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Abstract: Battery systems are increasingly being used for powering ocean going ships, and the number of fully
electric or hybrid ships relying on battery power for propulsion is growing. To ensure the safety of such ships, it is
important to monitor the available energy that can be stored in the batteries, and classification societies typically
require the state of health (SOH) to be verified by independent tests. This paper addresses statistical modeling of SOH
for maritime lithium-ion batteries based on operational sensor data. Various methods for sensor-based, data-driven
degradation monitoring will be presented, and advantages and challenges with the different approaches will be
discussed. The different approaches include cumulative degradation models and snapshot models, models that need
to be trained and models that need no prior training, and pure data-driven models and physics-informed models.
Some of the methods only rely on measured data, such as current, voltage, and temperature, whereas others rely on
derived quantities such as state of charge. Models include simple statistical models and more complicated machine
learning techniques. Insight from this exploration will be important in establishing a framework for data-driven
diagnostics and prognostics of maritime battery systems within the scope of classification societies.
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I. INTRODUCTION AND
BACKGROUND

The safety of electric ships is ensured by classification
societies. Fire is one major concern, but a totally different
safety aspect is to ensure that the available energy and
power stored in the battery are sufficient to cover the
required propulsion system demand [1]. Loss of propulsion
function at sea can lead to critical scenarios and serious
accidents such as collision or grounding. Hence, trustwor-
thy monitoring of the available energy in the lithium-ion
battery is essential for the safety of electric ships. In this
work, state of health (SOH) is defined as the current
capacity relative to initial (also referred to as nominal or
rated) capacity. Other definitions exist (e.g., related to
internal resistance), and there is no general consensus on
how to define this. However, in this paper, SOH should be
construed in terms of charge capacity.

The energy storage capacity of lithium-ion deteriorates
as they are aging [2]. Lithium-ion batteries are typically
designed with a shorter expected lifetime than ships. Thus,
batteries are expected to approach their end of life (EOL,
typically SOH= 70–80%) the ships they are installed in. In
this situation, accurate and reliable prediction of battery
capacity becomes progressively more important as the
battery systems advance toward its EOL.

Currently, maritime battery systems must include an
SOH algorithm, which needs to be verified annually

through a physical capacity test. This test is time consuming
and normally means that the ship is taken out of service for a
day. However, ship-to-shore connectivity has improved
recently, and it is natural to consider whether a data-driven
monitoring system can replace the need for an annual test,
and hence minimize downtime for the operator without
compromising on safety.

This paper discusses different alternatives to data-
driven capacity estimation for maritime battery systems.
The main objective is to utilize sensor data from the
batteries to understand the state of degradation without
requiring specific tests. This paper is an extension of a
conference paper presented at PHM 2023 [3], including
some additional methods and new results, see also [4].
In particular, the semi-supervised learning approach
and the two last methods in this paper; the open circuit
voltage method and the method utilizing equivalent cir-
cuit models (ECMs), are new and were not presented
in [3].

A review of various approaches for data-driven diag-
nostics of lithium-ion batteries for ships was presented in
[5]. In the current paper, case studies with different ap-
proaches and models will be presented, including both
cumulative and snapshot methods.

II. BATTERY DATA DESCRIPTION
Various datasets have been analyzed in this study. These
include laboratory cycling data, data from ships in service,
and some public datasets.Corresponding author: Erik Vanem (e-mail: Erik.Vanem@dnv.com).
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A. LABORATORY TEST DATA

Degradation data from three types of lithium-ion battery
cells have been obtained by cycling laboratory tests carried
out by Fraunhofer. Two types of cylindrical nickel–
manganese–cobalt (NMC) 18650 cells, i.e., DDE (energy
cells; nominal capacity 3.5 Ah) and DDP (power cells;
nominal capacity 2.5 Ah), and one type of NMC pouch
cells, DDF (nominal capacity 64 Ah) have been cycled
according to predetermined load matrices. Continuous
cycling is interrupted regularly to undergo capacity mea-
surements and check-ups. Hence, measured capacities are
available at regular intervals for all cells. Results are
illustrated in Fig. 1, which show estimated capacity as a
function of number of equivalent full cycles (EFC) for the
DDE cells. Similar plots for the DDP and DDF cells can be
found in [3,4].

