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Abstract: Time-frequency methods are effective tools in identifying the frequency content of a signal and revealing its time-
variant features. This paper presents the use of instantaneous features (i.e., instantaneous energy and signal phase) of acoustic
emission (AE) in the detection of thermal damage to the workpiece in grinding. The low-order frequency moments of a scalogram
are used to obtain both the instantaneous energy and the mean frequency at which the signal phase is recovered. The grinding
process is monitored using AE for a variety of operating conditions, including regular grinding, grinding at higher cutting speed
and larger feed, and small dressing depth of cut. The instantaneous features extracted by the scalogram are compared with the
results obtained by the empirical mode decomposition. It has been found that both the instantaneous energy and phase deviation
indicate the presence of burn damage and serve as robust and reliable indicators, providing a basis for detecting the grinding burn.
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I. INTRODUCTION
Grinding is the last manufacturing process which is used in
situations where sufficient measurement precision and surface
quality cannot be produced with other machining methods such
as turning, milling, reaming, etc. During grinding, material removal
is achieved by the cutting edges of grains of hard material during
which are randomly shaped and arranged. These cutting edges
penetrate only a few micrometers into the material and cause the
formation of large cutting forces which lead to elastic and plastic
deformations in the workpiece [1]. In addition, a number of
physical phenomena occur including shearing, material removal,
friction, heat generation, deformation, fluid flow, etc. The main
concern in the grinding process is the harmful effects of high
temperatures on the workpiece and tool. Grinding temperatures are
the consequences of many factors including the type of workpiece
material, the nature of abrasive employed in the grinding wheel,
application of grinding fluid, grinding speeds and feeds, and wheel
dressing conditions [2]. Since grinding is a finishing process and is
usually the last stage of the manufacturing, any damage induced to
the workpiece could be very costly and have a major impact on the
service life of the product.

A large number of research studies on tool condition moni-
toring have been reported in the literature for a variety of machining
processes by measuring parameters such as force and torque, feed
and spindle motor currents, acoustic emissions (AEs), vibration,
cutting temperature, etc [3–8]. Of these parameters, AE has been
widely used and recognized as one of the most suitable choices for
grinding process monitoring. The use of AE is highly desirable due
to its superior signal-to-noise ratio and sensitivity which lead to the
detection of different levels of AE activities occurring even at very
low depths of cut. Another advantage is that the AE sensors

generally operate within a frequency range of 50 kHz–1000 kHz
that is well above the characteristic frequencies attributed to the
machining or natural frequencies of the structure, which minimizes
noise in the resulting AE signal [3].

Han et al. [5] studied characteristics of AE in precision
grinding under different working conditions and justifications
were made by considering root mean square (RMS) and frequency
spectrum of AE signal. Karpuschewsk et al. [6] investigated the
influence of different dressing parameters on the AE signal, and
wheel life estimation was achieved using power spectra of the
enveloped AE signal. Plaza et al. [7] carried out an experimental
study on AE features in abrasive grinding. The AE signals were
analyzed in both the time and frequency domains. It was found that
the AE features in the frequency up to 200 kHz could be an ideal
data source for the online monitoring of surface creation in grinding
processes.

Lezanski [8] monitored grinding wheel wear by measuring
vibration, AE, and grinding forces, and the condition of the
grinding wheel was assessed using a neural network-based fuzzy
logic decision system. Susic et al. [9] investigated the properties of
a ground surface using AE signals and the condition of the grinding
wheel was estimated using neural network application.

