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Abstract: Estimation of the dynamic stress in structures, such as beams and plates, has previously been made using
the relationship between stress and velocity spatial maxima based on far-field assumptions. This paper presents a
method for the estimation of dynamic stress in a beam using Euler–Bernoulli beam theory, where deflection data
from a grid of measurement points on the surface of the beam is used to estimate the dynamic bending stress in the
structure. The limitations of the method are investigated via response data provided by a numerical model of a free-
free beam. A nondimensional wavenumber analysis is used to determine the number of points required for an
accurate estimate of stress. Beams with a range of material and geometric parameters are modeled in order to
explore the limits of the estimation method, and parameters representative of several real-world materials are used
to assess the suitability of the method for practical applications.
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I. INTRODUCTION
Traditional methods for the measurement of stress in a
structure make use of strain gauges, along with knowledge
of the Young’s modulus of the material, to directly obtain
stress at a given point. This method, however, faces several
potential limitations. First, the application of strain gauges
to lightweight structures will modify the effective mass and
stiffness of the structure and thus impact its dynamic
behavior. While this effect may be negligible in many
situations, it can become significant when the structure is
lightweight. The increasing drive to use lightweight struc-
tures in many engineering applications means that this
effect more frequently limits the use of a strain gauge-
based measurement approach. Another limitation of strain
gauge-based measurements is that the strain is measured
over a distributed area of the structure, such that highly
localized stress concentrations cannot be resolved.

One approach to overcome the limitations of stress
characterization is to utilize a laser doppler vibrometer,
which as a noncontact method does not influence the
dynamics of the structure and offers the potential for
high-resolution characterization of the structure via mea-
surements over a fine grid of points. However, this approach
is indirect, requiring the dynamic stress to be estimated
from the measured velocity response.

The relationship between structural velocity and
dynamic stress was initially investigated by Hunt [1] and
Ungar [2], who explored the ratio of dynamic stress to
velocity for a range of beams and plates vibrating at
resonance. This work was subsequently applied to pipes
vibrating at their first modal frequency by Wachel [3], who
made estimates of the maximum dynamic stress in a
structure from measurements of the overall maximum
velocity. Following this, Fahy [4,5] and Stearn [6,7] ana-
lytically predicted the spatial variation of stress, strain, and
acceleration in large plates and cylinders subject to

multimodal excitation. This analysis assumes a multimode
diffuse bending wave field, where many vibrational modes
are excited by a broadband excitation. This allows simpli-
fications to be made to the relationship between transverse
vibrational velocity and stress in the structure, since for a
multimode diffuse bending wave field the mean-square
vibrational velocities are independent of angular position,
and the waves in the structure are assumed to be statistically
independent from each other. This relationship was experi-
mentally validated by Norton and Fahy [8], who estimated
the dynamic stress in fluid-filled pipes using measurements
of acceleration. These estimates were validated against
measurements taken directly from the same point on the
structure using strain gauges. A narrow band excitation
method for the estimation of dynamic stress was proposed
by Karczub [9,10], in which a prediction of the maximum
overall dynamic stress was obtained by predicting the
spatial maximum stress in each frequency band and then
summing the values. This method makes a far-field assump-
tion, so it is only valid away from sources of evanescent
waves in the structure and was implemented experimentally
for beams, plates, and shells [9,10]. The use of finite
difference formulations to estimate the dynamic stress in
a structure was also explored by Karczub [11], where
measurements of velocity at three points on a beam were
taken to estimate the stress at the central point using Euler–
Bernoulli beam theory. This method does not make a far-
field assumption, so it can be implemented at any point
where there is space to apply three sensors.

The related inverse problem of estimating displace-
ment, velocity, or acceleration from measurements of strain
has also been considered by both Hong [12] and Park [13]
for a beam. Park [13] used Euler–Bernoulli beam theory to
relate the second spatial derivative of beam deflection to
dynamic strain in a structure, which allows beam deflection
to be estimated using strain gauge data via a double
integration. Hong [12] uses an alternative method to
achieve the same results, implementing a moment-area
method to estimate beam deflection from strain responses.
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was estimated by Tamayo [14], who used an optical
microscopy method to measure dynamic beam deflection
across the surface of the structure, before implementing
Euler–Bernoulli beam theory to calculate the dynamic
stress based on the identified mode shapes. This method
was tested for both experimentally and numerically ob-
tained responses and showed only small differences in the
mode shapes and their frequencies. However, the method
was only implemented at the modal frequencies of the
system, since the input force was made up of several
frequency components, each relating to one of the predicted
modal frequencies from the numerical study.