Values of current, voltage, and temperature are sam-
pled continuously, resulting in time series of these variables
throughout the experiment. Such data are available for 81
individual cells, i.e., 35 DDE cells, 30 DDP cells, and 16
DDF cells. The cells have been cycled with CCCV
(constant-current-constant-voltage) scheme, i.e., they are
discharged/charged with constant current until a cutoff
voltage, after which the cells continue to discharge/charge
at constant voltage with a gradually vanishing current.

A comparable dataset from laboratory tests with the
DDE and DDP cell types at Corvus’ lab is also available.
However, these tests employ a somewhat different cycling
scheme with CCCV charging and constant power dischar-
ging, with small rest periods in between.

Additional data have been available from DNV’s
battery lab, for lithium-ion cells similar to the ones used
in some of the operational data.

B. FIELD DATA FROM SHIPS IN OPERATION

Operational data from electric ships with pouch cell batter-
ies of type DDF are used in this study. These batteries
consist of cell pairs connected in series within modules,
which are connected in series to form packs and finally

packs connected in parallel within an array. Data from these
installations include pack voltage and current as well as cell
voltage, temperature, and state of charge (SOC), which is a
derived quantity that is calculated from the other sensor
signals. An example of time series from this system is
shown in Fig. 2, with from top to bottom, pack current, cell
SOC, cell temperature, and cell voltage.

Field data from 6 ships with similar battery systems
have been used in this study, including hybrid and fully
electric vessels with varying configurations. None of these
systems are very old new, and they have not experienced
much degradation. Results from annual capacity tests are
available, and all installations have been subject to at least
two such tests.

Additional data from a somewhat older battery system,
with different types of cells, have also been analyzed in this
study. These have the benefit of longer time series, but with
inferior data quality and more data gaps. More details of the
ship data can be found in [3,6].

C. PUBLICLY AVAILABLE DATASETS

Various public datasets from different battery types exist
[7], including degradation data from cycling tests that has
been used in this study.

Battery data made publicly available by the NASA
Ames Prognostics Center of Excellence (PCoE) have been
used in this study. Specifically, randomized battery usage
data [8] consisting of aging data of 18650 lithium-ion
batteries under randomly generated usage profiles have
been analyzed. Reference is made to [8], see also [9], for
further details on these data.

III. DATA-DRIVEN STATE OF
HEALTH ESTIMATION

The various data-driven approaches explored in this study
include cumulative damage models, snapshot methods, and
other approaches. The results from these analyses are
presented in the following.

A. CUMULATIVE DEGRADATION METHODS

Cumulative methods aim at estimating the contribution to
degradation from each cycle and add these up to get
accumulated degradation and SOH. Hence, they model
ΔSOH as a function of various stress factors and get, after
n cycles, SOCðcnÞ = 100 −

P
n
i=1 ΔSOHðciÞ. Three such

cumulative damage models have been explored in
this study.

1) BATTERY AI. Battery AI uses a combination of
machine learning and semi-empirical methods to model
battery behavior under various real-world conditions [10].
It can analyze complex duty cycles and determine the
essential abuse factors. The impact of these factors can
then be modeled to predict overall degradation and capacity
depletion. In short, the semi-empirical function

y = 100 − A × TOp þ C (1)

is fitted to degradation data, where TO denotes turnover and
C is a calibration constant. The exponent p is estimated from
empirical degradation curves, and A models the combined
effect of various stress factors by a neural network trained
on cycling test data, see [10] for details; see also an

Fig. 1. Capacity against EFC for DDE cells.
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extended description of this case study in [6]. Overall,
results are reasonably good, with deviations from the annual
capacity test results in the order of 3% after one and a half
year. However, it is emphasized that verification is difficult
without longer time series and more extensive degradation.

One crucial aspect of the analyses using battery AI is
the data preprocessing to obtain the required input format.
This includes cycle decomposition to identify cycles and
associated these with the stress factor. The accumulated
degradation from the individual cycles is then added
together. As elaborated in [6], this data processing is
time consuming and computationally expensive. For very
large battery systems onboard ships, containing several
thousand cells and operated over several years, the mere
cost of data handling prohibits large-scale implementation
of this tool. Furthermore, it does not handle gaps in the data
very well, something that cannot easily be avoided for data
from ships at sea.