Liu et al. [10] investigated the AE features of the thermal
expansion in grinding using wavelet packet transform. Their
findings revealed that signal energy at high temperatures was
concentrated in the high-frequency bands, whereas it shifted to
the low-frequency bands with the reduction of temperature. Kwak
et al. [11] carried out a work in which wavelet transform was used
for both feature extraction and de-noising of force signal obtained
from the grinding process. Liao [12] investigated feature extraction
and future selection issues in AE sensor-based condition monitor-
ing of a grinding wheel in which both time series modeling and
discrete wavelet decomposition were employed for feature extrac-
tion. Yang et al. [13] examined the AE activities from a grinding
wheel using both the discrete wavelet transform and support vectorCorresponding author: Isa Yesilyurt (e-mail: isa.yesilyurt@usak.edu.tr)
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machine. RMS and variance from each decomposition level were
considered as the feature vector for the classification of sharp and
worn wheels. Viera et al. [14] monitored the surface quality of
ceramic components during the surface grinding process using the
piezoelectric diaphragm and AE sensors. A time domain metric,
based on short-time Fourier transform, was employed to assess
surface roughness. Hübner et al. [15] investigated the surface
integrity of steel during grinding using the AE and electromechan-
ical impedance signals. The resulting AE signals were analyzed
using both the short-time Fourier transform and continuous wavelet
transform (CWT).

Barkhausen noise (BN) and AE are frequently used ap-
proaches to detect thermally induced changes on the surface of
a workpiece in grinding. BN analysis is a nondestructive method
that involves measuring a noise-like signal induced in a ferromag-
netic material by an applied magnetic field and is mostly affected
by hardness and stress. Since the grinding burn causes local
dislocations on the surface and can soften or harden the surface
layer, any thermally induced damage can be detected by the BN
analysis [16]. Sorsa et al. [17] used the BN signal to detect residual
stress and hardness change due to surface burning in hardened
steel. Aguiar et al. [18] investigated the efficiency of some statisti-
cal analysis methods in the detection of thermal damages in the
grinding process using AE signals. Kwak et al. [19] investigated
the chatter vibration and grinding burn in a cylindrical plunge
grinding process, and various parameters of raw AE signal were
used as burn features for the neural network. Inasaki [20] con-
ducted an experimental study in which the grinding power was
monitored to detect grinding burn and found that grinding power
increases rapidly when a grinding burn occurs. Yang et al. [21]
conducted a work in order to detect surface burn in grinding and
used the ensemble empirical mode decomposition (EEMD)method
to the resulting AE signal.

Although there are several methods available for feature
extraction and prediction in the grinding burn detection, research-
ers have not reached a consensus on which feature (or features)
reflects the nature of grinding burn, and conflicts still arise among
the researchers [21]. The main reason for the conflicts is either due
to the complex nature of the abrasive process or features extracted
using different methods may be effective in their circumstances.
It is for these reasons, this study aims to give a new perspective on
grinding burn detection using the instantaneous features (i.e., in-
stantaneous energy and signal phase) of AE derived from the
scalogram which is the absolute value of the CWT. Feature
extraction using the CWT can be performed with ridge detection
[22,23] or low-order conditional moments [24,25]. Because the
CWT decomposes the signal into its components, the ridge sub-
traction method is useful for characterizing the signal components.
On the other hand, low-order frequency moments of an energy
density function are effective tools for reducing dimensionality and
enable the capture of changes in a signal with relatively few
parameters, and facilitating the distinction of different fault
conditions.

This paper presents the use of low-order frequency moments
(i.e., instantaneous energy and mean frequency) of a spectrogram
in the detection of thermal damage to the workpiece under different
operating conditions in grinding. Firstly, a brief theoretical back-
ground is given for the scalogram and its frequency moments.
Secondly, the state of the grinding process is monitored for a
variety of operating conditions, including the regular grinding,
grinding at a higher cutting speed, larger infeed, and smaller
dressing depth of cut using AE. Instantaneous features of the

AE signal are obtained using the scalogram. In addition, the
Hilbert–Huang transform (HHT) and empirical mode decomposition
(EMD), whose theoretical bases are detailed in [21,26], are used to
demonstrate the effectiveness and efficiency. It has been found that
the AE is very sensitive to any change in operating conditions, and
theAEpower is effective in the frequency range up to 180 kHz for all
grindings conditions. Moreover, when the workpiece is burn-dam-
aged, the strength of the resulting AE generally tends to be reduced
compared to undamaged conditions for all grinding conditions.
Furthermore, both the instantaneous energy and phase deviation
serve as robust and reliable indicators by always yielding lower
values than those of the undamaged conditions, providing a basis for
detecting the burn damage in grinding.

