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Abstract: In any industry, it is the requirement to know whether the machine is healthy or not to operate machine
further. If the machine is not healthy then what is the fault in the machine and then finally its location. The paper is
proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the
maintenance activity. The Step-1 identifies whether machine is healthy or faulty, then Step-2 detect the type of
defect and finally its location in Step-3. This method is extended further from the earlier study on the 2-Steps
method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects. The method uses
the optimised vibration parameters and a simple Artificial Neural Network (ANN)-based Machine Learning (ML)
model from the earlier studies. The model is initially developed, tested and validated on an experimental rotating
rig operating at a speed above 1st critical speed. The proposed method and model are then further validated at
2 different operating speeds, one below 1st critical speed and other above 2nd critical speed. The machine
dynamics are expected to be significantly different at these speeds. This highlights the robustness of the proposed
3-Steps method.
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I. INTRODUCTION
Industries and power plants crucially depend on the seam-
less operation of rotating machinery, making the early and
accurate detection of associated faults vital [1]. These
machines encompass various integrated components,
including rotors, bearings, supporting structures, and elec-
tric motors, all of which are susceptible to numerous
malfunctions due to manufacturing and installation imper-
fections and inevitable wear and tear from daily opera-
tion [2,3].

Common faults, including rotor misalignment, mass
imbalance, cracks, shaft bends, and inadequate bearing
lubrication, significantly impact the reliability and perfor-
mance of these essential machines [4–6]. These rotor and
bearing faults often result in high vibrations, damaging
critical components and, in severe cases, complete machine
failure [7]. Therefore, developing effective methodologies
for early fault detection and diagnosis is imperative to
enhance machine reliability, prevent failures, and ensure
cost-effective maintenance.

Over the years, vibration-based condition monitoring
(VCM) has proven to be a reliable technique for detecting
and diagnosing faults in rotors and bearings [8,9]. The
analysis of vibration signals, which are sensitive to changes
in structural parameters and varied fault conditions, pro-
vides valuable insights into the health status of rotating
machinery. Vibration signal features have been extensively
studied for classifying different fault types in rotating
machinery. Additionally, these vibration features have
been integrated with machine learning algorithms, like

artificial neural networks (ANN) and support vector ma-
chines (SVM), to enable more efficient classification and
differentiation of machinery fault levels or types [10–13].
With the advent of Artificial Intelligence (AI) and Machine
Learning (ML), there has been significant progress in
developing intelligent diagnostic systems and accelerating
decision-making processes with minimal human interven-
tion [14–17].

Li et al. [18] proposed a novel statistical feature
extraction and evaluation method for rotating machinery
fault diagnosis. They extracted statistical features by com-
puting the sample average of raw features from multiple
arbitrarily selected partitions of the vibration signal. Ac-
cording to the central limit theorem, these statistical features
will follow normal distributions. Experiments showed that
statistical features significantly improved the classification
accuracy compared to raw features for ANN and support
vector machine (SVM) classifiers on a machinery fault
simulator. The proposed method provided an accurate
diagnosis of common faults like unbalance and bearing
faults only.

Espinoza-Sepulveda and Sinha [19] presented a
method for identifying rotor defects based on the analysis
of rotor vibration measurements collected in an experimen-
tal lab. Their methodology is based on artificial intelligence
(AI) and utilizes a machine learning (ML) model. Their
primary research objective was to optimize parameters
derived from vibration data to detect rotor defects. They
used an artificial neural network (ANN) model to classify
these defects, demonstrating the applicability of AI and
vibration features in machinery fault detection.

Natalia Espinoza-Sepulveda et al. [20] proposed a rotor
faults identification method that relies on rotor vibration
measurements from an experimental lab rig and implemen-
ted an artificial intelligence (AI)-based machine learning
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(ML) model. The identification method has two main steps:
the first identifies if the rotor is healthy or faulty, and the
second specifies the exact nature of the rotor fault. The
method successfully identified the healthy condition and
four rotor faults: looseness, rotor-stator rub, misalignment,
and shaft bow.

