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Abstract: A dominant source of vibration in geared-rotor systems is the gear mesh fault parameters. They include
the asymmetric transmission error (TE), phases of TE, the gear mesh stiffness, the gear mesh damping, and the
gear runouts. The present work deals with the experimental identification of the aforementioned parameters. A
mathematical model of a geared-rotor system has been developed using Lagrangian dynamics. Equations of
motion are transformed into the frequency domain using the full-spectrum response analysis. These transformed
equations are used to develop an identification algorithm (IA) based on least-squares fit to estimate the TE and gear
mesh dynamic parameters. The system IA is initially verified using numerical simulations. The robustness of the
algorithm is checked by introducing white Gaussian noise in the simulated responses. A geared-rotor experimental
rig was developed and used to measure responses at gear locations in two orthogonal directions. Measured
responses are transformed in the frequency domain using the full-spectrum analysis and used in the present novel
IA to identify the gear parameters. The identified parameters are validated by comparing the numerically generated
full-spectrum response using experimentally estimated parameters and that from the experimental rig.
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Nomenclature Tpo Base radius of the gear
Symbol Description It Deflection of input shaft along the LOA
(o Center of rotation of pinion rp Deflection of output shaft along the LOA
() Center of rotation of gear Z, Number of teeth on the pinon
Com Gear mesh damping along the line of Z, Number of teeth on the gear
action (LOA) U, =mye,  Mass unbalance at the gear
Cq1 Damping of input rotor U, =me,  Mass unbalance at the pinion
Cs Damping ratio of output rotor a Angle of LOA orientation with y-axis
er Variable transmission error (TE) 1) Deformation of the meshing teeth along the
es (1) Harmonics of variable TE in x-direction LOA
er (1 Harmonics of variable TE in y-direction Oy The component of § in x-direction
ey Gear runout Oy The component of § in y-direction
€l Gear runout along the LOA b4 Initial phase of the drive
e Pinion runout along the LOA o, Initial phase of the gear
en Mean TE b Initial phase of the load
e, Pinion runout b Initial phase of the pinion
e (1) Dynamic TE in x-direction @1 The angular displacement of the gear
ey(t) Dynamic TE in y directions Pn The angular displacement of the pinion
Gy Center of gravity of pinion P The angular displacement of drive
G, Center of gravity of gear @z The angular displacement of load
i Number of harmonics of TE , Frequency of gear mesh
k,, Gear mesh stiffness along the LOA w, = Z,w, = Z,wy;
kg Stiffness of the input shaft w, =2zN,Z,/60 = 2zN,Z, /60
ko Stiffness of the output shaft W, Angular speed of the gear
nmy Mass of the pinion w), Angular speed of the pinion
my Mass of the gear Com Gear mesh damping ratio
Mgye Average mass of gear mesh
N, Rotational speed of the input shaft
N, Rotational speed of the output shaft . INTRODUCTION AND LITERATURE
0, Ideal center of the pinion ’
0, Ideal center of the gear REVIEW
Tp1 Base radius of the pinion
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The complex nature of rotating machinery fascinated a lot
of researchers to study their dynamic behavior. These
studies resulted in the design of lighter, high-speed and
exceptionally reliable automotive, aerospace and other
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industrial machinery. Geared-rotor systems are the most
commonly used torque-carrying members in most of the
mechanical and electrical equipment. Gears are considered
as dominant source of vibration due to their deviations from
perfect conjugate profile and the dynamic nature of gear
contact between flanks of mating gears. The parameters that
cause this profile deviation are considered as the transmis-
sion error (TE), gear mesh stiffness and gear runout errors,
individually or in combination. These dynamic effects may
sometimes cause catastrophic failure of mechanical systems
and subassemblies attached to the supporting structure.
Estimation of these gear parameters is having paramount
importance [1].

Several researchers studied the identification of rotat-
ing machinery faults, such as gear faults, misalignments,
residual unbalances, shaft bow, shaft cracks, motor faults,
and bearing faults using system mathematical models [2—4].
In these attempts, authors used the analytical, transfer
matrix and finite element (FE) methods. Wherein, the fault
models with unknown parameters are considered. Through
least-squares or other fitting techniques, the unknown fault
parameters are estimated with the help of system responses.
Some researchers used feature extraction techniques, con-
ventional neural networks, discrete wavelet transform, and
thermal images [5-9].

Plenty of researchers studied geared-rotor vibration
through numerous mathematical models. Most of the re-
searchers considered TE as an excitation source for the gear
vibration problem. TE is specified at the pitch point of the
gear mesh, and it is mathematically expressed as a change in
driven gear position with respect to the position of a perfect
gear drive. The perfect gear drive is free from any geomet-
rical deviations from its conjugate profile. Several research-
ers presented fundamental concepts of TE and its
measurement techniques [10-12]. Ozgiiven and Houser
[13] reviewed works on mathematical models used in
gear dynamics. They gave insights into the sources of
the mesh excitation and its contribution to the system
excitation, pertaining to the gear noise. Houser [14] pub-
lished the state of the art by summarizing research works on
the contribution of various sources of gear mesh excitations
to gear noise. Kahraman e al. [15] presented FE modeling
of geared-rotor mounted on flexible bearings with a com-
bination of TE excitation and constant gear mesh stiffness.