II. METHODS
A. CONTINUOUS WAVELET TRANSFORM (CWT)

CWT is a method that converts a one-dimensional function into a
two-dimensional function represented by scale and expansion
parameters and is used to measure the similarity between the
processed signal and the analysis function. In contrast to Fourier
analysis, the wavelet transform performs a decomposition of xðtÞ
into a set of waves (or wavelets) which are derived from a single
wavelet, termed the analyzing wavelet h(t). The expansion of the
signal into wavelets is called the CWT and is defined as follows [27]:

CWTðb,aÞ = 1ffiffiffi
a

p
ð∞
−∞

xðtÞh
�
t − b

a

�
dt (1)

where h(t) is the wavelet kernel function (or mother wavelet) along
with the continuous scaling parameter a and the time-shifting
parameter b. The interpretation of equation (1) is that the size of
the wavelet functions varies with dilation (or scaling) a. When large
scales are selected, the resulting wavelet becomes low-frequency
wavelet functions and spread out in time, and vice versa.

The wavelet transform can be implemented either in the time
domain or in the frequency domain. Since the time domain
calculation is a convolution operation, it brings a higher computa-
tional load. In contrast, a fast calculation of the wavelet transform
can be achieved via simple multiplication operations if the fre-
quency domain expression is considered [28]. That is,

CWTðb,aÞ = ffiffiffi
a

p
F−1fXðf ÞH�ðaf Þg (2)

where Xðf Þ andHðf Þ denote the Fourier transforms of xðtÞ and hðtÞ,
respectively, F−1 represents the inverse Fourier transform and *
indicates the complex conjugation. The fast calculation of the CWT
is based on octave band analysis in which each octave is equally
subdivided into voices [29]. Although the number of octaves used
in the wavelet calculation is dictated by the length of the data time
record, the selection of the number of voices depends on the desired
frequency resolution of the transform, and the larger the number of
voices the better the frequency resolution.

Mathematically, the wavelet transform offers flexibility in the
selection of the analzsing wavelet. The Morlet wavelet is used in
this study because it is closely related to Fourier analysis and is
therefore easier to understand. The Morlet wavelet in the time and
frequency domains is defined as follows:

hðtÞ = expðj2πf 0tÞ expð−t2=2Þ (3)

where f0 is the wavelet center (or oscillation) frequency and t∈ℜ.
The Morlet wavelet itself is not admissible, but appropriate
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selection of the wavelet center frequency (e.g., f 0 ≥ 0.875 Hz)
makes the Morlet wavelet admissible in practice [30].

B. SCALOGRAM AND ITS MEAN FREQUENCY

Frequency moments of a distribution are the average spectral
properties of a signal and are used to characterize the distribution
with few parameters. Using the CWT, an energy density function,
which yields time-dependent energy content of a signal over a
range of frequencies, can be obtained by computing the scalogram
(i.e., the square of the absolute value of the CWT). Signal energy is
preserved by the scalogram and can be obtained by integrating
scalogram over the whole (b-a) plane. That is,

ET =
ð∞
−∞

jxðtÞj2dt = 1
Ch

ð∞
−∞

ð∞
−∞

jCWTðb,aÞj2 da db
a2

(4)

where Ch denotes the admissibility condition expressed as follows:

Ch =
ð∞
−∞

jHðf Þj2 dfjf j < ∞ (5)

whereHðf Þ is the Fourier transform of h(t). Once the scalogram of a
signal is defined, its frequency moments at a particular time t can be
expressed as follows:

MnðtÞ =
ð∞
−∞

f njCWTðb,aÞj2df (6)

where n (n = 0,1,2,3, : : : ) denotes the order of frequency moment.
It can be seen that the 0th order moment M0ðtÞ gives the instanta-
neous signal energy IEðbÞ. That is,

IEðbÞ = 1
Ch

ð
jCWTðb,aÞj2 da

a2
(7)

The first-order frequency moment of an energy density nor-
malized byM0ðtÞ at a given time gives the instantaneous (or mean/
average) frequency (IF) at which the instantaneous spectra con-
centrate. The IF, which physically represents the energy center of
gravity at a certain time b, can be expressed as follows (see
Appendix for its derivation):

IFðtÞ = ω0

Ð
∞
−∞ jCWTðb,aÞj2 da

a3Ð
∞
−∞ jCWTðb,aÞj2 da

a2
(8)

where ω0 denotes the wavelet center frequency in rad/sec. It can be
seen from equation (8) that the IF is meaningful only for those b for
which IEðbÞ > 0, which is always satisfied by the scalogram.
Although the signal phase can be calculated simply by integrating
the IF without the need to unwrap, errors in the mean frequency can
propagate and affect the accuracy of the phase estimation [31]. In
order to precisely estimate the IF features, the important aspect to
be considered is that the time-frequency method used can achieve a
high time-frequency resolution. The CWT is a linear transform
which process the signal through the inner product with a base and
which possesses the capability to locate time and frequency.
However, the CWT fails to achieve an arbitrarily high time-
frequency resolution simultaneously. The bandwidth of the wave-
lets varies proportionally to their center frequencies, which are
adversely affected with the dilation and results in a better localiza-
tion. As the scale reduces, the wavelets become more compact in
time, improving the time resolution of the transform, but frequency
resolution deteriorates according to the uncertainty principle [27].

III. NUMERICAL VALIDATION AND
PERFORMANCE ASSESSMENT

A linear chirp signal was used to demonstrate the effectiveness of
the scalogram’s phase recovery and feature extraction capabilities,
and the results were compared with those of the EMD for perfor-
mance evaluation. Simulated signal sampled at 128 Hz and pro-
duced for 2 seconds is given by:

xðtÞ = sin½2πð10t + 5t2Þ� (9)

The simulated signal was also assumed to be contaminated by
a zero-mean random component with a signal to noise ratio of
10 dB. For the scalogram calculation, the Morlet wavelet with a
center frequency of f 0 = 2.0 Hz was selected, and to avoid a high
calculation load, the octave band-based fast calculation procedure
was performed using 10 voices per octave.

Fig. 1 shows the test signal together with its scalogram, HHT,
and phase information. In the scalogram representation, a path that

Fig.1. Simulated signal and its scalogram, HHT, and phase information.
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follows the maximum energy density is termed as a wavelet ridge
and the values of aðbÞ along this path give the IF. Since the IF of the
noiseless test signal is IFðtÞ = 10 + 10t, the wavelet ridge varies
linearly with time. The IF estimated by the first-order frequency
moment of the scalogram is also superimposed on the scalogram as
a thick red line, which is located exactly on the ridge, indicating a
precise estimation of the mean frequency. Figure 1(d) shows the
HHT of the noisy chirps (the estimated IF is also superimposed on
the HHT) and Fig. 1(e) depicts errors in the estimated instantaneous
frequencies compared to the noiseless chirp. It can be seen that the
EMD-based IF is heavily affected by noise and yields a choppy
appearance. Fig. 1(f) shows the recovered and analytically calcu-
lated (or exact) signal phase variations, and a good agreement
among them is observed. It can be concluded that the mean
frequency of a scalogram can be used to precisely recover the
signal phase even when the noise is present.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP AND PROCESS
PARAMETERS

All the experiments were carried out on a plunge-type CNC
cylindrical grinding machine shown in Fig. 2. The workpiece
used for the experiments was the outer ring of the 6806 ball
bearing and its raceway was ground. It was made of DIN
100Cr6 steel and case-hardened to a depth of 0·15 mm at
60HRc. A vitrified-bond aluminum oxide grinding wheel of diam-
eter 30 mm was used together with a 4% water-soluble coolant.

