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Abstract: Monitoring the status of linear guide rails is essential because they are important components in linear
motion mechanical production. Thus, this paper proposes a newmethod of conducting the fault diagnosis of linear
guide rails. First, synchrosqueezing transform (SST) combined with Gaussian high-pass filter, termed as SSTG, is
proposed to process vibration signals of linear guide rails and obtain time-frequency images, thus helping realize
fault feature visual enhancement. Next, the coordinate attention (CA) mechanism is introduced to promote the
DenseNet model and obtain the CA-DenseNet deep learning framework, thus realizing accurate fault classifica-
tion. Comparison experiments with other methods reveal that the proposed method has a high classification
accuracy of up to 95.0%. The experimental results further demonstrate the effectiveness and robustness of the
proposed method for the fault diagnosis of linear guide rails.
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I. INTRODUCTION
Linear guide rails are important components of mechanical
production and are typically used in conjunction with ball
bearings in sliding blocks to produce reciprocating linear
motion. Due to their excellent load-bearing rigidity, they are
widely applied in various fields, such as transportation,
industrial robots, and automated production lines [1–3].
Linear guide rails typically operate in open working en-
vironments. Thus, the continuous linear motion and com-
plex working conditions easily lead to the wear of the guide
rail and ball bearing inside the slider [4], leading to the
faults of the entire linear motion unit and eventually causing
significant losses. Therefore, monitoring the status of linear
guide rails is a highly necessary procedure.

Current studies on linear guide rail status monitoring
have mainly relied on data-driven methods [5,6]. However,
such methods require massive amounts of data to study the
features of fault signals [7]. Generally, these methods can
extract fault signal features in the frequency domain or
time-frequency domain [8] and then use intelligent classifi-
cation models to distinguish different types of faults. How-
ever, in using these methods, certain challenges remain
regarding fault feature extraction and intelligent classifica-
tion recognition.

In terms of fault feature extraction, various approaches
have been developed. For example, Qin et al. used wavelet
packets to perform the decomposition of rail bogie fault
signals and extract model features, successfully diagnosing
the rail bogie fault [9]. You et al. used the method based on
ensemble empirical mode decomposition (EEMD) to de-
noise the vibration signals of the escalator guide rail, the
main engine, and the main drive shaft, successfully extract-
ing the signal features. Furthermore, the improved envelope

spectrum analysis method was used to extract the charac-
teristic frequencies and amplitudes of the fault signal, thus
forming the feature vector and successfully diagnosing the
fault location of the escalator [10]. Chommuangpuck et al.
analyzed spectrum, peak factor, and variance of signals
from linear guide rail, wear ball, and missing ball signals,
successfully extracting frequency and time-domain fea-
tures, establishing different fault indicators corresponding
to different types of faults, and distinguishing ball wear and
missing faults [11]. Borowiecki et al. proposed a second-
order sinusoidal model to analyze railway track vibration
signals, effectively extracting its amplitude and phase
features [12]. Ni et al. proposed the partitioned edge
features (PEF) algorithm to effectively extract the rail
surface features and establish a uniform background in
the visual inspection of the rail, effectively extracting the
rail surface damage information [13]. Zhang et al. designed
a feature fusion algorithm. The algorithm had a three-
branch structure, which effectively overcomes the missing
detection of the guide surface [14].

In terms of intelligent classification recognition, Kim
et al. used a one-dimensional (1D) convolutional neural
network (CNN) to classify and visualize vibration signals,
successfully differentiating between healthy guide rails and
delamination faults [1]. Ye et al. introduced a semantic
segmentation network, including a fully convolutional
segmentation module and a symmetric mapping module,
which can detect the surface faults of guide rails [15]. Niu
et al. embedded the adaptive pyramid graph (APG) module
into a specific module to obtain feature correlations, suc-
cessfully introducing the residual module to enhance the
feature expression and detect surface defect faults [16].
Chen designed the BoTNet 50 network to extract the fault
image features of the guide rail surface and used CUFuse
model to detect the constructed fault dataset, finally realiz-
ing the fault diagnosis of guide rail surfaces [17]. Liu et al.
proposed a multipopulation state optimization algorithm
(MPVHGA) with high iteration and no fixed iteration
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number limitations, successfully solving the problem of rail
crack faults [18].