This work presents a method for the estimation of
dynamic bending stress in a uniform beam using Euler–
Bernoulli beam theory. The estimation is implemented
using deflection data obtained from a grid of points across
the surface of the structure and allows the stress to be
estimated at any of these points over a broad frequency
range. There are two main potential advantages to this
method compared to the velocity spatial maxima methods
described above [4–7]: it can be applied to the entire
geometry of the structure, not just in the far-field, and it
does not assume a diffuse field, allowing it to be imple-
mented at individual frequencies. Some of the methods that
relate stress to velocity spatial maxima are not limited by the
type of excitation [9,10], so the method presented in this
paper only has the advantage of being applicable in the
presence of evanescent waves. Additionally, compared to
[11], where Euler–Bernoulli beam theory is applied to the
calculation of stress at a single point on a structure, the
investigated method uses a large grid of points distributed
across the structure to allow the spatial variation of the
stress to be estimated.

Miles and Xu [15,16] have previously utilized the same
method explored in this paper to experimentally measure
the dynamic strain power spectral density (PSD) in both
beams and plates for a random excitation. Moccio [17] has
also applied the method to calculate the transfer function
between input force and dynamic strain for a cantilever
beam, applying polynomial functions to smooth the spatial
experimental data in order to increase the accuracy of the
estimation. This paper presents an application of the same
method to a free-free beam to estimate the dynamic stress
and explores the limitations of the method when applied to
beams with a range of geometrical and material parameters.

The paper is structured as follows: Section II outlines
the method used to estimate stress using Euler–Bernoulli
beam theory, before Section III describes the numerical
model that is used to investigate the method. Section IV
presents an investigation of the stress estimation method,
discussing how the number of points influences the accu-
racy of the estimation, how the consistency of the method
varies across the geometry of the beam, and its ability to
estimate stress response shapes. Section V presents a
parametric study of how the material and geometric prop-
erties of the beam influence the limits of the stress estima-
tion method. Section VI applies the estimation procedure to

beams constructed from commonly utilized materials, and
Section VII draws conclusions based on the work.

II. STRESS ESTIMATION METHOD
In this section, the method used to estimate stress based on
deflection data at discrete points on a beam is outlined,
detailing how Euler–Bernoulli beam theory can be used to
calculate bending stress from the second spatial derivative
of beam deflection.

Euler–Bernoulli beam theory gives a simple analytical
relationship between the bending stress in a beam, σ, and
the second spatial derivative of beam deflection, w, as [18:]

σ = −zE
d2w

dx2
, (1)

where z is the distance between the neutral axis of the
structure and the point at which stress is being calculated
and E is the Young’s modulus of the material from which
the beam is constructed. In this work, the value for z is taken
as half of the thickness of the uniform beam, meaning that
the stress calculated using Equation 1 will be an estimate of
the stress on the surface of the beam and will represent the
maximum value of stress for each position in x and y.

In order to evaluate the second spatial derivative of
beam deflection, a uniformly spaced grid of points across
the surface of the beam is implemented, as shown in Fig. 1.
The gradient of beam deflection is calculated separately for
each of the rows of points along the length of the beam,
since only bending stress in the x direction is under consid-
eration in this work. In order to numerically calculate the
gradient along each of the three rows of points, a function is
implemented which uses a central difference calculation for
interior points and a single-sided difference calculation for
points on the edge of each of the three deflection vectors. It
is important to note that this may decrease the accuracy of
the stress estimation at the points at either end of the beam.
This gradient function is used to calculate d2w=dx2, allow-
ing stress to be estimated at each of the grid of points by
evaluating Equation 1.

A. GRADIENT CALCULATION ERROR

The numerical gradient function used to calculate d2w=dx2

will introduce some degree of error into the stress estima-
tion method. It is useful to quantify this error so that when
analyzing the estimated stress, it is understood whether
errors are due to the gradient calculation or other factors.