Khalid and Sinha [21] have expanded the vibration-
based machine learning (VML) model of the previous study
[19] to detect faults in both rotors and anti-friction bearings.
The vibration parameters have been revised by extending
the frequency range to cover bearing resonance responses
from bearing defects. The proposed VML method was first
developed on an experimental rig at one speed above the
first critical speed and accurately diagnosed all machine
conditions. To further evaluate the method’s usefulness and
robustness, it was tested at a speed below the first critical
speed and another rotating speed above the second critical
speed, where machine dynamics differ significantly. The
vibration parameters and ANN model accurately identified
the healthy condition, misalignment, shaft crack, shaft rub
and bearing fault.

This research builds upon and extends the previous
research study of the 2-Steps method [20] into a compre-
hensive 3-Steps methodology to identify the machine con-
dition (healthy or not), diagnose and locate the rotating
machine’s faults. The proposed 3-Stepsmethodology for the
machine fault diagnosis is intended to meet the industrial
requirements to aid the maintenance activity. The Step-1
identifies whether machine is healthy or faulty, then Step-2
detect the type of defect andfinally its location in Step-3. It is
in line with industrial the requirement to know whether the
machine is healthy or not to operate machine further. If the
machine is not healthy then what is the fault in the machine
and then finally its location. The proposed method is using
the vibration parameters estimated from themeasured vibra-
tion responses and then smart detection process in all
3-Steps through a machine learning model (ML) [21].

First, a dataset of vibration features is used to classify
healthy and faulty states. Then, if the machine is faulty, the
classifier identifies the exact type of fault. Finally, the third
step is to pinpoint the location of some of the identified
faults. The refined method not only addresses rotor-related
faults, but also incorporates anti-friction bearing faults. This
paper utilizes vibration data from a laboratory-scale rig at
various operating speeds. The proposed 3-Steps method is
developed at a rotor speed which is above the 1st critical
speed. The model is further tested and validated at other two
different rotating speeds, one below 1st critical speed and
other above 2nd critical speed. The dynamics of the
machine are different at these speeds, but the proposed
model provides encouraging results. This research en-
hances the existing AI and ML models for fault identifica-
tion, providing a valuable contribution to the field of
predictive maintenance and fault diagnosis in industrial
rotating machines.

This paper is structured as follows: Section II presents
the methodology of the proposed 3-Steps method.
Section III describes the experimental setup and data col-
lection process. Section IV presents the extracted vibration
features, and Sections V and VII delve into the data analysis
and results, respectively, highlighting the study’s key find-
ings. Finally, Section VII concludes the paper, summarizing
the main points.

II. METHODOLOGY
A 3-Steps fault identification and diagnosis approach for
rotors and bearings is proposed using a multi-layer percep-
tron (MLP) artificial neural network (ANN) of a previous
study [20].

The 1st step determines if the asset is healthy or faulty
based on the input data propagated through the MLP
network architecture. The output layer contains two possi-
ble classifications – healthy or faulty. If a fault is detected,

Fig. 1. A schematic diagram of the 3-Steps method using ANN.
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the 2nd step identifies the precise nature of the fault using
the same MLP network. The fault types are misalignment,
shaft crack, rotor-stator rub, and bearing faults. This knowl-
edge enables targeted maintenance activities to mitigate
failure risk. Only faulty data are used in the 2nd step. The
3rd step localizes the fault by pinpointing its location on the
rotor or bearing assembly. Potential discrete fault locations
such as shaft crack in location 1 and shaft crack in location 2
are classified. The ANN architectures used in all steps are
identical. The idea is to make this simple ANN model as a
standard model for all faults detection but by using the
vibration and rotordynamics-based parameters. Figure 1
shows a schematic diagram of the 3-Steps method using
ANN, and Fig. 2 represents the supervised four-hidden-
layer ANN classification process.

Table I and Fig. 2 outline that the MLP network is
architecturally structured with four hidden layers. Each
layer comprises multiple neurons, with the hidden layers
containing 1000, 1000, 100, and 10 neurons, respectively.
The hyperbolic tangent sigmoid function [10] is the chosen
activation function for these hidden layers, while the output
layer implements a Softmax function [11], providing a

normalized exponential function. The ANN was trained
using a supervised learning approach, where the model was
provided with input data (vibration features) and the correct
output. A Scaled Conjugate Gradient Back-Propagation
training function is employed with Cross-Entropy as the
performance function, ensuring optimal network perfor-
mance through iterative training phases. It is important to
note that the input data in the 1st Step contain all data, only
fault state data in 2nd Step, and the data related to a
particular fault in the 3rd Step are used to reduce the
computational effort and to also support the optional and
maintenance within any industry.