However, the above methods are only suitable for the
state monitoring of linear guide rails with simple fault. In
fact, it is difficult to use the above methods to achieve the
fault grade classification of linear guide rails and ball bear-
ings. In addition, current research on various types of faults
of ball bearings is relatively scarce, along with studies on
different types and degrees of faults of the guide and the ball
bearing. To solve the problem, a method combined with
synchrosqueezing transform (SST) and Gaussian high-pass
filter, termed as SSTG, is used to process and vibration
signal. SSTG has high time-frequency aggregation, which
can effectively capture the time-frequency information with
no obvious rules, such as ball wear and loss, and visualize it
as an image. Different lines on the image represent different
time-frequency information and the details such as lines on
the image are enhanced to extract vibration information
features. Then a coordinate attention (CA) mechanism
combined with the DenseNet model is proposed to detect
the state of linear guide rails.

The main work in this paper includes the following:
proposing the SSTG algorithm, wherein 1D vibration sig-
nals are transformed into 2D time-frequency images, and the
details of these images are enhanced. The DenseNet model
is used to classify the generated images by SSTG, and the
CAmechanism is introduced to improve the attention to the
space and position information of feature matrices during
training. Finally, the test accuracy reached 95.0%.

The innovations and novelties of this paper are as
follows. First, the SSTG algorithm is proposed, in which
1D vibration signals are transformed into 2D time-
frequency images by SST, after which Gaussian high-pass
filtering is carried out on the images to enhance the lines and
spots of the images and make different features more promi-
nent. Second, the CA mechanism is introduced into the
DenseNet model. The dense connections of the model enable
it to realize feature reuse in the training process, thus
retaining the dimension information of the feature matrices.
This work introduces the CA mechanism to DenseNet,
paying attention to the spatial position information of the
feature matrices. By combining DenseNet and the CA
mechanism, the information loss in the training process is
reduced, and the accuracy of the model is improved.

The rest of this work is organized into sections.
Section II describes the composition of the linear guide
model and the researched faults. Section III introduces the
basic theory of SSTG and the CA-DenseNet model.
Section IV establishes the experimental platform to collect
vibration signals in various fault states. Then, comparison
and robustness experiments are designed to verify the
superiority of proposed method. Finally, Section V con-
cludes this work.

II. LINEAR GUIDE RAIL MODULE
Linear guide rails are applied in linear servo motion sce-
narios and are typically used in conjunction with sliding
blocks. A large number of balls in the sliding block are
closely arranged and cooperate with the guide rail. Thus,
rolling friction occurs between the ball and the guide rail
during the operation of the sliding block. All of these can
ensure that the moving operation process is smooth and
efficient. The linear guide rail investigated in this work is
shown in Fig. 1.

The diameter of the ball bearing installed in the sliding
block is 3.8 mm, and the number of balls in each sliding
block is 128. The detailed main parameters about the guide
rail and the sliding block are shown in Table I.

Linear guide rails often work in open and exposed
environments. Thus, they are greatly affected by the exter-
nal environment. When the environmental noise and vibra-
tion surrounding the guide rails are more pronounced, the
guide rails and the ball bear long-term load and reciprocat-
ing motion, making them vulnerable to wear and damage,
and even the failure of the missing ball. In addition,
improper installation, long service life, external impact
on the guide module, and other factors can easily cause
the ball to fall off in the sliding block, eventually resulting
in the failure of the entire linear unit. In view of the above
situations, this work not only studies the basic faults such as
guide wear, ball wear, and ball missing but also researches
how to distinguish the different fault severity degrees of
these basic faults. The main fault types of linear guide rails
are shown in Table II.

Guide rail

Ball 

Sliding block

Fig. 1. Components of the linear guide module.

Table I. Parameters of the linear guide rail and slid-
ing block

Parameter Guide rail Sliding block

Type g×150 hg20

Length (mm) 1000 77.5

Width (mm) 20 44

Height (mm) 17.5 30

Table II. Fault types and labels

Types Fault degrees Labels

Ball wear One ball A0

Two balls A1

Three balls A2

Ball missing One ball A3

Two balls A4

Three balls A5

Normal \ A6

Mixed fault One ball wear with one ball missing A7

Guide rail wear 100 mm A8

200 mm A9
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III. PROPOSED METHOD
The proposed method consists of multiple signal proces-
sing, image processing, and deep learning methods, which
will be introduced in detail in the following sections.