In order to assess the error, an analytical function has
been assumed as:

f ðxÞ = A cosðωxÞ, (2)

whereω and A are parameters controlling the frequency and
amplitude of the function, respectively. This function has
been chosen because its derivative is simple to calculate
analytically, giving an accurate basis for an error estimate,

Fig. 1. Numerical model geometry showing the grid of points from which deflection data is used to estimate stress.
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and it represents a possible analytical mode shape of the
structure. In order to assess the error in the numerical
estimation of the gradient, the second derivative of f ðxÞ
has been calculated both analytically and using the gradient
function. In both cases, the function is sampled at evenly
spaced points in x, and the percentage error is calculated at
each point. The overall error in the estimation is then
quantified by taking an average of the percentage error
over the positions in x. Figure 2 shows the mean percentage
error for a range of values of both A and the number of
points per wavelength used in the estimation. Inspection of
this plot shows that the amplitude of f ðxÞ does not influence
the error; however, the error significantly varies with the
number of evaluation points per wavelength. Specifically,
low error is observed when the number of points per
wavelength is high but increases as the number of points
decreases such that the error is approximately 10% at
around 10 points per wavelength. This demonstrates that
the error associated with the numerical gradient function is
not significant, provided that a sufficiently large number of
points are utilized in the stress estimation.

III. NUMERICAL MODEL
This section describes the numerical model used to investi-
gate the method of estimating stress in a beam outlined in

Section II and defines the parameters used to describe
the model.

A 2D numerical model of a uniform beam has been
implemented using COMSOL Multiphysics software using
finite elements. The nominal parameters used to describe
the model geometry are defined in Fig. 3, with their values
listed in Table I along with the assumed material parame-
ters. These parameter values have been chosen to approxi-
mate aluminum alloy 8082-T6 with an applied viscoelastic
damping layer and should be assumed in the following
sections unless stated otherwise.

The numerical model assumes that the beam is con-
structed from a linear elastic material which is given a
stiffness of E and a density of ρ, while the material damping
is modeled using an isotropic loss factor, η. A force is
applied near to one end of the beam, positioned centrally in
the y direction and at a distance of Fx from the end of the
beam. The force acts in the z direction with magnitude F,
and the boundary conditions along all edges of the beam are
free. A K by L grid of points is defined on the surface of the
beam, with equal spacing in both x and y directions,
allowing beam deflection data to be extracted and used
to estimate the stress. The model is solved between 100 Hz
and 3 kHz with a frequency spacing of 10 Hz.

IV. VALIDATION OF THE ESTIMATION
METHOD

This section presents a validation of the stress estimation
method described in Section II when applied to the data
obtained from the numerical model of a uniform beam
described in Section III. Initially, the effect of varying the
number of points utilized in the stress estimation procedure
is explored. Subsequently, both the estimation error and the
stress amplitude are investigated for a range of positions on
the beam.

Fig. 2. Mean percentage error in the gradient calculation for a
range of values of A and points per wavelength.

Table I. Parameter values used to define the numeri-
cal model

Parameter Symbol Value

Beam thickness h 5 mm

Beam length l 300 mm

Beam width b 40 mm

Points in x direction K 49

Points in y direction L 3

Force x coordinate Fx 10 mm

Excitation force F 1 N

Young’s modulus E 70 GPa

Density ρ 2728 kg/m3

Isotropic loss factor η 0.2

Fig. 3. Numerical model geometry showing definitions for the beam length, width, and thickness parameters.
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A. NUMBER OF POINTS

In order to obtain an accurate estimation of the stress in a
beam, the second spatial derivative of beam deflection must
be accurately obtained. This requires deflection data to be
taken at a sufficient number of points along the length of the
beam. The resolution of this spatial sampling must be
chosen such that the number of points per wavelength at
the highest frequency of interest is sufficient to resolve the
shape of the beam deflection. In Section V, a wide range of
material parameters will be explored, including those that
result in a very small wavelength of vibration in the beam. It
is important, therefore, that the number of points required
for an accurate estimation of stress for a given set of
material and geometric parameters is assessed. In order
to carry out this assessment, values of E and ρ that sit at the
center of the range of values under consideration in
Section V have been chosen, allowing the minimum num-
ber of points required for an accurate estimation to be
determined.

