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Abstract:With the dramatic increase in electric vehicles (EVs) globally, the demand for lithium-ion batteries has
grown dramatically, resulting in many batteries being retired in the future. Developing a rapid and robust capacity
estimation method is a challenging work to recognize the battery aging level on service and provide regroup
strategy of the retied batteries in secondary use. There are still limitations on the current rapid battery capacity
estimation methods, such as direct current internal resistance (DCIR) and electrochemical impedance spectros-
copy (EIS), in terms of efficiency and robustness. To address the challenges, this paper proposes an improved
version of DCIR, named pulse impedance technique (PIT), for rapid battery capacity estimation with more
robustness. First, PIT is carried out based on the transient current excitation and dynamic voltage measurement
using the high sampling frequency, in which the coherence analysis is used to guide the selection of a reliable
frequency band. The battery impedance can be extracted in a wide range of frequency bands compared to the
traditional DCIR method, which obtains more information on the battery capacity evaluation. Second, various
statistical variables are used to extract aging features, and Pearson correlation analysis is applied to determine the
highly correlated features. Then a linear regression model is developed to map the relationship between extracted
features and battery capacity. To validate the performance of the proposed method, the experimental system is
designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in
series. The results reveal that the proposed PIT can provide comparative indicators to EIS, which contributes
higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost.

Keywords: electric vehicles; electrochemical impedance spectroscopy; lithium-ion battery; pulse impedance
technique; rapid capacity estimation

I. INTRODUCTION
The capacity estimation of lithium-ion battery is a funda-
mental task for the battery management system of electric
vehicles (EVs) and serves as the premise for numerous
indicators, including state of charge (SOC), state of health,
and remaining useful life [1,2]. In addition, the retirement of
a vast number of EVs poses higher capacity assessment
requirements for the secondary utilization of lithium batter-
ies [3]. The fast and accurate capacity estimation is becom-
ing increasingly crucial for handling such a substantial
quantity of batteries.

There are currently three popular methods for battery
capacity estimation, which include the incremental analysis
method, material properties evaluation-based method, and
impedance evaluation-based method. The incremental anal-
ysis method is the most commonly adopted method due to
the data availability and low-cost characteristics [4,5].
However, it requires a time-consuming step to extract
capacity-related features from the long-time raw charge–
discharge profile during the battery aging process [6].
Though some studies [7,8] indicate that the capacity esti-
mation can be conducted utilizing the partial charge–
discharge profile instead of the entire profile, it still de-
mands long-duration feature extraction and requires the

battery to be operated under a fixed condition to satisfy
the data acquisition, which is not feasible in the real-world
applications [9,10]. The material property-based evaluation
method proposes to apply the ultrasonic-guided wave
[11,12] and acoustic emission [13] techniques to the tested
battery. Based on the echo analysis, it measures capacity-
related characteristics, such as signal amplitude (SA) [14]
and time of flight (ToF) [15], thereby attaining battery
capacity estimation. Though the material-based method
can be operated rapidly, it is still a laboratory method
and has not seen the online application due to the complex-
ity of the application environment and the challenge of
interpreting the acquired echo signal.

It is believed that the impedance-based method pro-
vides a noninvasive approach to investigate battery internal
electrochemical dynamics, which can reflect the battery
aging mechanism [16,17]. As the active electrode materials
degrade with cycling aging, the contact surface of the
electrode for conducting the electrochemical reaction de-
creases, and it leads to the increase of both contact and
charge transfer impedances [18]. The loss of lithium-ion
inventory caused by aging activities, such as solid electro-
lyte interface (SEI) film formation and cathode electrolyte
interface (CEI) formation, can lead to the blocking of the
flow of ions, which brings large resistance for normal
electrochemical processes [19]. As the impedance-based
method can provide such informative knowledge of the
battery in a nondestructive and fast manner compared toCorresponding author: Zuolu Wang (e-mail: z.wang3@hud.ac.uk).
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the incremental analysis method and material properties
evaluation-based method, it is seen as the promising solu-
tion for the rapid and accurate capacity estimation of
lithium-ion batteries.