A. SST METHOD

SST can represent signals in both the time and frequency
domains [19], which in turn can enhance time-frequency
concentration. Thus far, SST has been successfully applied
in seismic signal detection [20], weather analysis [12], oil
exploration [21], and fault diagnosis of gearbox [22] occa-
sions. By specially rearranging the time-frequency coeffi-
cients from 2D wavelet transformations, it can enhance the
time-frequency representation. All of these ensure the more
concentrated distribution of time-frequency energy [23]. As
such, the time-frequency information of images generated
by SST becomes clearer [24]. The detailed theoretical
analysis is as follows:

WTZða,bÞ = 1ffiffiffi
a

p
ð
R

ZðtÞφðt − b

a
Þdt (1)

where φ(t) is the mother wavelet, a is the scale factor
representing the scaling transformation of the φ(t), b is
the translation factor representing the time translation of the
φ(t), and WTZ(a, b) is the continuous wavelet transform
result of vibration signal Z(t).

The frequency domain expression of WTZ(a, b) is
expressed as follows:

WTZf ða,bÞ =
1

2π
ffiffiffi
a

p
ð
Z
∧ðωÞφ∧ðωÞeibωdω (2)

whereω represents frequency, and ẐðωÞ and φ̂ðωÞ represent
the Fourier transforms of Z(t) and φ(t), respectively.

The instantaneous frequency ωf ða,bÞ of the signal Z(t)
is calculated as:

ωf ða,bÞ = −i½ ∂
∂b

WTZf ða,bÞ�=WTZf ða,bÞ (3)

Finally, at the estimated instantaneous frequency
ωf ða,bÞ, the coefficients obtained from the continuous
wavelet transformation are rearranged, with the rearrange-
ment formula given by:

I =
ð
WTZf ða,bÞa−2

3δ½ωða,bÞ − ω�dω (4)

where I is the final result of the SST and δ[·] is the Dirac
function.

B. GAUSSIAN HIGH-PASS FILTER

After processing the original vibration signals of linear
guide rails via SST, they are converted into 2D time-
frequency images. The high time-frequency resolutions
of the SST result in a concentrated display of time-fre-
quency information in these images, which are character-
ized by differently distributed lines and spots [25]. Gaussian
high-pass filtering is an image processing method that
effectively enhances the details of the image, improves
the quality and reliability of the image, and is widely
used in medical image processing [26]. This method is
also used in the fault diagnosis of rolling element bearing
fields [27]. The main feature of Gaussian high-pass filtering

is its use of Gaussian kernels to carry out the convolution
operation on the image, and such kernels are generated by
the Gaussian function. Equation (5) is the 2D space Gauss-
ian kernel calculation function [28]:

Gðx,yÞ = 1

2πσ2
e−

x2+y2

2σ2 (5)

where x and y denote the plane coordinates, G (x, y) is the
Gaussian distribution function, and σ is the Gaussian filter
parameter, which can control the passing high-frequency
components. Using Equation (5), the required convolution
kernel can be obtained, and then the input image is
convolved with the convolution kernel. Finally, the
Gaussian high-pass filtering image is obtained using
Equation (6):

Hðx,yÞ = Gðx,yÞ � Iðx,yÞ (6)

where I (x, y) is the input image and H (x, y) is the output
image after Gaussian high-pass filtering. After the enhance-
ment of images via Gaussian high-pass filtering, the SSTG
method can be executed.

C. SSTG

SST algorithm converts the time-domain signal to the time-
frequency domain and visualizes the time-frequency image.
Different lines and colors on the image represent different
time-frequency information. In this paper, the Gaussian high-
pass filtering algorithm is innovatively introduced to enhance
the detailed features of time-frequency images such as lines
and colors. The specific processes are as follows:

According to Equations (1)–(4), the vibration signal
Z(t) is processed by SST to obtain the time-frequency
image I.

The Gaussian kernel is calculated according to
Equation (5).

The Gaussian kernel and the input image are convolved
according to Equation (6) to obtain the SSTG output
image H.