III. EXPERIMENTAL RIG
An experimental rig was constructed to generate vibration
data for different operating conditions and speeds
(Figs. 3 and 4). The rig consists of two steel shafts, denoted
as Sh1 and Sh2, coupled by a rigid flanged sleeve cou-
pling. Sh1 is 1000 mm long, and Sh2 is 500 mm long, both
with a diameter of 20 mm. Each shaft is supported by two
deep groove ball bearings mounted in cast iron housings
(Table IV). The bearings are secured inside pedestals
attached to the steel baseplate using four springs per
bearing. Sh1 has two steel balancing discs, each with a
diameter of 125 mm and a thickness of 14 mm. Sh2 has
one identical balancing disc. Discs are secured on the
shafts using locking nuts and can be adjusted to introduce
controlled imbalance.

Vibration data is acquired by Luwei [22] using four
accelerometers (Model: 352C33, 100 mV/g sensitivity)
attached to the bearing housings using stud mounts. Accel-
erometers are oriented at 45° to the horizontal axis. The
accelerometers are connected to a data acquisition system
with anti-aliasing filters.

A 0.75 kW induction motor coupled to the rig via
flexible couplings is used to rotate the shaft up to 3000

Fig. 2. Schematic representation of the supervised four-hidden-layer ANN classification process.

Table I. Characteristics and configuration of the im-
plemented neural network model

Parameter Specification

Architecture Four-hidden-layer feed-forward
neural network

Activation function
(Hidden neurons)

Hyperbolic tangent sigmoid

Transfer function
(Output neurons)

Normalised exponential
function (Softmax)

Training function Scaled conjugate gradient
back-propagation

Performance function Cross-entropy
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RPM. Elastic couplings help isolate experimental vibration
from motor noise.

The rig was run at 450 RPM (7.5 Hz), 900 RPM
(15 Hz) and 1350 RPM (22.5 Hz). These speeds were
selected based on the first two bending critical speeds at
11.52 Hz and 18.62 Hz identified by the modal tests [22].
The experimental modeshapes (from coupling location, C1
to the end of the shaft) [22] at these 2 natural frequencies are

shown in Fig. 5. The chosen speeds are below, between, and
above the critical speeds. The dynamics of the rotating rig
differ significantly at these 3 speeds as clear from the
modeshapes. Five conditions were tested at each speed:
healthy, misalignment, shaft crack near B1, shaft crack near
B2, shaft rub near D1, and defective bearing (B2). For each
condition, 40 runs were performed with a 10 kHz sampling
rate. Tables II and III show the number of samples and,
descriptions of each condition and the description of the
simulated faults in the experimental rig. The ball bearing
specifications utilized in the test rig are shown in Table IV.

Table V summarizes the calculated frequencies corre-
sponding to the ball, inner race, outer race, and cage
components of the bearings at various speeds, supporting

Fig. 3. Experimental rig setup.

Fig. 4. Schematic diagram of the experimental rig.

Fig. 5. Experimental modeshapes at the natural frequencies, 11.52 Hz and 18.62 Hz.

Table II. Samples of various machine conditions at
each tested speed

Machine condition

Number of runs
(Samples)

450
RPM

900
RPM

1350
RPM

Healthy (residual unbalance and
residual misalignment)

40 40 40

Misalignment 40 40 40

Crack near B1 40 40 40

Crack near B2 40 40 40

Rotor rub 40 40 40

Faulty bearing 40 40 40
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the experimental rotor system. The calculated frequencies
based on the equations are provided in [9].

IV. VIBRATION DATA PROCESSING
AND FEATURES EXTRACTION

A previous study [21] optimised the selection of the vibra-
tion features to be used in the machine learning model for
reliable and accurate rotor and bearing diagnosis. The
optimized features combine time and frequency domain

features extracted from the measured vibration responses.
In the time domain, the root mean square (RMS) of
acceleration represents the signal’s overall energy, while
kurtosis (K) of acceleration provides information regarding
the shape distribution of the sample. The frequency range
for RMS calculation is extended to 5000 Hz to include
bearing resonance related vibration responses. Kurtosis
focuses on 2000–5000 Hz to reflect the bearing condition.
In the frequency domain, the velocity vibration amplitudes
at 1×, 2× and 3× of shaft rotating frequency for the rotor
faults. Spectrum energy (SE) of velocity measures vibration
content related to the rotor and bearing faults from 0.3×
rotational speed to 5000 Hz. These 6 features per bearing at
the 3 rotating speeds were extracted from each data sample.
Table VI summarises the extracted features from vibration
data to be used as the input of the proposed method.