The condition of the grinding process was monitored for four
different cases: normal grinding, grinding with higher cutting speed
and larger infeed, and small dressing depth of cut. During the
experiments, the workpiece speed was set to 900 rpm for all cutting
conditions. For normal grinding test, the circumferential speeds of
the grinding wheel and infeed rate were selected as 57 m/sec at
36300 rpm and 0·16 mm/sec, respectively. When a higher cutting

speed is applied, the peripheral speed of grinding wheel was
increased to 62 m/sec without changing the infeed rate. For the
larger infeed case, the infeed rate was raised to 0·3 mm/sec without
altering the cutting speed. For all the cases mentioned, the grinding
wheel was subjected to a redressing with a depth of 0·03 mm after
every six workpieces were ground. In the last experiment, the
dressing depth of cut was reduced to 0·010 mm without changing
both the cutting speed and infeed rate. The process parameters used
for the tests are given in Table I.

An AE sensor, Kistler type 8152C, was used to capture the
resulting AE activities. During the experiments, the obtained AE
signals were sampled at 2 MHz and captured for a complete
grinding process, including idles before and after the grinding
period. A built-in anti-aliasing filter on data acquisition board was
used to avoid aliasing effect. For each grinding operation, three AE
data were selected for each of the healthy and burned states, and the
instantaneous frequencies from these data were averaged to
increase the reliability. For the scalogram analysis, the wavelet
center frequency f 0 = 2.0 Hz was selected, and to avoid a high
calculation load, the octave band-based fast calculation procedure
was performed using 10 voices per octave.

B. REGULAR GRINDING

Figure 3 shows the AE signal obtained during normal grinding and
its spectra for idle and cutting periods. It can be seen that the
amplitude of AE signal exhibits a regular increase in the early phase
of the grinding and then remains almost unchanged until the end of
the roughing period. This is because that the actual depth of cut
gradually increases until the specified depth is approached. This
hence causes a continuous increase in undeformed chip thickness
(and consequently in cutting force) which leads to larger deforma-
tion and raises the strength of AE.

The idle period spectrum exhibits a periodic frequency activity
centered around 500 kHz and its extensions can be seen in the
region from 200 kHz to 1 MHz, and this can be considered as the
reflection of machine-related events on the AE signal. In contrast,
the cutting period spectrum reveals that most of the condition
indicating information for the grinding process is seen in the low-
frequency region up to 200 kHz. This is because small cutting
grains are randomly shaped and distributed in the grinding wheel,
and after resurfacing or dressing, hundreds or thousands of grains
likewise appear on the cutting surface of the grinding wheel. Since
the grinding process requires a very high cutting speed, high-
frequency events occur due to the frictional interaction of these
grains with the workpiece. Therefore, all the AE signals obtained
during the experiments were band-pass filtered on computer byFig. 2. Plunge-type CNC cylindrical grinding machine.

Table I. Process parameters used for the grinding tests

Regular

High
cutting
speed

Large
infeed

Small
dressing

depth of cut

Peripheral speed
(m/sec)

57 62 57 57

Workpiece speed
(rev/min)

900 900 900 900

Infeed rate
(mm/sec)

0·16 0·16 0·30 0·16

Redressing depth
(mm)

0·03 0·03 0·03 0·01
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a 10th-order elliptic filter whose cutoff frequencies are set at 3 kHz
and 200 kHz to avoid machine-related frequency activities
and noise.