D. DenseNet MODEL

The DenseNet model employs a dense connection mecha-
nism, wherein each layer is formed by concatenating the
outputs of all preceding layers in the channel dimension
[29]. All these can achieve the effects of feature reuse,
suppress gradient vanishing, enhance feature propagation,
and reduce model parameters. With such advantages, this
method has been successfully applied in semantic segmen-
tation [30,31], computer vision [32], and fault diagnosis
[33–35]. This model mainly consists of dense blocks.

The dense block structure is contained by multiple
bottlenecks, and a dense connection is used between multi-
ple bottlenecks. This consists of several convolutional
layers, batch normalization (BN) layers, and ReLU activa-
tion function. Before the convolution operation, normali-
zation is performed using the BN layer, and
nonlinearization is achieved by using the ReLU activation
function. The following passages describe the layer com-
position of each bottleneck and the dense connections
among multiple bottlenecks.

1) BN LAYER. BN layer normalization can accelerate the
convergence process and enhance the generalization ability
of DenseNet. Its expression is given by:
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x0l = γ ×
xl − μffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 + ε

p + β (7)

where xl is the input to the BN layer, x′l is the output of the
BN layer, μ and h are the mean and variance of feature data
in the same channel of the same batch samples, respec-
tively, ε is a nonzero correction coefficient, and β and γ are
the parameters learned from backpropagation during the
model training process.

2) ReLU ACTIVATION FUNCTION. The ReLU activation
function does not have a saturation region; it is sparse with
simple calculations and fast convergence. It can effectively
prevent the gradient dispersion problem. The theoretical
analysis is as follows:

Re LUðx0lÞ =
�
x0l, x0l ≥ 0
0, otherwise

(8)

3) DENSE CONNECTIONS. Multiple bottleneck struc-
tures are densely connected, with the input of each layer
representing the concatenation of all preceding layers in-
puts. Figure 2 illustrates the dense connection process
between multiple bottlenecks, while Fig. 3 shows the
internal structure of the bottleneck.

The calculation formula for the densely connected
bottleneck structure is as follows:

xl = Flð½x0, x1, : : : xl − 1�Þ (9)

where l represents the lth layer of the model, Fl(·) represents
the nonlinear function of each layer, which includes BN,
ReLU, convolution, and pooling operations, and xl repre-
sents the output features of the lth layer.

DenseNet is composed of different dense blocks, which
are connected by transition structures between adjacent
blocks. The transition layer structure consists of the convolu-
tional layer and average pooling layer and is used to connect
adjacent dense blocks while reducing the size of the feature
matrices and compressing the model simultaneously. Dense
connections are used between each dense block, wherein the
output feature matrices of each layer in the channel dimension
represent the concatenation of all previous layers’ outputs.
This step enhances the flow of information between layers,
thus achieving the purpose of feature reuse. The ratio of the
number of bottlenecks in each dense block is 6:12:24:16.

However, DenseNet only performs feature matrix con-
catenation at the channel level, neglecting space and position
information. Therefore, the CA mechanism is introduced to
maintain interests in the space and position information of the
feature matrix during the training process.

E. CA MECHANISM

CA attention mechanism enables the model to focus on both
the channel information and spatial information of the

feature matrices during the training process, often applied
in tasks, such as object detection and instance segmentation
[36]. For an input matrix, the CA module can decompose it
into feature matrices along the width and height directions,
as shown in Fig. 4.

The input feature matrix is subjected to average pool-
ing operations along the height and width directions to
obtain the H×1×C and 1×W×C feature matrixes, respec-
tively. These matrixes are then transposed and
concatenated, followed by convolution operations to extract
features and reduce dimensions.

The convolved matrix is divided into matrixes along
the width and height directions. This ultimately multiplies
them to output an H×W×C feature matrix and incorporates
space and position information.

F. FAULT DIAGNOSIS PROCESS BASED ON
CA-DenseNet

In this work, the CA attention mechanism is added after
each transition structures. An image of size 224×224×3was
used as input, and the feature matrices of multiple channels
were obtained after dense block processing. The dense

Bottleneck Bottleneck Bottleneck Bottleneck

C C C C

C Channel-wise contact

Fig. 2. Densely connected structure.