V. VIBRATION DATA ANALYSIS AT
ROTATING SPEED, 15 HZ

The measured vibration acceleration data are analysed in
both time and frequency domains. Figures 6–8 show a

Table III. Descriptions of various machine conditions
at each tested speed

Machine condition Description

Healthy (residual unbalance
and residual misalignment)

Residual misalignment and
residual unbalance.

Misalignment Parallel Misalignment with
vertical displacement of B1
of 0.8 mm.

Crack near B1 On the rotor near B1, a 0.33 mm
shim is pasted into a 0.34 mm
wide by 4 mm deep notch.

Crack near B2 On the rotor near B2, a 0.33 mm
shim is pasted into a 0.34 mm
wide by 4 mm deep notch.

Rotor rub Perspex blade on rotor near D1.

Faulty bearing Bearing cage defect at B2.

Table IV. Ball bearing specification

Bearing parts Specification

Inner (bore) diameter (di) 20 mm

Pitch circle diameter (dp) 33.50 mm

Diameter of roller (db) 7.938 mm

The contact angle of the roller (β) 0

Number of rollers (nr) 10

Table V. Characteristic frequencies of ball bearing
used in the experimental rig

Rotor speed (RPM)

Condition 450 900 1350

The relative speed between the
inner race and the outer race (Hz)

7.5 15 22.5

Frequency related to the ball
defect (Hz)

29.87 59.75 89.62

Frequency related to a defect
in the inner race (Hz)

37.11 74.22 111.33

Frequency related to a defect
in the outer race (Hz)

22.89 45.78 68.67

Frequency related to a defect
in the cage (Hz)

2.86 5.72 8.58

Fig. 6. Typical time domain waveform at B2 for the different machine faulty conditions at a rotating speed of 15 Hz: (a) Misalignment,
(b) Crack near B1, (c) Crack near B2, (d) Rub, and (e) Fault in B2.
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typical comparative vibration analysis of a machine with
experimentally simulated rotor and bearing defects at 15 Hz
at the bearing, B2.

In the time domain (Fig. 6), the acceleration vibration
signals show changes in amplitude over time but doesn’t

reveal much about the fault type. The velocity spectra
(Fig. 6) show peaks at 1×, 2×, and 3× (the first, second,
and third harmonics of the rotational speed) with different
amplitudes for the rotor fault conditions in Fig. 7(a–d).
However, there is no obvious bearing fault related

Fig. 7. Typical velocity vibration spectra at B2 for the different machine faulty conditions at rotating speed 15 Hz: (a) Misalignment,
(b) Crack near B1, (c) Crack near B2, (d) Rub, and (e) Fault in B2.

Fig. 8. Typical envelope spectra at B2 for faulty machine conditions at a rotating speed of 15 Hz: (a) Misalignment, (b) Crack near B1,
(c) Crack near B2, (d) Rub, and (e) Fault in B2.
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frequencies are observed in Fig. 6e for the defective
bearing B2.

To further confirm the presence of the defect in the
bearing B2, the envelope analyses are carried out for all
vibration data. The vibration acceleration signals are ini-
tially passed through a bandpass filtered from 2000 to
5000 Hz to get the vibration data around the bearing
assembly resonance frequency region. The envelope anal-
ysis via Hilbert Transform [23] is then carried out on the
filtered signals. The spectra of the envelope signals at
the bearing, B2 are shown in Fig. 8. Figure 8e shows the
presence of the cage related defect frequency of 5.6 Hz and
its harmonics. Hence, this confirms the presence of defect in
the bearing, B2. However, there is no such bearing defec-
tive frequency peaks are observed for other rotor related
fault conditions as obvious from Fig. 8(a–d). This confirms
that the rotor fault conditions are not having the bearing
defects.