The spectrum of the filtered AE signal exhibits nonperiodic
frequency activities up to 200 kHz, with the most pronounced
peaks seen at 27·2 kHz and 99·8 kHz, and a large number of
sidebands also become apparent around these frequency peaks.
When the spectrum is zoomed around its peak at 27 kHz, sidebands
appear 605 Hz (i.e. 36300 rpm) apart from each other. These
sideband peaks are caused by errors such as imbalance or eccen-
tricity of the grinding wheel and occur at all frequencies.

Figure 4 comparatively shows the CWT and HHT of the AE
signal for the regular grinding with its instantaneous properties.

Since the frequency resolution of the CWT deteriorates with
increasing frequency, the high-frequency components cannot be
discernible on the scalogram. However, the energy and frequency
features of the AE signal can be extracted by the zero- and first-
order frequency moments of the scalogram as shown in Fig. 4(c)
and (d). It is seen that both the scalogram and EMD give the same
IE values and the mean frequencies obtained are almost the same.
Although the resulting phase changes appear reasonably linear, the
phase extracted from the scalogram exhibits a peak-to-peak devia-
tion of 12818 radians, while EMD analysis yields a larger phase
deviation of 18896 radians. The scalogram and EMD-based phase
deviations of the AE signals for different grinding conditions are
given in Table II.

C. GRINDING AT A HIGHER CUTTING SPEED

Figure 5 shows the time, frequency, CWT, and HHT representa-
tions of the AE signals for the healthy and burnt conditions when
the cutting speed is set to 62 m/s. Although the time trace of the AE
signal obtained in the healthy state is very similar to that of the
regular grinding, it exhibits a lesser amplitude variation and yields a
smaller RMS value as given in Table II (only the grinding period
has been considered for the calculations of RMS). This is mainly

Fig. 3. (a) Raw AE signal for the regular grinding, (b) magnified
spectrum of AE signal for the idle period, (c) spectrum of AE signal
for the cutting period, (d) spectrum of the filtered AE signal, and
(e) zoomed spectrum of the filtered AE signal around 27 kHz.

Fig. 4. (a) CWT and (b) HHT of the AE signal for the regular grinding,
(c) estimated instantaneous energy and (d) mean frequency variations,
(e) signal phases, and (f) phase deviations for the cutting period.

Table II. RMS and phase deviation values of the AE signals obtained in the healthy and burnt conditions for different grinding
conditions

Regular High cutting speed Large infeed
Small dressing
depth of cut

Intact Intact Burn Intact Burn Intact Burn

RMS 0·074 0·048 0·040 0·077 0·076 0·107 0·102

Phase deviation
(radians)

Scalogram 10778 57647 31006 43723 28343 30234 14054

EMD 18896 65137 26087 55744 27872 41717 16388
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because that the undeformed chip thickness (and hence the cutting
force) decreases with increasing wheel speed, resulting in smaller
deformation and decreasing the strength of AE [5]. Increasing the
cutting speed is also very effective on the frequency content of the
AE signal. Compared to normal grinding, the frequency positions
of the peaks are not changed, but their amplitudes are significantly
reduced. When the workpiece is burn damaged, the amplitude of
the resulting AE signal is further diminished.

Figure 6 illustrates the scalogram and EMD-based instanta-
neous features of the AE signals for the intact and burnt conditions.
As with regular grinding, both the scalogram and the EMD give the
same IE values and provide very similar mean frequency varia-
tions. Although the IE for the burnt case diminishes noticeably, the
mean frequency exhibits a slight reduction during the roughing
period compared to the intact condition. In addition, the signal
phase for the burnt case exhibits a lesser deviation than that of
the undamaged condition. Figure 7 shows the raceway surfaces of
healthy and burnt bearing parts after grinding, where burn
damage manifests itself in the form of localized black spots on
the raceway.