BN

RELU

Conv 3 × 3, 32

Output

xl-1

w × h × 1 dim

W′ × h' × 32 dim

w × h × 128 dim

BN

RELU

Conv 1 × 1, 128

Fig. 3. Structure of the bottleneck.

Residual

Avg pool Avg pool

Conv2d

Conv2d Conv2d

Sigmoid Sigmoid

Re-weight

output

H × W × C

H × 1 × C 1 × W × C

Contact

Split

1 × (W+H) × C

H × W × C

Fig. 4. CA attention mechanism.
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connection structure enhanced the information interaction
between the channels of the feature matrix. The transition
structure maintains the characteristics of these matrices
while reducing the size of the feature matrix and then
inputs it into CA. CA performs pooling, contact, convolu-
tion, and other operations on these feature matrices along
the height and width directions, respectively, and forms a
new feature matrix containing the location information of
different directions. Finally, good classification results
are obtained. The fault diagnosis process based on CA-
DenseNet is shown in Fig. 5.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL PLATFORM
INTRODUCTION

The experiment platform is shown in Fig. 6.
As can be seen, there are four sliding blocks fixed

under the platform. The rotating motor is connected to the
ball screw structure through the coupler, and then the
rotating motion of the motor is converted into the linear
motion of the cargo platform. This experimental platform
consists of the following parts: (1) rotating motor, (2) linear
guide rail, (3) rotary motor driver, (4) pulse controller, (5)
CA-YD-1182 acceleration sensor, (6) USB4431 NI data
acquisition card, (7) 5 kg load, and (8) a computer. The
detailed procedure is described below.

(1) Step 1-Faults presetting:
Several steps must be carried out to present different
type of faults as ball wear faults, ball missing faults,
guide rail wear faults, and mixed fault. (a) Ball wear
faults: three balls are removed from the sliding blocks
one by one to create wear faults, after which the worn
balls are loaded back into the sliding block for

experiment. (b) Ball loss faults: three balls are
removed from the sliding block one by one, and
the experiment is conducted in the case of one,
two, and three missing balls. (c) Guide rail wear
faults: the total length of the guide rail is
1000 mm. Wear damage is carried out in the middle
part of the guide rail, and the wear length is set to
100 mm and 200 mm. Experiments were carried out
under these two wear conditions separately.
(d) Mixing fault: this work investigates the mixed
fault when one ball was missing and the other ball was
worn at the same time. A mixed fault of balls is
created by removing one ball in the sliding block
while wearing another ball. All of these presetting
faults are as shown in Fig. 7.

(2) Step 2-Motor control:
Connect the controller to the driver, which is con-
nected to the rotating motor. Then, control the speed
and travel distance of the cargo platform using the
pulse controller. Next, load the 5 kg load on the
platform.

SSTG imageVibration singal

Classification 

A0

A1

A8

A9

×6 ×12 ×24 ×16

Bottleneck Bottleneck Bottleneck Bottleneck

Output

Dense block
Transition Fully connected layer

CA

Feature extractionTesting signal

SSTG

Fig. 5. General process of the fault diagnosis of linear guide rails.

Linear guide rail
Rotating motor

Computer

5 kg load

Motor driver

Pulse controller

NI data 
acquisition card

Acceleration 
sensor

Fig.6. Experiment platform of linear guide rail.

(a) Healthy ball bearing (b) Worn ball bearings

(c) Healthy sliding block (d) Loss ball bearings

(e) Healthy guide rail (f) Worn guide rail

Fig. 7. Basic fault settings.
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(3) Step 3-Vibration signal collecting:
Fix the accelerometer to the load platform with bolts,
ensuring that it is positioned perpendicular to the
moving direction. Connect the accelerometer to the
NI data acquisition card. This data acquisition card is
linked to a computer to upload the collected vibration
signals to the computer in real time. The sample
frequency is set to 6000 Hz, the velocity is set to
600 mm/s, and the period of linear motion is set to 5
times of round trips. The pulse controller and data
acquisition program are initiated, and the vibration
signals are recorded into the computer.

B. DATASET CONSTRUCTION OF LINEAR
GUIDE RAIL BASED ON SSTG

Once the original vibration signals are collected, SST is
applied to conduct signal processing and 1D signals are
converted into 2D images. Every set of 1024 points in the
vibration signals is converted into a 224×224×3 image.
These time-frequency images are then subjected to Gauss-
ian high-pass filtering, which attenuates or filters out the
low-frequency components. The entire conversion process
is shown in Fig. 8.