VI. THE APPLICATION OF THE
3-STEPS METHODOLOGY

A. INPUT DATA OF THE ML

The initial step focuses on classifying the machine’s con-
dition as either healthy or faulty. The input matrix, denoted
as A, captures vibrational features across different bearings
and conditions. Each row represents an individual sample
run, while each column represents a feature (RMS, K, 1X,
2X, 3X, and SE) for each of the four bearings (B1, B2, B3,
B4). The target matrix for this step is binary, reflecting
each sample’s healthy or faulty status. A '1' denotes a
faulty condition, while a '0' signifies a healthy machine
condition.

DataH= ½H1 H2 : : : Hz �T ,
DataM= ½M1 M2 : : : Mz �T ,
DataCl = ½Cl1 Cl2 : : : Clz �T ,
DataCr= ½Cr1 Cr2 : : : Crz �T ,
DataR= ½R1 R2 : : : Rz �T ,
DataBF= ½BF1 BF2 : : : BFz �T
A= ½DataH DataM DataCl DataCr DataR DataBF �T

(1)

where DataH is the databank for the healthy condition,
DataM is for misalignment fault, DataCl is for cracked
shaft near B1,DataCr is for cracked shaft near B2,DataR is
for rotor rub fault, and DataBF is for bearing fault. Each
databank contains features from individual experimental
runs, organized as follows:

H= ½RMSB1,z KB1,z 1xB1,z 2xB1,z 3xB1,z SEB1,z :::

RMSB2,z ::: SEB2,z RMSB3,z ::: SEB3,z RMSB4,z ::: SEB4,z�
(2)

where z is the run number for the healthy condition.
A subset matrix of the original matrix A is used for

diagnosed faults. This matrix retains only those rows
classified as faulty in Step-1. Each column in the subset
matrix still represents specific features for each bearing,
thus providing insights into the exact nature of the fault. The
target matrix encompasses multiple classes, each represent-
ing a particular fault type, such as misalignment, shaft
crack, rotor-stator rub, or bearing fault. Each faulty sample
in the input matrix is associated with a category in this target
matrix, facilitating a more detailed classification.

Upon detecting a shaft crack in Step-2, the matrix is
derived to specify the fault’s location further. The matrix
retains data relevant to the crack condition and is structured
similarly to matrix A, although focusing on distinguishing
between potential fault locations. The target for this step is
to determine the potential location of the shaft crack,
specifically whether it’s closer to bearing B1 or B2. As
such, the target matrix has binary outcomes signifying the
location of the detected shaft crack.

The 3-Steps method provided in Section II is executed
here. The samples (runs) described in Table II are organized
into three datasets for the ML model’s training, validation,
and testing. 70% of the samples (runs) from machine
conditions at 750 RPM, 900 RPM, and 1350 RPM are
utilized for training the network, with the weights modified
by the learning rule. 15% of the samples are then utilized for
validation, which entails checking the trained network with
these data until their classification error achieves a desired
minimal error level. At this time, the training process is
terminated. At this phase, the network’s optimum weights
have been determined, and the remaining 15% of anony-
mous data are evaluated to determine the network’s
generalization.

The data 70%-15%-15% (training-validation-testing)
are applied to Step-1, Step-2 and Step-3 models. The
model’s performance is computed using Eq. (3).

Table VI. Extracted vibration features

Features Frequency range Domain Amplitude

Root mean square (RMS) 0 – 5000 Hz Time Acceleration

Kurtosis (K) 2000 – 5000 Hz Time Acceleration

The first harmonic of rotating speed (1×) 1× Frequency Velocity

The second harmonic of rotating speed (2×) 2× Frequency Velocity

The third harmonic of rotating speed (3×) 3× Frequency Velocity

Spectrum energy (SE) 0.3 Rotational speed – 5000 Hz Frequency Velocity

Table VII. Overall performance of the 1st step, fault
detection (%) of tested data of rotation machine at 15 Hz

Target class

Healthy Faulty

Output Class Healthy 100 0

Faulty 0 100
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Perf ormance ð%Þ =
�
no: correct classif ication

total of input

�
× 100%

(3)

B. MODEL DEVELOPMENT

The proposed 3-Steps fault detection, diagnosis and loca-
tion method was developed using vibration data acquired at
900 RPM (15 Hz). The data was divided into 70% training,
15% testing, and 15% validation sets. The method achieved
100% fault detection, diagnosis, and location accuracy for
the training, testing, and validation data sets (Tables VII–
IX). Specifically, the model perfectly classified the machine
condition as healthy or faulty, diagnosed the fault type
(misalignment, crack, rub, bearing fault), and located the
fault (crack near B1 or B2).