D. GRINDING AT A LARGER INFEED RATE

Figure 8 illustrates the time and frequency, CWT, and HHT
representations of the AE signals for the healthy and burnt con-
ditions when the infeed rate is raised from 0·16 mm/sec to 0·3 mm/
sec. Compared to regular grinding, increasing the feed rate reduces
the roughing time but increases the amplitude of the AE. The main
reason for this is that as the feed rate increases, the undeformed chip
thickness increases and accordingly, more cutting force and large
deformations occur. This ultimately leads to an increase in both the

number of active particles in contact with the workpiece and the
strength of AE activities. When the workpiece is thermally dam-
aged, the signal energy is slightly reduced compared to the
undamaged condition, as given in Table II. As with higher wheel
speed, the application of a larger infeed in intact or burnt states does
not affect the positions of the resulting frequency activities, but
their strength is significantly affected.

Figure 9 shows the instantaneous features derived from the
scalogram and EMD of AE signals for healthy and burnt conditions
when the infeed rate is increased. As in the case of higher wheel
speed, the scalogram and EMD provide almost the same instanta-
neous characteristics, and the presence of burn damage often causes
reductions in both the IE and IF values during the roughing period.
Also, in the burnt condition, the phase of the AE signal deviates less
than in the undamaged condition.

Fig. 5. Time, frequency, CWT, and HHT representations of the AE
signals for the healthy and burn conditions when a higher cutting speed is
applied.

Fig. 6. Scalogram (first column) and EMD (second column)-based
instantaneous characteristics of the AE signals for health and burnt
conditions when a higher wheel speed is applied.

Fig. 7. Raceway surfaces of the healthy and burnt bearing parts after
grinding (a) intact and (b) burnt.
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E. GRINDING AT A SMALLER DRESSING
DEPTH OF CUT

During the experiments, the grinding wheel was resurfaced using a
single-point sharpening tool after every six workpieces were
ground, and the dressing depth of cut and dressing feed per
revolution were selected as 0·03 mm and 0·22 mm/rev, respec-
tively. However, the dressing depth of cut was reduced to 0·01 mm
without changing the dressing feed to examine whether a finer
dressing condition has an effect on burn formation. Figure 10
shows the time and frequency, CWT, and HHT representations of
the AE activities for the healthy and burn conditions when the
dressing depth of cut is reduced to 0·01 mm. It can be seen that the
AE in the healthy state shows larger amplitude variations than in
regular grinding. That is because more cutting edges on the wheel
surface emerge when a fine dressing condition is applied. However,
the presence of more cutting edges does not necessarily provide an
effective cutting action in terms of lower cutting force and finer
surface [32]. In addition, fine dressing tends to produce a matte
wheel and causes cracks in grains on the cutting surface [2]. As a
result, the grinding process, taking place immediately after a fine
dressing operation, causes an increase in grinding power and
cutting forces and consequently strengthens the resulting AE
activity. When the workpiece is burnt, there is no readily discern-
ible difference between the time traces of the AE signals obtained
for the healthy and burn conditions and this is likewise indicated by
the RMS values. In the frequency domain, the application of a
smaller dressing depth of cut does not change the positions of the
frequency peaks again, but their strength is significantly affected in
both grinding conditions.

Fig. 8. Time, frequency, CWT, and HHT representations of the AE
signals for the healthy and burn conditions when a larger infeed is applied.

Fig. 9. Scalogram (first column) and EMD (second column)-based
instantaneous characteristics of the AE signals for health and burnt
conditions when a larger infeed is applied.

Fig. 10. Time, frequency, CWT, and HHT representations of the AE
signals for the healthy and burn conditions when a smaller dressing depth
of cut is applied.
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Figure 11 shows the scalogram and EMD-based instanta-
neous features of the AE signals for the intact and burnt condi-
tions when the dressing depth of cut is reduced to 0·01 mm.
Applying a smaller depth of cut makes the values of both the IE
and mean frequency larger than those of the regular grinding. As
with the higher wheel speed and greater infeed cases, the presence
of burn damage causes a reduction in the IE values and yields a
lesser deviation in phase than those of the intact condition during
the grinding period.