Currently, the most prevalent impedance evaluation-
based methods are the DCIR [20,21] and electrochemical
impedance spectroscopy (EIS) [22,23] methods. To be more
specific, DCIR is a resistance-based method. It imposes a
one-off DC current pulse to a tested battery and acquires the
voltage response. Then, the DCIR can be obtained by
calculating the ratio of the changes of the two signals
(DCIR = ΔU/ΔI) in whichΔU andΔI denote the difference
of the voltage and the difference of the current across the
battery, respectively [24]. The calculated DCIR can enable
the rapid estimation of battery capacity, as the correlation has
been verified between the DCIR and the capacity [20].
Gasper et al. [25] measured 32 cells in various capacity
fading stages and generated thousands of DCIR results to
verify the relationship between battery resistance and battery
degradation pattern. A lot of work has been done to improve
the reliability of DCIRmethods. Studies in [26,27] compared
the DCIR calculation performance when applying different
durations of a current pulse, as some crucial electrochemical
reactions, such as charge transfer and diffusion within the
battery, require time to conduct. Besides, someworks in [28–
30] investigated and divided ΔU into many parts based on
the voltage slop, aiming to link these variations directly to the
internal characteristics of the battery. Instead of calculating
the DCIR based on the starting edge of the pulse, some other
work also [31,32] proposed to calculate the DCIR using the
edge section at the relaxation when the pulse is about to be
terminated and claimed it could give more reliable DCIR
results with less noise caused by the measurement equip-
ment. In addition, some studies [33–36] investigated the
factors that can affect the resistance measurement, which
further influences the accuracy of capacity estimation. It
considered the factor of temperature and SOC to establish
a look-up table of how these factors influence battery
capacity estimation. The DCIR can be seen as a rapid
method, and the measurement procedure is not complex,
but its evaluation accuracy is a big concern in practice.
Battery’s internal resistance is a small value and is suscepti-
ble to measurement environment and limited information
restrained by the single DC excitation component, causing
unreliable test results [37].

By contrast, EIS adopts the frequency sweeping tech-
nique, and thus, it can measure the impedance response at a
wide range of the frequency band from kHz to milli-Hz,
which provides a large amount of information about the
battery electrochemical dynamics and internal characteris-
tics reflecting the capacity decline [38,39]. The ohmic
resistance in the EIS profile is the most considered influen-
tial capacity-related feature [40,41]. Additionally, the mid-
frequency information in EIS indicates solid electrolyte
interface (SEI)—a side reaction product contributing to
capacity fading [42]. Thus, Chang et al. [43] suggested
that capacity-related features from the mid-frequency
section should be further extracted. In [44], Zhou et al. pro-
duced novel capacity features by fitting the EIS mid-
frequency section with a semicircle and applied the features
to their Gaussian process regression (GPR) model. Though
it introduced the extra computation cost and high workload
by manually extracting features, the model showed good
capacity-indicated SOH estimation performance, with most
root mean squared error (RMSE) lower than 1% in

considered scenarios. In addition to the mid-frequency
band of EIS, Su et al. [45] indicated that the low-frequency
band in EIS presents the diffusion process and could also be
valuable in estimating the battery capacity. Their GPR
model only used the low-frequency band information
and attained a SOH estimation model with RMSE below
1% and R2 above 0.95.

Since EIS includes rich and comprehensive informa-
tion about battery aging, it is considered to present more
reliable and accurate results in battery capacity estimation
over direct current internal resistance (DCIR) [46]. How-
ever, the implementation of the EIS relies on offline speci-
fied equipment and takes much longer time than DCIR.
Although EIS can provide more accurate and stable results
than DCIR, it is limited to be employed as a fast and cost-
effective battery capacity estimation method.