2) PROBABILISTIC CUMULATIVE MODELS. Other,
more flexible cumulative models that do not rely on the
semi-empirical function were investigated. Probabilistic
machine learning models, including Gaussian processes
regression and Bayesian neural networks, were fitted to
training data from lab experiments and applied to estimate
the capacity on operational data from ships in service.
Results from these investigations indicate that such flexible

models were not able to predict capacity very accurately,
and this is mainly due to lack of representative training date,
see [4] for further details.

3) MODELS BASEDONNONSEQUENTIAL AND SEQUEN-
TIAL FEATURES. Different nonsequential and sequential
models were applied to the NASA randomized usage
dataset, including simple statistical models and more com-
plicated machine learning models. These are utilizing sum-
maries of the cumulative load profiles as features, extracted
in terms of histograms or buckets of experienced condi-
tions. For further details of these analyses, reference is made
to [11], see also [6].

The main difference between nonsequential and
sequential methods is that the sequential methods explicitly
account for temporal information in the data. The nonse-
quential methods that are considered include linear regres-
sion (ordinary least squares (OLS)), penalized linear
regression (ridge regression and lasso), gradient boosted
trees, and support vector regression. The sequential meth-
ods include recurrent neural networks (RNN), long short-
term memory (LSTM) models, transformers, and temporal
convolutional neural networks (TCN). The models are
trained on data for all cells except for the cell that is to
be predicted.

Nonsequential features are extracted from the random
walk steps in terms of histograms of times spent with

16:00
Jan 7, 2021

18:00 20:00 22:00 00:00
Jan 8, 2021

02:00

−100

0

100

16:00
Jan 7, 2021

18:00 20:00 22:00 00:00
Jan 8, 2021

02:00

50

60

70

80

16:00
Jan 7, 2021

18:00 20:00 22:00 00:00
Jan 8, 2021

02:00
19

20

21

16:00
Jan 7, 2021

18:00 20:00 22:00 00:00
Jan 8, 2021

02:00
3.6

3.8

4

Current

SOC

Temperature

Voltage

Fig. 2. Example of time series from an onboard battery system.
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different current profiles and within different bins of tem-
perature and voltage. Additional covariates are introduced
from data from the last n steps as well as the temperature
and rest time immediately prior to a reference cycle. The
sequential models use time-series data as input. Two alter-
native sequence formats are utilized: short sequences
include summary statistics from each random walk step,
and long sequences correspond to downsampled time
series. Additional static covariates include estimated capac-
ity from the previous cycle and temperature during the
reference discharge. Several alternative models using dif-
ferent subsets of the features are compared in terms of their
root mean square error (RMSE).

Results suggest that the nonsequential penalized linear
regression models—ridge regression—perform best. Other
models such as lasso, transformers, and support vector
regression perform almost comparably well on average
for the four cells. According to these results, relatively
simple statistical models may perform better than more
complicated deep learning approaches, with adequate fea-
ture engineering.

This study demonstrated that it is possible to estimate
battery capacity using simple statistical models based on
histograms of operating histories. It is a cumulative type of
model, but the data volume is drastically reduced since only
summaries of the data are needed. However, it is question-
able how well such methods scale to large battery systems
and how well data gaps are handled; the histograms might
be biased if there are extended periods of missing sensor
data. These are serious limitations of such types of
approaches.

B. SNAPSHOT METHODS

As opposed to cumulative methods, snapshot methods aim
to estimate SOH directly from snapshots of the data by
extracting relevant features. Different snapshot models
have been explored in this study.

1) REGRESSION ON CHARGE AND DISCHARGE CURVE
FEATURES. Figure 3 shows examples of extracted charge
and discharge curves for an arbitrary DDP cell. The differ-
ent colors represent different time periods, and it is clearly
seen that the curves are changing as the battery is used.
Hence, it should be possible to extract relevant features
from such curves and relate them to degradation and
capacity loss.

In total, 44 features are extracted from the constant-
current phases of selected cycles, and the overall dataset of
extracted features contains 281 samples for the DDE cells
and 269 samples for the DDP cells. However, it is noted that
not all cells have information for all covariates.