Wadkar and Kajale [16] studied geared-rotor natural
frequencies and modes shapes. Also, the reliability of
geared-rotor system using the time-varying mesh stiffness
was investigated. Mohammed et al. [17] proposed an
improved mesh stiffness calculation for the purpose of fault
detection in geared rotors using vibration signals. Li et al.
[18] studied coupled lateral—torsional—axial vibration prob-
lem of helical gears mounted on flexible bearings using a
system model approach. Zhou et al. [19] analyzed a coupled
vibration of a spur gear pair considering the TE and
presented vibration response using a three-dimensional
frequency spectrum. They studied the influence of eccen-
tricity, speed, and bearing clearance on the nonlinear
response. Temis et al. [20] studied gear vibration problem
with proportional viscous damping by considering the time-
varying mesh stiffness and the tooth separation. Mohamed
et al. [21] presented the dynamic behavior of geared
systems with multiple cracks using a model-based
approach. Rao and Ganti [22] presented a case study to
mitigate gear whine in 6-speed automotive transmission
using three-dimensional multi-body dynamics simulation
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by exciting the loaded gear pair with TE. They also
suggested procedures for mitigation of the gear whine.

To analyze the geared-rotor response in the frequency
domain, the signal processing techniques are very impor-
tant. It separates response due to different fault frequencies
and helps in the identification of TE and other gear mesh
faults. Traditional fast Fourier transform (FFT) fails to
provide the direction of the precession of the pinon and
gear harmonics with respect to the direction of the drive
shaft. Southwick [23] presented the full-spectrum analysis,
which unwraps the traditional FFT spectrum into the for-
ward and backward whirl frequencies. Full-spectrum
response is suitable for analyzing the response of the
geared-rotor system as it is an augmented version of the
Campbell diagram. Qu et al. [24] studied vibration mea-
surement of large machinery by short-period Fourier trans-
form and Wigner distribution to nullify the shortfalls in
conventional FFT methods. Southwick [25] studied the
response of a rotor using full-spectrum response for obtain-
ing the asynchronous and synchronous vibrations. He
investigated the ellipticity of whirling orbits under various
conditions that paved the motivation for the progress to full-
spectrum analysis. Goldman and Muszynska [26] presented
a method for the detection of various rotating machinery
faults with full-spectrum response. They also presented the
phase correlation of rotor orbits in the horizontal and
vertical spectrum components. Bachschmid et al. [27]
analyzed rotating machinery vibrations using full-spectrum
response with shape and directivity index method for
analyzing the ellipticity of filtered orbit. Tuma and Bilos
[28] studied a rotor mounted on a fluid film bearing to
identify fluid-induced instability and whirl frequency com-
ponents with full-spectrum response plots. Patel and Darpe
[29] investigated cracked rotors using full-spectrum
response for the identification of the crack rub with the
directional nature of higher harmonics. Shravankumar and
Tiwari [30] studied the model-based crack identification in
cracked rotors with full-spectrum response plots.

Hong and Dhupia [31] demonstrated a time domain
approach to identify the gearbox faults using measured
response from an experimental rig. Sawalhi and Randall
[32] presented a method for the identification of teeth count
of two parallel stages of gears without speed reference
signal under variable speed conditions. Feng et al. [33]
proposed an order spectrum analysis method based on the
iterative generalized demodulation for the characteristic
frequency identification in a faulty planetary gearbox.
Dogan and Karpat [34] presented a dynamic transmission
error (DTE)-based numerical fault detection model using
FE analysis for crack detection in spur gears with asym-
metric teeth. Benatar et al. [35] presented a set of motion TE
data for a family of helical gears having different profile and
lead modifications operated under both low-speed (quasi-
static) and dynamic conditions. Celikay [36] studied a
subharmonic resonance observed in spur gear pairs as a
parametrically excited system. The stiffness at the gear
contact interface that couples the gear bodies is periodically
time-varying due to the fluctuation of number of tooth pairs
in contact. Flek er al. [37] presented the time-varying
stiffness of spur gears in the dynamic model of transmission
systems as an internal excitation of the dynamic system.

Chin et al. [38] proposed a TE-based method for the
estimation of gear root crack depth as an indicator of
severity. Xue et al. [39] presented a gear system dynamic
model for the nonstationary operating condition using the
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iterative convergence of the tooth mesh stiffness and dem-
onstrated the effect of gear tooth crack on the resultant
dynamic response for the nonstationary condition. Poletto
et al. [40] presented the identification of gear wear damage
using topography analysis. Dai et al. [41] developed a
simulation model to investigate the impact of defective
bearings on the mesh characteristics of gear pairs. Talakesh
et al. [42] presented experimental and analytical methods to
calculate the time-varying mesh stiffness for healthy and
cracked straight bevel gear systems. Dong et al. [43]
presented a mediator algorithm between simulation and
experiment to identify the error excitation in gear systems.
The authors also proposed a signal processing procedure to
eliminate the phase difference and improve the signal-to-
noise ratio. Koutsoupakis [44] presented a damage identi-
fication and condition monitoring (CM) method based on
CNNs and validated on an experimental two-stage gearbox.
The CM-CNN was trained on numerical data (PSDs)
generated by repetitive simulations of an optimized
MBD model of the actual structure with randomly sampled
parameters.