Upon completion of the SSTG transformation, each
type of fault yields 300 images for a total of 3000 images for
10 types of faults. Around 60% of the images for each type
of fault are used to build the train set, 20% are used for the
validation set, and 20% are used for test set. The dataset
introduction is shown in Table III.

C. FAULT CLASSIFICATION RESULTS
BASED ON CA-DenseNet

This experiment used NVIDIA RTX 3060 GPU to train this
model, after which the deep learning environment is estab-
lished using Pytorch 1.12.1.

This model’s learning rate was set to 0.005, and the
optimizer used was stochastic gradient descent (SGD). The
training process was conducted over 100 rounds, and the
model’s training accuracy increased with each round, ulti-
mately converging at 96.4%, as shown in Fig. 9. A confu-
sion matrix was created using the test results to further
demonstrate the model performance. The results are shown
in Fig. 10.

D. COMPARISON WITH OTHER METHODS

In order to verify the necessity of signal processing, raw
vibration signals are directly fed into each model, and to
validate the superiority of the proposed method, in this paper,
the images generated by SSTG and SST were input into the
CA-DenseNet, DenseNet, ResNet, ShuffleNet, and ConvNext
models for training. Figure 11(a)–(e) shows the training
classification accuracy of SSTG, SST images, and 1D signals
on different classification models. The mean and standard
deviation of the five test results are shown in Table IV.
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Fig. 8. Time-frequency images of SSTG.

Table III. Dataset introduction

Dataset Length Size Numbers

Train 1024 224×224×3 180

Validation 1024 224×224×3 60

Test 1024 224×224×3 60
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It can be seen from Table IV and Fig. 11 that the
proposed method that combines the CA-DenseNet and
SSTG achieves the best performance, namely, the highest
average test result (95.0%) and the lowest standard devia-
tion (52.8%). In comparison, the accuracy of 1D signals on
each model are much lower than the classification accuracy
of time-frequency images on each model, which proves the
necessity of time-frequency processing. When the images
are input to the model. the test results of the images
generated by SSTG on the CA-DenseNet model was
1.9% higher than those of the images generated by SST,
1.4% higher on the DenseNet model, 1.6% higher on the
ResNet model, 11.1% higher on the ShuffleNet model, and
4.7% higher on the ConvNeXt model. The main reasons are
as follows. First, there is no obvious difference between the
original vibration signals, and it is difficult for the model to
extract the corresponding features, so the classification
accuracy is low. Second, the results indicate that the images
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Fig. 9. Training results of the CA-DenseNet.

Fig. 10. Confusion matrix diagram of the CA-DenseNet.
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Fig. 11. Comparing experimental results: (a), (b), (c), (d), and (e) The training results of images generated by SSTG, images generated
by SST and 1D signal on CA-DenseNet, DenseNet, ResNet, ShuffeleNet, and ConvNeXt, respectively; (f) the training results of images
generated by SSTG on different models.

Table IV. Test results of different inputs on different
models

Model

Average test
results (%)

Standard deviation
(%)

SSTG SST 1D SSTG SST 1D

CA-DenseNet 95.0 93.1 81.4 52.8 78.6 95.8

DenseNet 93.6 91.9 79.8 66.3 41.1 68.5

ResNet 93.4 92.1 81.5 139.3 132.9 115.7

ShuffleNet 83.9 83.3 79.5 142.0 119.0 84.5

ConvNext 90.3 89.4 88.8 70.2 65.6 68.9
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generated by SSTG have more easily extractable features
than those generated by SST, likely due to the high time-
frequency characteristics of SST, which makes the time-
frequency information of vibration signals processed by
SST concentrated and presents clearer lines. The Gaussian
high-pass filtering primarily filters out low-frequency infor-
mation, retaining high-frequency information, which en-
hances the detailed line features in the images, benefiting
the feature extraction process in intelligent classification.