Different basic statistical regression models are em-
ployed to predict the capacity of the cells based on snapshot
features, i.e., linear regression, linear regression with miss-
ing covariates, ridge regression, least absolute shrinkage
and selection operator regression (Lasso), multivariable
fractional polynomial regression, generalized additive mod-
els, regression tree, random forest, and support vector
regression [12].

Results presented in [12,13] suggest that this snap-
shot approach obtains quite good results for some of the
cells, but not for others. Performance evaluations of the
individual predictive models are presented in [12,13] and
did not identify a particular model as being consis-
tently best.

The fact that the models give reasonable results for
some cells is encouraging, but results need to be signifi-
cantly improved for these approaches to be recommend
from a ship classification perspective. More relevant train-
ing data would presumably be required to improve predic-
tion accuracy, as discussed in [12,13].

2) A VOLTAGE-DEVIATION METHOD. The voltage devi-
ation method (VDM), promoted in [14], exploits the corre-
lation between an increase in internal resistance and a
decrease in capacity to estimate SOH. It is applied to the
NMC-type of maritime batteries in this study, and further
details can be found in [3,4].

The VDM is based on features related to the voltage
deviation within certain SOC ranges as well as the standard
deviation of charge and discharge power and mean temper-
ature. The regression model is on the following linear form:

SOH = α1X1þ α2,

αi = βi,1X2þ βi,2X3þ βi,3, i = 1,2,
(2)

where X1 denotes the voltage deviation feature, X2 denotes
the power deviation feature, and X3 denotes the average
temperature. The deviation features are calculated by first
subdividing the data into small subsections of SOC and then
calculate the standard deviation of the voltage and power,
respectively, within each subsection. The voltage and
power deviations are the average standard deviations
over all SOC sections.

Lab data from the DDF cells are used as training data,
and the fitted model is applied to operational data from
ships. Note, however, that limited training data from only 6
DDF cells cycled in the lab are available.

For one vessel, preliminary results yield a sudden
increase in capacity after approximately one year of opera-
tion. This is unreasonable, and upon further investigation, it
turns out that this appears at the same time as fast charging
is applied to these batteries. The models are unable to
adequately adjust for this sudden change since such con-
ditions were not part of the training data. This illustrates the
importance of representative training data. One solution is

Fig. 3. Extracted charge and discharge curves from the raw time
series for an arbitrary DDP cell.

14 Erik Vanem et al.

JDMD Vol. 3, No. 1, 2024



to obtain more training data from lab experiments, but
carrying out such experiments is both time consuming
and expensive. Hence, relying on data-driven models
that need to be trained has fundamental practical challenges.

C. SEMI-SUPERVISED LEARNING

The above case studies highlight the challenges of relying
on extensive lab test data to train data-driven models.
Hence, it was investigated whether operational data can
be used to train such models. One challenge then is that
whereas operational data contains continuous sensor mea-
surements, actual capacity measurements are far between.
Typically, one value from an annual capacity test will be
available about once per year, and the data will be mostly
unlabeled.

With a semi-supervised approach, the idea is to label
such unlabeled data by considering a time window around
the annual test where the capacity can be assumed constant.
Then, time-series data within this time window can be
labeled and used to train data-driven models. One such
approach was reported in [15]. In the following, another
approach based on general boosting machines, a type of
tree-based machine learning models, will be outlined.

The tree-based model in this study has been tested on
continuous data from data from 16 different vessels. The
explanatory variables are various current, voltage, and
temperature summaries, including maximum, minimum,
average, and median values as well as integrated current
and start and end voltages of the cycles. For each vessel, the
algorithm has been trained on data from the 15 other vessels
and used to estimate SOH and compare with results from
annual capacity tests.

Overall, estimated SOH was within an error of 5% of
the field tests in most cases, with only a few cells experienc-
ing a larger deviation. This is illustrated in Fig. 4, where the
estimated SOH is compared to the results from the annual
capacity tests for all 16 vessels. It is observed that most
estimates are within ± 5% from the test results, but with

some notable exceptions. In particular, in one case, the
actual SOH is seriously under-estimated by the machine
learning model, and this is the cell with lowest actual SOH.