In our previous work [47], the pulse impedance tech-
nique (PIT) has been proposed to measure battery imped-
ance in a fast manner and free from limitations of specialist
equipment. The impedance calculation focuses on the
dynamic responses of current and voltage transient spikes
instead of static components in the conventional pulse test,
which obtains more information about battery dynamics.
The proposed PIT has been validated in the simulation and
experiment by only distinguishing three pouch lithium
batteries with different aging conditions.

However, several limitations have been identified from
the previous study. First, the PIT method was only tested on
a single type of battery, which raises concerns about its
generalization ability across different battery chemistries.
Second, the PIT was only validated on three aging samples.
Such small samples are insufficient to demonstrate the
reliability of the PIT on effective aging feature extraction
and battery capacity estimation. Last, the lack of compari-
son with the well-established EIS method in our previous
study makes it difficult to highlight the advantages of the
PIT. Therefore, addressing the above limitations is valuable
in demonstrating the reliability and generalization of
the PIT.

Based on the mentioned issues, this paper investigates
the above impedance-based methods for rapid and accurate
capacity estimation of EV lithium-ion batteries. The EIS
and PIT methods are employed to test two connected
Samsung 18650 batteries in every ten aging cycles among
the 1-160 cycles. Then, the impedance-based capacity-
related health features are separately obtained based on
the two methods. Afterward, various impedance features
and statistical features are analyzed, from which the health
features strongly related to the capacity decline in both
methods are identified with the Pearson correlation analy-
sis. Next, we develop linear regression models to map the
relationship between the features extracted from the two
methods and the actual capacity. A comparative study of the
model’s fitting performance is performed accordingly, in
which both PIT and EIS are evaluated in terms of R-score
and RMSE. The results indicate that the PIT method can
provide informative and comparative health features com-
pared to those from the EIS, and it can achieve more
accurate battery capacity estimation with higher efficiency
and lower cost.

The remainder of this paper is organized as follows:
Section II demonstrates the investigated rapid battery
capacity estimation technologies. Section III introduces
the experimental design and implementation for two esti-
mation technologies. Section IV displays the results and
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compares two impedance-based methods for capacity esti-
mation. Finally, conclusions are given in Section V.

II. METHODOLOGIES
The theoretical backgrounds and operational procedures of
the proposed PIT and EIS measurements are demonstrated
in the following sections.

A. PULSE IMPEDANCE TECHNIQUE (PIT)

PIT is a fast and low-cost impedance-based method used for
battery capacity estimation. It relies on a transient signal
from the pulse generated by a battery management system.
Instead of using the static component in the conventional
method, it captures rich aging information by analyzing the
dynamic component of the response and calculating the
impedance in a range of frequencies. In addition, a high
sampling frequency will be used to sufficiently capture the
transient information in a short time period so that the
battery impedance can be calculated rapidly and accurately.

As displayed in Fig. 1(a), a pulse-based transient
current signal iðtÞ with multiple frequency components is
first excited to the tested battery, and the voltage response
vðtÞ across the battery will be recorded simultaneously, as
listed in Equations (1) and (2). To obtain the frequency
components of the signals, we transform the raw signals to
frequency domain using the fast Fourier transform sepa-
rately, then the signals in frequency domain of Iðf Þ and
Vðf Þ are obtained accordingly, as shown in Fig. 1(b).

iðtÞ = iDC þ
Xn

k=1

Iksinð2πf ktÞ (1)

vðtÞ = vDC þ
Xn

k=1

Vksinð2πf ktÞ (2)

From Equations (1) and (2), both the current and voltage
signal consist of direct current (DC) and alternative current
(AC) components, where iDC and vDC are the direct current
bias for current and voltage signal, respectively. Ik andVk are
the amplitudes of the corresponding frequency f k in the
current and voltage, and n denotes the number of frequency
components. Next, the coherence analysis is conducted on
the signals as given in Fig. 1(c). Equations (3)–(5) are used to
calculate the coherence Cxyðf Þ. It indicates that the band of
approx. 0–200 Hz exhibits a high degree of coherence. The
high coherence demonstrates the strong correlation of two
signals, which suggests that two signals are synchronized and
reliable for the impedance calculation. It calculates the
impedance Zðf Þ in the specified frequency band with high
coherence based on Equation (6), as displayed in Fig. 1(d).

