the critical value.
Hence, the alarms are triggered in a very early stage during
monitoring. Especially for T2 and T3, after the first round
cut of Layer 3, the tool condition is identified as worn. The
result shows that the signal features are too sensitive to the
process change, tending to cause more false alarms, and
cannot make reliable decisions in practice.

Fig. 3. The magnitudes of the first 3 order NOFRFs versus frequency index, (a) tool 1, (b) tool 2, and (c) tool 3; in each figure, left:
feature vectors from Layers 1–2, right: feature vectors from Layers 3–6.

Fig. 4. TCM results for T1 based on (a) NOFRFs-based features and (b) signal features.

248 Yufei Gui et al.

JDMD Vol. 2, No. 4, 2023



To further illustrate the effect of moving window,
Fig. 7 shows the control charts based on NOFRFs features
with individual samples, which means the transformed
feature vectors tp are directly used to calculate monitoring
statistics. Most of the statistics are randomly scattered
within a range. Although there is an increasing trend as

tool wear reaches 300 μm, the system does not trigger
alarms as there are no consecutive samples exceeding the
control limit. The use of a moving window highlights the
trend of these statistics, leading to successful detection
results. One issue with this method is how to select a
reasonable window length. The consideration involves

Fig. 5. TCM results for T2 based on (a) NOFRFs-based features and (b) signal features.

Fig. 6. TCM results for T3 based on (a) NOFRFs-based features and (b) signal features.

Fig. 7. TCM results using NOFRFs-based features without moving average applied for (a) T1, (b) T2, and (c) T3.
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the data sampling rate, the pattern of the machining process,
and the wearing rate of tools. A further discussion will be
given in future studies.

Table II summarizes the TCM results in the experi-
mental study. For all three tools, the detected tool wear is
closer to 300 μm when the NOFRFs-based features are
applied. Besides, the consistent monitoring results demon-
strate that the proposed NOFRFs-based method is able to
overcome the impact of varying working environments,
such as workpiece and tool material properties and coolant
concentration variations. These demonstrate the advantage
of the proposed NOFRFs-based TCM over traditional
signal feature-based approaches.

IV. CONCLUSION
In this study, a novel TCM method based on NOFRFs and
the multivariate control chart is proposed. The vibration
signals measured from the spindle and workpiece support-
ing base are collected and used for identifying a NARX
model that reveals the dynamic relationship between the
vibration signals. From the identified NARX model, the
NOFRFs are calculated to provide physically meaningful
features of the milling process. Then the PCA technique is
applied to reduce the dimension of the NOFRFs features,
and the multivariate control chart with a moving window
of observations is applied to monitor tool wear conditions.
An industrial-scale milling experiment is carried out to
validate the performance of the proposed method. Tradi-
tional signal features are also extracted and used for TCM
for comparison. The results show that the NOFRFs fea-
tures are more stationary when the tool is not severely
worn and can trigger alarms just in time when the tool wear
reaches a critical threshold. This makes the NOFRFs a
better choice for designing a TCM system in practice.
Besides, in theory, the proposed framework can be
extended to condition monitoring of a wide range of
industrial processes due to its advantages of low costs
and high reliability. The potential applications deserve
more research.

However, the NOFRFs feature-based method is more
time-consuming and requires a significant amount of com-
putation to guarantee the accuracy of the identified model.
In our experiment, 6 to 10 seconds are needed to yield a
detection result from raw data, which is acceptable for tool
wear monitoring, but may not be acceptable for scenarios
requiring emergency response [21]. As the most time-
consuming step, the parameter estimation for building
the NARX model can be implemented in parallel, in the
future, we will try to improve the computational efficiency
using parallel computing techniques.
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