One explanation for the few large deviations between
the machine learning model and the annual test results is
that the training data are not sufficient. When training data
are extracted from operational data from a fleet of ships with
similar battery installations, one would need that all the
systems in the training data have experienced at least the
same level of degradation as the system one wants to
predict. Hence, for the vessel associated with the most
degraded batteries, it is questionable how accurate the
machine learning models will be in estimating SOH.
This is challenging, particularly since it will be for these
vessels accurate SOH estimation is most critical. Another
issue is that with operational data, one would typically have
less control of the operational conditions, and it will be
difficult to ensure that all relevant conditions are well
represented in the training data. For further details, refer-
ence is made to [4].

D. PHYSICS-INFORMED DATA-DRIVEN
MODELS

Whether relying on laboratory or operational data, training
data remain a challenge for data-driven modeling of SOH.
Hence, models that do not need prior training would be
desired. In the following, some approaches that can relax
the need for comprehensive training data by exploiting
physical knowledge are explored.

1) LINEARREGRESSIONBASEDONCOULOMBCOUNT-
ING. Coulomb counting exploits the fundamental rela-
tionship between integrated current and change in SOC and
is often used to determine total capacity of a battery from
deep charge and discharge cycles. In principle, his relation-
ship should be preserved during partial cycling and can be
utilized together with a simple linear model to estimate
battery capacity and state of health.

Fig. 4. Results from leave one out cross-validation for the semi-supervised approach.
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The following equation describes the relationship
between the total capacityQ, integrated current, and change
in SOC of a battery between times t1 and t2:ð

t2

t1

ηIðτÞdτ = QðSOCðt2Þ − SOCðt1ÞÞ: (3)

I(τ) is the current at time τ and η is the Coulomb efficiency
factor, which may be assumed to be equal to. This can be
presented as a linear regression problem as suggested by
[16],

Y = QX + ε: (4)

The total capacity, represented by the regression coef-
ficient Q, can be estimated by different methods, such as
ordinary least squares (OLS), total least squares (TLS), or
Bayesian linear regression, by collecting concurrent values
for Y and X [4].

In this study, a simple OLS implementation of this
model is applied to the Fraunhofer lab data for the three
different types of cells. Data are collected from the first 25
cycles after each capacity measurement, and the integrated
current and the change in SOC are calculated from the full
charge and discharge cycles, as well as from random
segments of the cycles. Figure 5 shows the extracted
data and estimated regression lines for an arbitrary cell.
Estimated SOH based on partial cycles are shown in Fig. 6.
In summary, the results are quite good and indicate that this
approach can give satisfactory results for most of the cells
cycled in the lab.

The same method was subsequently tested on field data
from ships in operation. Various ways of filtering the data to
get comparable capacity estimates at different times were
investigated and compared to results from the annual
capacity tests. Although a general decreasing trend is found,
the individual estimates exhibit much variability. Further
filtering based on current, temperature, and depth of
discharge (DOD) is explored, and reference is made to
[17] for details. Extended analyses with a TLS method to
account for the attenuation bias in OLS [18] are presented in

[19]. However, results are variable, presumably due to the
varying conditions during operation on ships in service.

An ensemble of the simple linear models in Equa-
tion (5) is applied to different subsets of the data to account
for the varying, nonstationary conditions during actual use.
Different linear models are applied to segments of the
charge and discharge curves between specified voltage
ranges. This yields various estimates of SOH that may
be averaged to obtain a single estimate with confidence
bounds. Two types of averaging are applied, i.e., normal
averaging and weighted averaging where the weights are
based on the reciprocal of the standard deviation from the
individual estimates.

An example of results from such ensemble models is
presented in Fig. 7, where the capacity estimates are plotted
over time, indicating a clear decreasing trend. In addition to
the individual estimates from the different linear models,
the mean and the weighted mean from all time periods are
included. Also, the results from the annual capacity tests
(three tests in this example) are indicated in the plot,
showing general agreement with the results from the linear
model. The numbers on the upper right corner in the figure
denote the average voltage in the associated voltage ranges.

Fig. 5. Calculated X = ΔSOC and Y= integrated current for
partial cycles and associated regression lines.