GXYðf Þ = Vðf Þ Iðf Þ� (3)

GXXYYðf Þ = Iðf Þ Iðf Þ� Vðf Þ Vðf Þ� (4)

CXYðf Þ =

���GXYðf Þ
���2

GXXYYðf Þ
(5)

Zðf Þ = Vðf Þ
Iðf Þ (6)

where Vðf Þ and Iðf Þ are the Fourier transform of the signal
iðtÞ and vðtÞ, while the Iðf Þ�and Vðf Þ� are the conjugate of

Fig. 1. The impedance-based method of PIT: (a) the raw signal of excitation and response, (b) the FFT of the signals, (c) coherence
examination of the signals, and (d) impedance calculation.
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Iðf Þ and Vðf Þ, respectively. Gxyðf Þ denotes the cross-power
spectral density of the two signals, and GXXYYðf Þ is the
product of the auto spectral density.

Finally, the highly efficient aging features are identified
and examined by Pearson correlation analysis, as Pearson
correlation analysis is valuable in identifying linear fea-
tures. The identified features are suitable for developing the
linear model to estimate the battery capacity. The Equa-
tion (7) displays the Pearson coefficient calculation.

ρ =
P

N
i=1ðxi − �xÞðyi − �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i=1 ðxi − �xÞ2p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i=1 ðyi − �yÞ2p (7)

where N denotes the number of samples from x and y, from
which x and y are used to denote the extracted features and
capacity, respectively.

B. ELECTROCHEMICAL IMPEDANCE
SPECTROSCOPY (EIS)

Electrochemical impedance spectroscopy (EIS) is an infor-
mative method for impedance measurement, relying on
multi-times tests and costly offline test system. It obtains
a wide range of impedance information by sending small
signals in various frequencies successively and acquiring the
response, which can be used for battery capacity estimation.

In the EIS test procedure, a sinusoidal wave signal
in a specific frequency is first applied as an excitation
to the tested battery. The voltage response is acquired

simultaneously. Second, the impedance in the specified
frequency is calculated in accordance with the excitation
and response. Then, it repeats the first two steps by chang-
ing the excitation frequency and sweeps in a wide frequency
band. Finally, the EIS that comprises impedances in tens of
frequencies is obtained from which valuable features can be
identified and used for battery capacity estimation. The EIS
impedance is calculated as follows:

iðtÞ = Iksinð2πf ktÞ (8)

vðtÞ = Vk sinð2πf kt + ∅kÞ (9)

Zðf kÞ =
Vk

Ik
ej∅k (10)

where iðtÞis the sinusoidal current used to test the battery at
frequency f k, vðtÞ denotes the voltage response across the
battery with the phase of ∅k and amplitude of Ik and Vk,
and Zðf kÞ stands for the impedance at a specified frequency.

III. EXPERIMENT
A. EXPERIMENTAL PLATFORM

An experimental platform is designed to examine the two
impedance-based methods (PIT and EIS) for battery capac-
ity estimation, as displayed in Fig. 2. The tested two

Fig. 2. The developed experimental system.
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batteries are connected in series and placed in a thermostat
to be controlled at an ambient temperature. Table I displays
the critical parameters of the objected battery. The battery
controller is connected to the tested cells to control the
battery operated in the required stages, including the charge,
relaxation, and discharge stages. Moreover, the controller
can measure and record the voltage and current across the
battery with a low sampling rate of 0.5 Hz, and it is used to
calibrate battery capacity for obtaining the battery degra-
dation conditions. The controller, NI acquisition board, and
EIS measurement board are all connected to the local PC for
centralized control and data acquisition through the
equipped software. The NI signal acquisition board is
used for the PIT test for capturing the transient variance
of voltage and current, and the EIS board is responsible for
EIS measurement.