C. MODEL VALIDATION

The developed method was validated by testing on the
additional vibration data obtained at the rotating speed of
7.5 Hz and 22.5 Hz, which are below 1st and above 2nd
critical speeds of the rotating machine, respectively. The
data was separated into 70% training, 15% testing, and 15%
validation sets for each validation speed. The method
maintained 100% fault detection, diagnosis, and location
accuracy at 7.5 Hz and 22.5 Hz for all data sets
(Tables X–XV).

Despite varying dynamics at 2 different rotating
speeds, the consistently high performance demonstrates
the robustness of the extracted vibration features and the
approach’s effectiveness across operating conditions. The
ability to precisely detect, diagnose, and localize faults
highlights the novelty of the proposed 3-Steps process,
providing an automated solution superior to thresholding.
The results validate the viability of industrial applications,
where early and accurate fault detection is critical.

Table VIII. Overall performance of the 2nd step, fault diagnosis (%) of tested data of rotation machine at 15 Hz

Target class

Misalignment Shaft crack Shaft rub Bearing fault

Output Class Misalignment 100 0 0 0

Shaft Crack 0 100 0 0

Shaft Rub 0 0 100 0

Bearing Fault 0 0 0 100

Table IX. Overall performance of the 3rd step, fault
location (%) of tested data of rotation machine at 15 Hz

Target class

Shaft crack
near B1

Shaft crack
near B2

Output
Class

Shaft Crack
Near B1

100 0

Shaft Crack
Near B2

0 100

Table X. Overall performance validation of the 1st step
at the machine rotation speed of 7.5 Hz

Target class

Healthy Faulty

Output Class Healthy 100 0

Faulty 0 100

Table XI. Overall performance validation of the 2nd step at the machine rotation speed of 7.5 Hz

Target class

Misalignment Shaft crack Shaft rub Bearing fault

Output Class Misalignment 100 0 0 0

Shaft Crack 0 100 0 0

Shaft Rub 0 0 100 0

Bearing Fault 0 0 0 100

Table XII. Overall performance validation of the 3rd
step at the machine rotation speed of 7.5 Hz

Target class

Shaft crack
near B1

Shaft crack
near B2

Output
Class

Shaft Crack
Near B1

100 0

Shaft Crack
Near B2

0 100

Table XIII. Overall performance of the 1st step
showing further validation at rotating speed of 22.5 Hz

Target class

Healthy Faulty

Output Class Healthy 100 0

Faulty 0 100
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VII. CONCLUDED REMARKS
This study presented a novel 3-Steps machine learning
approach for automated rotor and bearing faults diagnosis
of rotating machinery across different operating speeds with
significantly different rotor dynamics. The proposed
approach first identifies machine conditions as healthy or
faulty using optimized vibration features as inputs to a
multi-layer perceptron neural network in the 1st Step. This
is important step for the management and operations teams
to knowwhether they can run the machine or not. If a fault is
detected, the 2nd Step identifies the precise fault type. This
is demonstrated here for both rotor faults like misalignment,
shaft cracks, shaft rub, and the bearing defects. This is an
essential step for the vibration-based condition monitoring
team to know the exact nature of the fault in the machine.
Finally, the 3rd Step provides the location of the fault to
support the maintenance team to carry out the remedial
work efficiently. This has also been demonstrated through
the example of the shaft cracks.

The method is initially developed and successfully
demonstrated using experimental vibration data from a
laboratory rotor-bearing test rig at a rotating speed above
the 1st critical speed. The proposed 3-Steps method is then
further validated at 2 different rotation speeds (one below
1st and other above 2nd critical speeds) having signifi-
cantly different dynamics behaviours. This confirms the
robustness of the proposed methodology and the vibration
parameters used are truly represent the machine dynamics.
The ANN model is kept simple and same for all steps. The
idea is to standardise this model for all possible faults
detection by the selecting the appropriate vibration param-
eters (features) based on the machine rotordynamics. The
proposed 3-Steps method is simple and based on the
rotordynsamics which has potential to use in the
industries.
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