Fig. 6. SOH estimated from partial cycles with the simple linear
model; check-ups indicated by the X-axis.

Fig. 7. Example of capacity predictions from the ensemble of
simple linear models for an arbitrary cell over time.
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In summary, the simple regression model based on
Coulomb counting represents a promising and intuitive
approach for condition monitoring lithium-ion batteries
onboard ships. Its main advantages are that it does not
need training data and that it is a snapshot method that does
not need the full, uninterrupted time histories of the data.

One major challenge with this approach is that it relies
heavily on SOC, which is not directly measured. Ideally,
SOC should reflect actual temperature, current variations,
and rest periods, but determining this from real data is
difficult, and there are large uncertainties in calculated SOC
values. Hence, it would be desirable to find a method that
does not rely directly on SOC.

Another challenge is that battery capacity is not a fixed
quantity, but rather a function of several parameters such as
temperature, current, depth of discharge, voltage, and rest
times; it will vary according to how it is operated. In reality,
Q=Q(θ), where θ represents several variables influencing
the capacity [20]. It is not obvious how to account for these
effects in the linear regression model. Extra explanatory
variables can be added, or additional carefully selected
filters can be applied to the data prior to analysis.

2) OPEN-CIRCUIT VOLTAGE BASED METHOD. If the
relationship between SOC and open-circuit voltage
(OCV) is known, a Coulomb counting-based method uti-
lizing the relationship between integrated current and volt-
age can be established. The OCV refers to the terminal
voltage when there is no electric load, and the relationship
between OCV and SOC can be described by an OCV-SOC
curve, which may be established based on laboratory
characterization. Once this is known, capacity may be
estimated based on OCV rather than SOC.

To obtain the OCV when the battery is in use, there is a
need to determine the overpotential and to subtract this from
the measured terminal voltage. In this study, a simple ECM
with a serial resistance and three RC elements with time
constants 10, 100, and 1000 seconds is used. The resistance
values Rs, R1, R2, and R3 are estimated by least squares to
minimize the difference between the average voltage and
the voltage difference between the measured terminal volt-
age and the ECM voltage. With the fitted resistance values,
the overpotential from the ECM can be subtracted from the
measured voltage to obtain an estimate of the OCV. This
OCV can then be fitted to the OCV-SOC curve and used to
estimate total capacity.

The measured voltage and the voltage after subtracting
the overpotential from the ECM are illustrated in Fig. 8.
Figure 9 shows a matching of the quasi OCV to the OCV-
SOC curve. Then, total capacity can be estimated by
Coulomb counting [4].

This improved method was applied to operational data
from several vessels to obtain daily estimates of SOH.
Although results demonstrate a slight improvement com-
pared to the SOC-based simple linear method and running
averages over time are reasonable, the daily estimates vary
significantly. Hence, results are still not accurate enough to
relax the requirement for an annual capacity test.

3) UTILIZING EQUIVALENT CIRCUIT MODELS AND
EXTENSIVE CHARACTERIZATION TESTS. Further
improvement of the ECM-based Coulomb counting method
has been validated to give reliable and accurate SOH
estimation, under certain conditions. The ECM model in
Fig. 10 is used, which includes a serial resistance, 2 RC

elements, a thermal element (T), and an element represent-
ing hysteresis effects (h).

The cell ECM defines a set of five states,

x =

2
666664

SOC
U1

U2

h
T

3
777775
, (5)

where SOC is the cell SOC,U1 andU2 are the voltage drops
over RC1 and RC2, and h and T are the cell hysteresis level
and temperature. Each circuit element depends on the cell
states and conditions. For example, the OCV and internal
resistance typically depend on SOC, SOH, T, and h, and this
is modeled with extensive lookup established from com-
prehensive characterization tests. The cell voltage and the
overpotential (OP) are given by Equations (6) and (7).

V = OCVðxÞ þ OP (6)

Fig. 8. Measured voltage (blue line) against the capacity. The
orange line represents the monitored voltage after subtracting the
overpotential calculated by the ECM. The black points correspond
to the average voltage in each of the capacity sections.