B. EXPERIMENTAL SETUP

Four groups of experiments were conducted, which were
battery aging experiments, capacity calibration, PIT mea-
surement, and EIS measurement. The aging experiments
generate batteries in various aging conditions. Capacity
calibration is to obtain the actual capacity value of the
battery at different aging conditions, which will be taken as
the output of the developed model. PIT and EIS measure-
ments are used to obtain PIT and EIS impedances of
batteries at multiple aging conditions, respectively. These
impedances from the two measurement methods will be
considered as input of the model for evaluating the actual
capacity of the battery. The following gives the details for
the setups of each experiment:

1) AGING EXPERIMENT. It sets battery controller for
controlling the batteries at 1C (2.6A) charging rate, 2C
discharging rate, and 20 min relaxation time between the
switch of charge–discharge operation. The total experi-
ments were conducted for 160 aging cycles.

2) CAPACITY CALIBRATION. It discharged the batteries
from an SOC of 100% to an SOC of 0% at a 0.5 C

discharging rate, from which the total amount of capacity
released in this procedure by the batteries was recorded by
the battery controller. After the end of every 10-cycle aging
experiment, capacity calibration was conducted, and a total
of 17 capacities denoting different aging conditions (includ-
ing the original condition) were recorded.

3) PIT MEASUREMENT. In every ten cycles of the aging
experiment, PIT measurement was conducted. First, it
charged the batteries to a full charge till 8.4 V using the
controller. Second, resting for 1 hour is used to ensure the
batteries reach a stable state. Then, it injected a 0.5C-current
pulse lasting less than 1 second into the battery and
simultaneously recorded its transient current and response
voltage at a fixed sampling rate of 5 kHz using the NI
acquisition board. This high sampling rate can make sure
that the transient information can be captured, and the
battery impedance can be calculated accurately.

4) EIS MEASUREMENT. EIS measurement was also con-
ducted in every ten aging cycles. Similar to PIT measure-
ment, it first fully charged two cells to 8.4 V with the
controller to keep the same test condition before resting for
1 hour in EIS. Then, the EIS board conducted the imped-
ance measurement on the tested cells. The sweeping fre-
quency range was set between 1 Hz and 1 kHz with 300 mA
current excitation, and the total sampling points were 59.

It should be noted that the temperature was set to be
distinct between the aging experiment and the other three
experiments. To accelerate the aging process, the batteries
were cycled at a higher temperature of 40°C within the
highest safety operating temperature of 45°C, while the
temperature was set as 25°C in capacity calibration, PIT
measurement, and EIS measurement experiments.

IV. RESULTS AND DISCUSSION
A. IMPEDANCE MEASUREMENT RESULTS

The impedance measurement results of the proposed PIT
and the conventional EIS methods among 160 ageing
cycles are separately displayed in Fig. 3. The operational
time of PIT is within one second, while it takes over 30
minutes for EIS measurement at each cycle. Specifically, in
PIT, we exhibit a frequency band of 0 Hz to 200 Hz with a
verified high coherence, as demonstrated in Section II, from
which the band of 20 Hz to 180 Hz gives stable coherence
performance and will be used for feature extraction. In EIS
measurement, it considers a wide frequency band and uses a

Table I. The specification of the tested batteries

Parameters Description

Type Samsung 18650 lithium battery

Voltage 2.75–4.2V (Nominal 3.7V)

Capacity 2.6Ah

Fig. 3. The measured impedance results by the proposed (a) PIT and the traditional and (b) EIS.
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specific sweeping technique that only sweeps in every
decade. Thus, we take lnðf Þ as the X-axis to give an
overlook of the results.

B. FEATURE EXTRACTION

Based on the observed impedance results, we conduct
feature extraction to identify the capacity-related features.
Here, we consider rough features, including two categories
of directive features and statistical features. The following
gives the details of the two types of features:

Directive Feature: These features are the amplitude of
impedance at a fixed frequency. Since PIT and EIS
methods evaluate battery aging conditions in different
ranges of frequency bands, the number of features that

can be extracted from two methods is distinct. It only
considers the band of 20–180 Hz at an interval of 10 Hz
in PIT, the total impedance that can be obtained is 17.
In EIS, it generates 59 frequencies, and we obtain 59
impedances accordingly.