V. SUMMARY AND CONCLUSIONS
In this article, scalogram-based instantaneous signal features are
used for the detection of burn damage under different grinding
operations, and performance assessment is achieved using the
EMD. It has been found that AE is very sensitive to any change
in operating conditions, and any possible change is evident in the
RMS value. The strength of the resulting AE increases as the infeed
rate rises or the depth of cut decreases but diminishes when a higher
cutting speed is applied. In the frequency domain, the AE energy is
seen to be effective in the frequency range up to 180 kHz for all
grinding conditions. When the cutting condition changes, the
positions of the frequency components remain unchanged, but
their power is significantly affected. When the workpiece is
thermally damaged, the strength of the AE diminishes compared
to the undamaged condition and causes a decrease in RMS values
for all grinding operations.

The instantaneous properties of the AE signals are extracted
using both the scalogram and the EMD and found that the IE values

obtained by both methods are exactly the same, and the recovered
mean frequency variations are quite close to each other. It has been
found that both the instantaneous energy and phase deviation are
found to be quite sensitive to the presence of burn damage. In all
grinding operations, the IE values tend to decrease and the signal
phase deviates less than in the healthy state when the part is
damaged.
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APPENDIX: INSTANTANEOUS FREQUENCY FROM THE CWT COEFFICIENTS

The scalogram of a time signal xðtÞ can be expressed as
follows:

CWTðb1,aÞCWT�ðb2,aÞ = jaj
� ð∞

−∞

XðωÞH�ðaωÞejωb1dω
�

� ð∞
−∞

X�ðωÞHðaωÞe−jωb2dω
�

(A1)

Arranging and simplifying equation (A1) yields

CWTðb1,aÞCWT�ðb2,aÞ

=
ð∞
−∞

jXðωÞj2
� ð∞

−∞

jajjHðaωÞj2dω
�
ejωðb1−b2Þdω (A2)

The relationship between the scale and frequency can be
expressed as:

ω =
ω0

a
(A3)

where ω0 denotes the wavelet center frequency in radian per
seconds. If the derivative of equation (A3) is substituted into
the inner integral of equation (A2), it yields the relationship
between the center frequency and admissibility condition of the
CWT. That is,

ð∞
−∞

jajjHðaωÞj2df = −ω0

ð∞
−∞

jHðaωÞj2 da
a|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ch

(A4)

Then equation (A2) becomes

CWTðb1,aÞCWT�ðb2,aÞ = −ω0Ch

ð∞
−∞

jXðωÞj2ejωðb1−b2Þdω (A5)

According to Parseval’s theorem, equation (A5) can also be
written in terms of instantaneous power as follows:

CWTðb1,aÞCWT�ðb2,aÞ = −ω0Ch

ð∞
−∞

jxðtÞj2e−jωðb1−b2Þdt (A6)

Taking the inverse Fourier transform of equation (A6) gives
when b1 = b2 ð∞

−∞

jCWTðb,aÞj2dω = −ω0ChjxðtÞj2 (A7)

Assuming xðtÞ = Aejωt in which ω is the instantaneous fre-
quency and ϕðtÞ = ωt is the signal phase, the time derivative of
equation (A7) can be written as follows:

ð∞
−∞

CWTðb,aÞ

0
BBB@ð−jωÞ ffiffiffi

a
p ð∞

−∞

X�ðωÞHðaωÞe−jωtdω
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
CCCA

CWT�ðb,aÞ

dω

= −jω0ChωjxðtÞj2 (A8)

Simplifying equation (A8) gives the time-dependent instanta-
neous frequency of the signal. That is,

ωðtÞ = ω0

Ð
∞
−∞ jCWTðb,aÞj2 da

a3Ð
∞
−∞ jCWTðb,aÞj2 da

a2
(A9)

Once the instantaneous frequency is obtained, its integration
yields simply the signal phase without the need to unwrap as given
below:

ϕðtÞ =
ðt
0

ωðtÞdt (A10)

where T denotes the time duration of xðtÞ.
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