Fig. 9. The known OCV (green) is matched to the obtained quasi
OCV points (black).
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OP = IR0ðxÞ þ U1 þ U2 (7)

The states change according to a set of differential
equations, Equation (8), where I is the cell current, η is the
Coulombic efficiency of the cell, Cnom is the nominal
capacity of the cell, α and β are parameters of the thermal
model, Ta is the ambient temperature surrounding the cell,
and fh is a function defining the cell hysteresis model. R1,
R2, τ1, and τ2 are the resistances and time constants of the
RC elements, and R0 is the electrical resistance of the cell.

∂x
∂t

=

2
6666664

η I
SOH×Cnom
IR1ðxÞ−U1

τ1ðxÞ
IR2ðxÞ−U2

τ2ðxÞ
f hðx,IÞ

αR0ðxÞI2 − βðT − TaÞ

3
7777775
, (8)

Note that integrating Equation (8) between two SOC
values gives Equation (3), where Q = SOH × Cnom. Hence,
the ECM method estimates the overpotential and the hys-
teresis effects that allow the lookup of SOC to consequently
calculate the actual capacity and SOH.

This method has been verified against field data in
different ways, including comparison to annual test results
and comparison with laboratory checkups of field returns,
and has been found satisfactory for estimating SOH for
lithium-ion cells based on operational data provided that
sufficiently deep cycles are experienced. Estimation from a
DOD of 60% results in errors below 1%, while DOD of
40% gives errors up to 3%.1 If an error in the order of 5% is
deemed acceptable, then preliminary results indicate that
for some cell chemistries, reliable estimates can be obtained
DOD ≥ 25%. However, this may vary for different types of
cells, and further validation is needed to establish more
precise restrictions of DOD for the ECM-based method.

IV. DISCUSSION
The different data-driven approaches to SOH estimation that
have been investigated in this paper each have some ad-
vantages and challenges. The snapshot methods, although
being attractive from a practical point of view, have some
limitations when it comes to reliability and accuracy. This is
believed to be mostly related to the need for comprehensive
datasets for model training. In principle, such training data
can be obtained from extensive laboratory testing, but in
practice, it will remain difficult to ensure that any realistic
operational condition is well represented in the training data.

On the other hand, cumulative methods may provide
more reliable results, but face the practical problem of
ensuring that the complete operational history is available
to the algorithm. Extended disruptions in the online data
collection and possible data gaps would render such methods
inaccurate. Moreover, cumulative methods in general might
not scale very well, due to the enormous amount of data
needed from large battery systems. In this study, cumulative
models were tested for selected cells and were found to be
very computationally demanding. Moreover, the cumulative
models tested in this study all need to be trained, and access to
sufficient representative training data remains a big challenge.

In principle, training data can be obtained by lab
cycling tests. However, in practice, this is expensive and
time consuming: cycling battery cells into EOL requires
several months or years of cycling. Hence, semi-supervised
learning was explored to exploit the large amount of
available unlabeled operational data. However, such a
method would still have some challenges, i.e., that one
would typically only have training data for early life, and
the fact that one will not have control over the operational
conditions that are covered by the training data. Hence, it is
difficult to recommend such approaches in general.

Another approach that was found very attractive is the
simple linear model based on Coulomb counting. This is
based on fundamental relationships between current and
SOC, and thus need not be trained. Moreover, it can be used
on snapshots of data. However, it was found difficult to
obtain sufficiently reliable and accurate SOH estimates
from this method without full charge and discharge cycles.
This is because this method is heavily dependent on SOC,
which is associated with uncertainty. Various filters and
ensemble models were tried to account for the fact that
capacity would be highly dependent on operating condi-
tions, but the dependency on SOC remains challenging.

To avoid the strong dependence of SOC, an extended
method that rather relates capacity to OCV was developed.
This method utilizes a simple ECM to estimate OCV from
voltage measurements during cycling. Then, an OCV-SOC
curve is used to fit the estimated OCV and estimate
capacity. All model parameters in such a model can be
fitted based on snapshots of the data, and the only prereq-
uisite is that the OCV-SOC curve is known. This can be
found from characterization tests.