To explore the effect of varying the grid resolution, the
stress estimation procedure has been carried out for values
of K equal to 9,19,29,49,69, and 99; these values have been
chosen because they all result in a point at the center of the
beam in the x direction and thus allow a straightforward
means of comparing estimation accuracy at this consistent
point. Figure 4 shows the stress directly exported from the
numerical model, along with the stress estimated using the
method outlined in Section II at the center point of the beam
for the different grid resolutions. Examination of Fig. 4
shows that increasing the number of points used to carry out
the stress estimation increases its accuracy, and that the
estimation accuracy tends to decrease with increasing fre-
quency. This is expected, since both an increase in fre-
quency and a decrease in the number of points used result in
a reduction in the number of points per wavelength.

To quantify this effect, a nondimensional wavenumber,
ν, is defined as:

ν =
Δ
λ
, (3)

where Δ is the spacing between two adjacent points along
the length of the beam, given by l=ðK + 1Þ, and λ is the
wavelength of vibration. For a uniform beam, this can be
calculated from material and geometric parameters as:

λ =
�
Eh2

12ρ

�1
4

2πω−1
2, (4)

whereω is the angular frequency of vibration. It is typical to
require approximately 10 points per wavelength in order to
properly resolve the shape of a wave [19], which in this case
corresponds to a wavenumber of ν = 0.1. The frequency at
which this wavenumber occurs is marked on Fig. 4 with a
star for each of the cases under consideration, showing the
frequency above which ν > 0.1. Inspection of Fig. 4 shows
that the frequency range for which ν < 0.1 increases with
the number of points used, and that using 69 or 99 points in
this case results in the ν = 0.1 point occurring above the
highest frequency considered.

To quantify the error between the estimated and
directly evaluated stress, the mean percentage error across
frequency is shown in Table II for each number of points
used. The values in Table II show that the mean percentage
error decreases as the number of points used increases up to
the 49-point configuration, after which the error actually

increases slightly, but at a much slower rate. This is caused
by small numerical rounding errors which are amplified
when the second derivative is taken, resulting in a slight
overestimate of the stress. This effect is more significant
when there are more points per wavelength because the
difference between the points becomes less and, therefore,
the small numerical rounding error becomes relatively more
significant.

Based on the results presented in this section, the
49-point configuration is best suited to the considered
structure, since the frequency at which ν = 0.1 is close
to the highest frequency of interest, and the mean percent-
age error is the lowest for the values ofK considered. Going
forward, parameter values will be explored that result in
considerably shorter wavelengths than for the beam case
considered here; however, based on these results, the
number of points used should be chosen such that
ν < 0.1 for the entire frequency range of interest for all
parameter values. In the remainder of this section, the
parameter values listed in Table I will be used, including
the number of points along the length of the beam, K = 49,
since this results in more than 10 points per wavelength over
the frequency range of interest for these parameters.

Fig. 4. Stress against frequency at the center point along the
length of the beam for different numbers of points, with the
frequency at which ν = 0.1 occurs marked for each case.

Table II. Mean percentage error at the central point on
the beam for the numbers of points K

K Mean % error

9 82

19 34

29 14

49 5.8

69 6.4

99 7.2
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B. POSITION ON THE BEAM

The previous section considered the accuracy of the esti-
mation at a single point on the beam; however, it is
important to consider the accuracy of the estimation proce-
dure across the structure.

One of the assumptions made in the Euler–Bernoulli
beam theory on which the estimation method is based is that
the stress does not vary significantly over the width of the
beam. This assumption is expected to be valid provided that
the wavelength of vibration is significantly greater than the
width of the beam. To validate this assumption, the stress
directly evaluated in the numerical model is compared to the
estimated stress at three points across the width of the beam
at a point halfway along the length and the results are
presented in Fig. 5. These results show that there is no
significant variation in the stress across the width of the
beam for either the directly exported or the estimated stress
for the beam parameters defined in Table I.