Statistical Feature: Various statistical features,
including variance (var), standard deviation (std), coef-
ficient of variance (cv), mean, maxima (max), and
minima (min), are used to analyze the battery imped-
ance. The statistical features extracted from PIT and
EIS are separately displayed in Figs. 4 and 5. In
Fig. 4(a, b), the var and std present an increasing trend
with battery capacity decline, indicating a more con-
siderable variation of impedance from different fre-
quencies as the battery ages in PIT. However, this trend

Fig. 4. Statistical features of (a) var, (b) std, (c) cv, (d) mean, (e) max, and (f) min extracted from PIT.

Fig. 5. Statistical features of (a) var, (b) std, (c) cv, (d) mean, (e) max, and (f) min extracted from EIS.
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is not apparent in EIS, as shown in Fig. 5(a, b). In
addition, it can be seen from Figs. 4(d–f) and 5(d–f)
that the extracted statistical features, such as mean,
max, and min, from both PIT and EIS are closely
related to the capacity change. Based on the results,
we notice that some features, such as cv in both
methods (see Figs. 4(e) and 5(e)) and var in EIS, do
not present a strong correlation with the aging pattern.

Pearson analysis is valuable in identifying linear fea-
tures, and these features are suitable for developing the
linear model to explore the mapping relationship between
the identified feature and capacity. Despite some features
displaying correlated variations with the capacity, the rela-
tionship is not linearly correlated, such as var in PIT, as
shown in Fig. 4(a), which will affect the linear model’s
estimation performance. Accordingly, we adopt Pearson
correlation analysis to further examine these rough features
to obtain the optimal life-related feature for the final
capacity estimation.

The Pearson analysis results are displayed in Fig. 6,
where fi is used to denote impedance features obtained at a
specific frequency, and cap is short for the capacity. Due to
the space limits and similar performance of adjacent im-
pedances, it only exhibits the coefficient of five representa-
tive impedances of PIT and EIS at a fixed interval of
samples. The intervals of the adjacent impedance samples
are 3 and 12 for PIT and EIS, respectively. Table II lists the

corresponding frequencies indicated by the evaluated fea-
tures in both methods.

Figure 6 separately exhibits the Pearson coefficient
between directive impedance features and capacity, statis-
tical features, and capacity in PIT and EIS methods. As
shown in Fig. 6(a), in PIT method, most features can be
found with a coefficient higher than 0.98, such as f2 and f5,
which indicate excellent health indicators that can be used
for battery capacity estimation. Moreover, the founded
highly correlated features of f1 f2, f3, and f5 are strongly
related to each other with an absolute value of more than
0.99. This demonstrates that only a single health feature can
give a comprehensive expression of these features. Hence,
we select f2 in PIT as the optimal impedance feature.
Similarly, the health feature extraction is conducted in
EIS. As shown in Fig. 6(b), the f3 is chosen as the optimal
health feature in EIS due to its high correlation
with capacity and the other features. As displayed in
Fig. 6(c, d), the Pearson correlation of statistical features

Fig. 6. The Pearson correlation analysis of impedance features from (a) PIT and (b) EIS and statistical features from (c) PIT and (d) EIS.

Table II. The actual frequency (Hz) of the represen-
tative features in both methods

Method f1 f2 f3 f4 f5

PIT 30 60 90 120 150

EIS 1.12 4.58 18.67 76.10 310.12
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from PIT and EIS is examined, respectively. Some statistical
features, such as cv, show less correlation with the capacity
change. Nevertheless, it still identifies some valuable life-
related statistical features from PIT and EIS, such as mean
andmax. Though we found var and std features, which have
a coefficient higher than 0.9 in PIT, they are not chosen as the
optimal feature, as their correlation performance is not as
strong as that ofmax.Also,max is the most related feature to
the other statistical features. Thus, max is taken as the
representative statistical feature for both methods.