To validate the superiority of the proposed model, this
work uses different models to train images of SSTG.
Figure 11(f) shows the training process. The training accu-
racy of the proposed model is higher than those of the
comparison models, possibly because of the following
reasons. (1) The DenseNet model’s dense connection struc-
ture allows the model to extract high-dimensional features
and preserve initial features, thus achieving feature reuse
during training. (2) The CA attention mechanism enables
the model to focus not only on channel information but also
on the space and position information of feature matrices,
ultimately improving classification accuracy.

Confusion matrices are made for the test results of the
images generated by SSTG on the Densenet, ResNet,
ShuffeleNet, and ConvNeXt, as shown in Fig. 12. The
confusion matrices reveal that the proposed method has the
highest test accuracy among all models tested.

However, these models all indicate that classification
errors are mainly concentrated in labels A8 and A9. This

may be due to the fact that labels A8 and A9 correspond to
different degrees of rail wear faults. There are no obvious
differences in their time-frequency information after SSTG
processing. Thus, it is difficult to distinguish them in the
intelligent classification model.

E. ABLATION EXPERIMENT

It can be seen from section III that the model proposed in
this paper is mainly composed of dense blocks, CA mecha-
nism. In order to explore the contribution of different
modules to classification accuracy, ablation experiment is
conducted in this section. The experimental test results of
model are shown in Table V. The ‘×’ denotes ‘elimination’.

By removing CA, the accuracy of the model decreases by
1.4%, which is consistent with the comparative experimental
results in Section IV, indicating that CA module has a certain
role in improving the accuracy of themodel. After dense block
is removed, the model test accuracy drops dramatically,
because CA-DenseNet is mainly composed of dense block,
and it plays a dominant role in the model test results.

F. ROBUSTNESS ANALYSIS

Signal-to-noise (SNR) ratio refers to the ratio between a
signal and noise, which is used to describe the quality and
reliability of a signal in the presence of noise [37]. Noises of
SNR 30 and 40 dB are added to the original signals, and the
time-frequency images containing noise information are
obtained by the SSTG processing of the noise signals. These
images are used as the input of multiple models, average
accuracy and standard deviation of five tests results of each
model are shown in Table VI. Figure 13 shows the accuracy
of different models in different noise environments.

After adding 40 dB and 30 dB noise, the classification
accuracies of the CA-DenseNet model decreased by 1.2%
and further decreased by another 1.0%, respectively. Other
models are more significantly affected by the noise influ-
ence, with a larger decrease in model classification accu-
racy. Compared with other models, the proposed model is
less affected by noise, as it yields the lowest standard
deviation for all the noise interferences in Table VI.

Fig. 12. Confusion matrixes of different classification models.

Table V. Results of CA-DenseNet ablation
experiments

Model Accuracy (%)

Original model 95.0

×·CA 93.6

×·Dense block 48.4

×·CA & Dense block 40.6

Table VI. Comparison of the test results of different models in noisy environments

Model

Noiseless SNR= 40 dB SNR= 30 dB

Average test
results (%)

Standard
deviation (%)

Average test
results (%)

Standard
deviation (%)

Average test
results (%)

Standard
deviation (%)

CA-DenseNet 95.0 52.8 93.8 66.9 92.8 63.5

DenseNet 93.6 66.3 92.2 70.1 90.0 68.5

ResNet 93.4 139.3 91.8 128.9 89.9 130.1

ShffeleNet 83.9 142.0 80.5 135.8 77.8 125.67

ConvNext 90.3 70.2 88.5 68.5 86.2 65.3
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Thus, the experimental results demonstrate the good robust-
ness of the proposed method.

V. CONCLUSIONS
This paper proposes a fault diagnosis method for linear guide
rails and ball bearings based on SSTG and CA-DenseNet. The
following conclusions can be drawn from the experimental
data analysis. (1) As a new signal processing method, SSTG
can convert vibration signals into time-frequency images.
Introducing Gaussian high-pass filtering can enhance the
features of image details and eliminate the impact of manual
feature extraction. Furthermore, it can realize fault feature
visual enhancement. (2)Using theCA-DenseNet classification
model with an attention mechanism is effective, because its
dense connection structure enables feature reuse. By adding
the CA module to each dense block, the model can focus on
both the channel and spatial position information of the feature
matrices during training, thus demonstrating the superiority of
the proposed model in comparative experiments.

This proposed method is practical for diagnosing faults
in linear guide rails and can also provide insights for
diagnosing other faults.
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