It is also important to investigate how the estimation
accuracy varies along the length of the beam. The stress
estimation has been carried out at all 49 positions along the
length of the beam, at the center position across the width.
To quantify the error in a way that shows changes in the
error at low levels, an error is defined as:

error = 20log10

���� σe − σd
σd

����dB (5)

where σe is the estimated stress and σd is the direct stress.
This error is shown for the frequency range of interest at
each of the considered points in Fig. 6. These results show a
low percentage error, approximately −20 to −40 dB, for the
majority of the beam across all frequencies, with the error in
the estimation decreasing as frequency increases. This is
due to the increase in the number of points per wavelength
as frequency decreases which, as discussed in Section III.A,
causes a small increase in the estimated stress. The error can
also be seen to increase near to each end of the beam. As
outlined in Section II.A, the gradient function uses a single-
sided difference calculation at the end points of the beam,
resulting in lower accuracy compared to the rest of the
points considered. The beam also has a free boundary

condition at each end, resulting in a zero stress condition,
which increases the size of the relative error at these points.
The high error at the x = 0 end of the beam is thought to be
caused by proximity to the point force, applied 10mm from
the end of the beam. Near to the point force it is unlikely that
the stress is uniform across the width of the beam, so Euler–
Bernoulli beam theory is no longer satisfied, resulting in
larger errors in the estimation. To validate this, the esti-
mated and direct stress at three points across the width of the
beam at the x position closest to the point force are shown in
Fig. 7. This shows that there is a significant difference in the
stress across the width of the beam close to the point force
and demonstrates the significant error in the stress estima-
tion in this region. Inspection of Fig. 7 also explains the
fluctuation in the error near to the point force over fre-
quency, showing that at the central point the estimation
becomes more accurate when the stress is high and less
accurate when the stress is low.

In order to further investigate the behavior of the stress
estimation method, the estimated stress is plotted against
frequency and position along the middle of the three lines of
points along the length of the beam in Fig. 8. The first four
mode shapes of the structure can be observed in this plot as
the red and yellow regions of high stress, showing how the
stress peaks at the modal frequencies. By comparing the
stress in Fig. 8 with the error in Fig. 6, it can be seen that
the curved lines of low error correspond to the stress nodes
of the response shapes. Figure 8 also shows a trend for stress
to increase as frequency decreases, which could be causing
small errors in the estimation due to violation of Euler–
Bernoulli beam theory, since it is only valid for small beam
deflections.

It has been shown that there are three main sources of
error in the stress estimation method for the set of

Fig. 5. Estimated and direct stress plotted against frequency for
three points across the width of the beam, at points halfway along
its length.

Fig. 6. Error in dB plotted against frequency for all positions at
which the estimation is carried out along the length of the beam.
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parameters considered in this section. The first occurs when
the beam is not in pure bending, so the stress varies across
the width of the beam. The second occurs when the level of
stress in the beam is high, and the corresponding large
deflections in the beam are not within the bounds of Euler–
Bernoulli beam theory. The third is due to small numerical
rounding errors that are amplified by the numerical

derivative, the effect of which becomes more significant
as the number of points per wavelength increases.

V. PARAMETRIC STUDY
It has been shown in the previous section that the accuracy
of the stress estimation method is dependent on the number
of points used in the estimation and variations of stress
across the width of the beam. More specifically, it has been
shown in Section IV that the accuracy of the stress estima-
tion is dependent on the number points per wavelength.
Since the wavelength depends on both the material and
geometric properties of the structure, this section explores
their effect on the stress estimation accuracy via a paramet-
ric study of Young’s modulus, density, beam thickness, and
isotropic loss factor.

The number of points used for the stress estimation in
this study has been chosen based on the results presented in
Section IV.A, where it was concluded that the number of
points must be sufficient for there to be at least 10 points per
wavelength at the highest frequency of interest. In this
study, this must be the case for the entire range of parame-
ters under consideration, so the number of points in the
estimation has been chosen based on the set of parameters
that result in the shortest wavelength within the considered
frequency range. The parameter values in question are
E = 108 and ρ = 106, in which case the thickness of the
beam and the isotropic loss factor are as listed in Table I.
Based on these parameters, 599 points along the length
of the beam will be used for the stress estimation, resulting
in a wavenumber of ν = 0.1 occurring at approxi-
mately 3600 Hz.