Initial results with such an ECM-based approach
yielded quite variable results, although average predictions
were reasonable. However, by supplementing such an
approach by comprehensive look-up tables from character-
ization tests to account for temperature and current effects,
and by carefully fine-tuning the ECM model, reasonable
SOH estimates can be obtained. This approach provides
reasonable estimates from operational data provided that
deep enough cycles are experienced. Hence, this approach

Fig. 10. The equivalent circuit model.

1The errors refer to the difference between estimated SOH and SOH obtained from
annual tests or lab tests.
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can be used to improve the annual capacity test, which may
be performed based on normal operational data without
requiring a specific test protocol or disruption of operations.
Some requirements regarding DOD might be needed, but
this can presumably be achieved during normal operation.
In summary, this is believed to be the most promising
method explored in this research, and it can be proposed for
data-driven verification of SOH for ship classification.

Themethods explored in this paper have exploited both
laboratory data and actual data from ships in service.
Results have revealed that it is easier to obtain good results
on lab data collected under controlled conditions and that
some methods fail to perform reliably on field data even
though results on lab data were satisfactory. However, since
the methods should be applied to actual sensor data from
ships during operation, it is emphasized that it is the
performance on these data that are important when selecting
a method for recommendation to classification societies.

One common challenge that remains for all models is
that proper verification and validation is difficult without
more validation data, i.e., longer time series and more
annual test results. Most available field data are from
relatively early life, and it is difficult to use this to fully
validate how the methods will work toward EOL. Hence, it
is recommended that further validation is performed when
the battery systems are approaching EOL. This could be
complemented with more exact characterization of field
returns when modules are replaced.

It should be noted that battery degradation mechanisms
depend on battery chemistry and cell type. Hence, it is
difficult to validate a particular data-driven method in
general. New cells and chemistries would require updated
training data and possibly also completely different models.
Hence, the observations made in this study cannot be
assumed to generalize to any type of battery.

It is acknowledged that particular conditions and abuse
of the batteries can significantly accelerate battery degra-
dation. Hence, it is believed that in addition to monitoring
SOH, it will be important to also monitor relevant usage
parameters such as temperature, current, and voltage, to
ensure that these stay within the specifications. Special
attention should be put on cells that have experienced usage
outside recommended levels of these usage parameters.

Some general observations have been made in this
study, as summarized in the following:

• Snapshot methods are in general preferable to cumula-
tive methods

• Training data are challenging, and models that do not
require extensive training data are preferable

• Pure data-driven models might not be enough and
should be combined with physics-based models such
as ECMs

• Cell-to cell variation indicates that SOH should pref-
erably be performed on cell level

• A certain DOD might be needed to obtain reasonable
results. Hence, for ships that are only doing very
shallow cycles, an annual test might still be required

V. SUMMARY AND CONCLUSIONS
This paper outlines several approaches to data-driven SOH
estimation for maritime batteries and presents results from
applying them to different battery datasets.

Some purely data-driven methods, including cumula-
tive and snapshot models, semi-supervised learning, and
simple models depending on SOC, are used. However, none
of the purely data-driven methods achieved the necessary
reliability and accuracy for them to be recommended as an
alternative to annual capacity tests for verifying SOH
calculated from the battery management system.

However, by combining physical models and data in a
clever way, an approach for estimating battery capacity
based on data from normal operations is proposed as an
alternative to the annual capacity test. This method employs
an ECM, and Coulomb counting together with look-up
tables established from extensive characterization testing to
enable probabilistic prediction of capacity based on sensor
data collected during normal operation. In particular, it
allows for the effect of varying temperature, current, and
voltage to be taken into account and can therefore relax the
requirements of the test protocol for the annual test,
i.e., requirements on slow constant charge and discharge
and rest times. The only requirement is that some relatively
deep cycles need to be experienced during operation. This is
believed to be a significant improvement compared to
current capacity tests, which implies a disruption of normal
operations.

The proposed method has been tested and verified to
work reasonably well on several use cases. However,
further validation is recommended to build even stronger
confidence in the method, particularly for battery systems
approaching their EOL. Moreover, further testing and
validation is recommended on different types of batteries
and chemistries. Notwithstanding, it is suggested that this
method could be presented as an improved way of perform-
ing the required verification of SOH that offers notable
benefits for operators of electric ships.
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