Meanwhile, we can conclude that conducting Pearson
correlation analysis is meaningful, as it can avoid taking a
non-related impedance as the health indicator, reducing
data dimension and model’s complexity, and identifying
the highly valuable and representative features.

C. BATTERY CAPACITY ESTIMATION

In this section, we develop linear regression models using the
health feature separately extracted from the two methods to
describe the capacity loss. As mentioned above, f2 and max
features are regarded as the representative health indicators in
PIT, and f3 andmax are considered in EIS.We consider three
scenarios, that is, utilizing the representative impedance
feature, the representative statistical feature, and both fea-
tures in model development. Thereby, multiple models are
developed using distinct features obtained in various tech-
niques. By comparing these models’ performance, we can
comprehensively compare PIT and EIS methods.

The battery capacity estimation by the linear regression
model using distinct health features extracted from the PIT
and EIS methods are shown in Fig. 7, and the numerical

Fig. 7. The fitting performance of the model with distinct representative features from the two methods. (a) f2 from PIT, (b) f3 from EIS,
(c) max from PIT, (d) max from EIS, (e) f2 and max from PIT, and (f) f3 and max from EIS.
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performance of these linear models is listed in Table III. It
can be noted that these models developed in extracted
health features selected in both methods show a good fitting
performance with the actual value. This is also verified by
the evaluation metric of R-score, which shows a value
greater than 0.95 in all the fitting cases. Especially, the
R-score of up to 0.973 when utilizing PIT features exhibits a
higher fitting result given by PIT for capacity estimation
over the EIS. Moreover, the RMSE of PIT is lower at
0.87%, presenting a more reliable and accurate capacity
estimation performance compared to EIS, which has an
RMSE of up to 1.08%.

Overall, the results show that developing the linear
model with the PIT feature can give a closer fit to the actual
capacity values and yield lower errors than using EIS
features in considered scenarios, demonstrating that the
PIT method leads to better battery capacity evaluation
performance regarding accuracy than the EIS method.

While PIT offers a good performance in battery capac-
ity estimation, we acknowledge some limitations of this
study. First, our experimental design only considers the
series connection and not considers parallel connection,
which may raise concerns about the effect on different
connection on the method’s performance. Second, the
frequency component of the excitation relies on the battery
controller system, which may influence the generalization
of PIT method. These limitations highlight the area for
future study to broaden the practical application.

V. CONCLUSION
This paper investigates two impedance measurement
methods of the novel transient signal-based PIT and the
conventional EIS methods for capacity estimation in the
multi-batteries-connected scenario. To conduct the investi-
gation, the PIT and EIS operations, along with the capacity
calibration of the cell, are conducted on a two-battery cell
with multiple levels of degradation. The measured imped-
ance features and six statistical features of the impedance
values in both methods are taken as the potential indicator
and then examined by Pearson correlation analysis to
identify the highly representative health features. After-
ward, we developed the linear feature-capacity mapping
models utilizing the extracted highly influential features
from the two methods separately. Several conclusions can
be summarized that the impedance-based methods of PIT
and EIS can both find compelling features indicating battery
capacity decline. The transient signal-based PIT is on par
with the EISmethod regarding health-related feature extrac-
tion, as both methods can extract influential features with
Pearson coefficient higher than 0.98. Furthermore, by

comparing the model’s fitting results with the actual capac-
ity, it noticed that leveraging the feature from PIT can build
linear models with better performance over the one built on
the EIS feature, as indicated by the higher R-score of up to
0.973 and an RMSE below 0.87%. Meanwhile, the PIT can
be implemented superfast within one second, compared to
the EIS, which needs over 30 minutes. Overall, PIT is
preferable in battery capacity estimation regarding accuracy
and efficiency and has more substantial potential for prac-
tical applications.

Future work will consider other types of lithium-ion
batteries and more practical application scenarios,
e.g., connected to an EV battery pack, and we will compare
the PIT and EIS methods in these complex scenarios for
battery capacity estimation.
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