Initially, a range of values for both Young’s modulus,
E, and density, ρ, have been considered, with E ranging
from 108 to 1012 and ρ ranging from 102 to 106. The other
beam parameters remain consistent with the values indi-
cated in Table I. The mean percentage error across fre-
quency has been calculated for each set of parameters for
the stress estimation carried out at the center point of the
beam in both the x and y directions. Figure 9 shows the
resulting percentage error averaged across frequency for all
the parameter values considered. Examination of these
results shows that for low values of ρ and high values of
E, the percentage error of the estimation is low; however,
the error begins to increase as ρ increases and E decreases.
This increase in error can be related to the decrease in the
wavelength of vibration in the structure, as described by
Equation (4), since above a given frequency the beam will
no longer be bending only in the x direction. The blue dotted
line shows the parameters for which the wavelength is equal
to double the width of the beam at 3 kHz, since the first
mode of bending across the width of the beam occurs when
half a wavelength fits into the width of the beam. The green
dotted line represents the parameters for which the wave-
length is equal to the width of the beam at 3 kHz. Figure 9
shows that the increase in the error in the stress estimation
begins somewhere between the two lines, suggesting that
the error is caused by bending of the beam in the y direction,
causing stress variations across the width. Based on this, it
is likely that the accuracy of the stress estimation would be
increased if a narrower beam was considered.

To provide further insight into the limitations of the
stress estimation method, the estimation error has been
calculated for a range of values of beam thickness, h,

Fig. 7. Estimated and direct stress plotted against frequency for
three points across the width of the beam at the x position closest to
the point force.

Fig. 8. Stress amplitude plotted against frequency for all
positions along the length of the beam.
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and isotropic loss factor, η, with h ranging from 0.5 to
20mm and η ranging from 0.01 to 1. As above, the other
beam parameters remain consistent with the values indi-
cated in Table I. The stress estimation is again carried out at
the center point of the beam in both the x and y directions.
While the isotropic loss factor does not impact the wave-
length of vibration, the thickness of the beam does, with a
thinner beam resulting in a longer wavelength. Figure 10
shows the percentage error averaged across frequency for
all parameterizations of the beam thickness and loss factor.
The material properties for which the wavelength of vibra-
tion is equal to twice the width of the beam at 3 kHz are
represented by the blue dotted line, and those for which the
wavelength is equal to the width of the beam at 3 kHz are
shown by the green dotted line. The positioning of these
lines on Fig. 10 suggests that bending waves across the
width of the beam are only likely to contribute to high errors
for the very thinnest beams considered here. In particular, it
can be seen that the very thinnest and lightly damped case
has very high error, but this is not the case for beams with
the same thickness and higher damping. It is thought that in
this case, the high error is caused by a combination of stress
variations across the width of the beam and large deflections
caused by low damping, which, in Section IV.B, have been
shown to be two significant sources of error in the stress
estimation. Examination of the points to the right of the
green dotted line shows that the accuracy of the estimation
is low for both thin and highly damped beams. It is thought
that the error observed for thin beams is due to large
deflections in the structure which violate Euler–Bernoulli
beam theory and have been shown in Section IV.B to cause
significant errors. The high error seen when damping in the
structure is high is likely caused by the fact that Euler–

Bernoulli beam theory does not account for damping in the
structure. Another region of Fig. 10 with noticeably larger
error is that where the beam thickness is large and the
isotropic loss factor is small. In this case, the combination of
relatively large deflections caused by low damping and the
thickness of the beam likely result in a significant amount of
shear stress in the structure. Since Euler–Bernoulli beam
theory assumes pure bending, this results in significant
errors in the estimation.

It has been shown by the results presented in this
section that the most significant errors in the stress estima-
tion occur when the beam is bending in the y direction as
well as the x direction, since this causes stress variations
across the width of the beam. The error in the estimation has
also been shown to increase when the damping in the
structure is very high or the beam is very thin, as well as
for thick, lightly damped beams where shear stress becomes
significant.

VI. APPLICATION TO DIFFERENT
MATERIALS

The parametric study presented in the previous section
demonstrates the limits of the presented stress estimation
method when the parameters used to define the material in
the numerical model are chosen over a range of values.
Some of these material property combinations correspond
to realistic materials, but many do not. Therefore, this
section presents an assessment of the stress estimation
method when the material parameters are chosen based

Fig. 9. Mean percentage error for a range of values of Young’s
modulus and density. The blue dotted line marks the parameter
values where the beamwidth is equal to half a wavelength at 3 kHz
and the green dotted line marks the parameter values where the
width of the beam is equal to a full wavelength at 3 kHz.

Fig. 10. Mean percentage error for a range of values of beam
thickness and isotropic loss factor. The blue dotted line marks the
parameter values where the beam width is equal to half a
wavelength at 3 kHz and the green dotted line marks the
parameter values where the width of the beam is equal to a full
wavelength at 3 kHz.
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on a selection of materials commonly used in practical
applications.

The materials chosen for this study are aluminum alloy,
stainless steel, acrylic, and nylon, and their material param-
eters are listed in Table III. The numerical model has been
run and the stress estimation carried out for each set of
parameters, with a grid of points that meets the require-
ments outlined in Section IV The results of this study are
shown in Fig. 11 which presents the direct and estimated
stress against frequency for each case. The results for
aluminum alloy and stainless steel show a very low error
in the estimated stress, which is consistent with the results
from the parametric study in the previous section since both
materials have a high Young’s modulus and relatively low
density, such that the wavelength of vibration is consider-
ably longer than the width of the beam for the frequency
range of interest. The error in the stress estimation is much
higher for both acrylic and nylon, with both showing
significant deviation from the direct stress as frequency
increases. This error in the stress estimation is not due to the
number of points per wavelength, since both materials have
a wavenumber of ν < 0.1 within the frequency range of
interest; however, both structures result in bending across
the width occurring within the frequency range of interest,
which is consistent with the error increasing with
frequency.

The results from this section provide more detail into the
accuracy of the stress estimation method for beams manu-
factured from specific practical materials than provided by
the averaged errors presented in the parametric study. The
results, however, are consistent with the parametric study,
showing that higher levels of error occur in heavily damped
structures and that the error increases at frequencies where
bending across the width of the beam is significant.

VII. CONCLUSIONS
This paper has presented a method for the estimation of
stress in a uniform beam using Euler–Bernoulli beam
theory, where deflection data evaluated at a grid of points
across the surface of the beam is used to calculate the
dynamic stress in the structure. The limitations of this
method have been explored using a 2D numerical model
of a uniform beam.

A validation of the estimation method has been carried
out using a number of assessments, the first of which has
shown that the number of points used for the estimation has
a significant impact on its accuracy. The second assessment
has shown that the position at which stress is estimated
across the width of the beam does not significantly impact
the accuracy of the method, provided that bending does not
occur across the width of the beam, and that the position
along the length is only significant at the points very close to
the free ends of the beam, or near to a highly localized stress
concentration. It has also been shown that small errors in the
estimation method occur when the level of stress in the
structure and the number of points per wavelength are high.

A parametric study has been carried out that explores
the limits of the stress estimation method when applied to a
beam with a range of material and geometric parameters.
The study of Young’s modulus and density has shown that
the error in the stress estimation is high when the wave-
length of vibration is short enough to cause bending across
the width of the structure. The study of beam thickness and
isotropic loss factor has shown that the stress estimation is
less accurate when considering highly damped or thin
structures, and that a thick, lightly damped structure will
also result in a noticeable increase in error. The most
significant errors in both parametric sweeps occur when
bending across the width of the beam becomes significant,
which is the case for thin beams, and those with low
Young’s modulus or high density.

The application of the stress estimation method to
beams manufactured from commonly utilized commonly
used for practical applications has shown that the stress in
stiff, lightly damped structures is accurately predicted,
whereas more flexible, highly damped structures tend to
result in an increase in the estimation error.

This work has considered four parameters that affect the
stress in a beam; however, there are other factors that could
also impact stress and therefore affect the accuracy of the
estimation. The width of the beam is known to have a
significant impact on the accuracy of the estimate, since
for a wider beam bending across the width will begin at a
lower frequency. Another factor that could impact the accu-
racy of the estimation is if nonuniform beams were to be
considered. Many practical structures have parameters that
vary along the length of the structure, and this could result in a
decrease in the accuracy of the estimation method. This study
also assumes an ideal beam; however, in practice, a manu-
factured beam may have features such a surface roughness,

Table III. Parameters used to define the materials
considered in this study

Material E , GPa ρ, kg/m3 η
Aluminum 70 2728 0.02

Stainless steel 190 7500 0.02

Acrylic 3.2 1190 0.2

Nylon 2.0 1150 0.5

Fig. 11. Estimated stress and stress directly evaluated from the
numerical model compared for a range of materials.
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notches, and internal inhomogeneities that could result in
stress concentrations in the structure that are not considered
here. Future work could experimentally explore the effects of
these factors on the accuracy of the stress estimation.
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