From the literature survey, very limited literature is
found on the identification of the TE of a gear mesh using
vibration signal. This research work focused on a novel
model-based approach for the quantitative identification of
the TE along with other gear dynamic parameters. In this
direction, the authors recently presented their work [45],
where the response of geared-rotor system is analyzed using
the full-spectrum response to detect qualitatively the novel
asymmetric TE of variable components of TE. However,
the authors have not attempted to have quantitative esti-
mates of the TE. In this work, the authors have developed an
identification procedure based on geared-rotor model of
[45] to estimate the novel asymmetric TE along with the
mean TE, phases of variable TE, gear mesh stiffness, gear
mesh damping, and gear runouts using the full-spectrum
response.

The content provided in the following sections is as
follows. Section II gives a brief on the modeling of geared-
rotor system, gear mesh fault parameters, and the derived
equations of motion using the Lagrangian dynamics.
Section III depicts the formulation to transform equations
of motion from time domain to frequency domain.
Section IV details the development of an identification
algorithm (IA) for quantitative identification of gear
mesh parameters. Section V presents the numerically sim-
ulated full-spectrum responses of geared-rotor system.
Section VI describes the numerical testing of IA.
Section VII has information about the experimental rig.
Section VIII describes full-spectrum response analyses
from the experimental rig response measurements.
Section IX describes the identification of gear mesh DTE
parameters using experimental rig full-spectrum responses.
Section X presents the validation of geared-rotor system
model and the IA. Section XI summarizes the conclusions
of the present work. Appendices A and B give frequency
domain formulation transformation of equations of motion

Il. GEARED-ROTOR SYSTEM MODEL
AND GEAR MESH FAULT
PARAMETERS

In this section, descriptions are presented related to the
formulation of equations of motion [45], which are used for

the development of the identification of TE and other
uncertain system fault parameters. The shaft supports are
assumed to be rigid in transverse directions, and shafts and
gears are also considered to be rigid in the torsion mode of
vibration that gives the scope of ignoring the torsional
vibration of the geared system. This assumption also elimi-
nated the nonlinearities associated with resulting geared-
rotor equations of motion. This approach provides the
opportunity to study more about gear transmission dynam-
ics problem with matured linear mathematical techniques of
transverse vibration. A four-DOF system model is devel-
oped for modeling gear transverse vibration problem with
the TE as shown in Fig. 1(a) and 1(b). The system model has
two shafts of lengths /; and /, and a motor drive connecting
to the input shaft with a rigid coupling. The input shaft
carries a pinion, and the output shaft carries a gear. Both the
pinion and the gear are mounted at the mid-span of the
uniform flexible shafts to have a gear mesh. The output
shaft is loaded with the required torque to load the gear pair
so that they remain in contact during operation without
separation.

To consider the fluctuation in gear mesh stiffness due
to deviation from the conjugate gear profile, the static
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Fig. 1. (a) Overall geared-rotor system; (b) The geared-rotor
system model.
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transmission error (STE) is incorporated. This paper uses
the orientation of the line of action (LOA) at an angle o with
y-axis [45], as shown in Fig. 1(b), to model the meshing of
gears between two parallel shafts in a realistic power
transmission. This work also assumes two different TEs
in two lateral orthogonal directions to consider the different
excitations in two orthogonal directions (e,(t) and e, (t)). It
helps in studying the forward and backward whirl features
of gear mesh when it is loaded. The angular displacements
of the drive, pinion, gear, pinion, and load are given,
respectively, as:

(pzd<t) = wpt + ¢d; (pzl(t) = wpt + ¢p;
(pzZ(t) = a)gt + (]Sg; (pzl(t) = wgt + ¢l (1)

Herein, w,, and w, are the spin speed of the pinion and
the gear, respectively, ¢ is the initial phase, and subscripts d
denotes the drive, p denotes the pinion, g denotes the gear,
and [/ denotes the load. Also, the gyroscopic effect is not
significant in this formulation as the pinion and the gear are
fixed at the mid-span of the shafts. Geometric relations are
given as:

Xp =X + € COS(—(le); Yp =01 + € Sin(_(pzl);

Xg =Xy +€,CO8¢0; Y, =Y+ €,C08¢ 2)

where (x;, y) are the displacements of the center of pinion,
(%2, ¥») are the displacements of the center of gear, (x,, y,)
are the positions of the center of gravity of the pinion, (x,,
¥,) are the positions of the center of gravity of the gear, and
e, and e, are runouts of the pinion and the gear, respec-
tively. On substituting equation (1) into equation (2), we get

X, = X| + e, cos(—wyt — p,);
Yp =y1 +e,sin(—w,t — ¢,);

X, =X + e, cos(@yt + ¢hy);

3)

Vo =2 + €, sin(w,t + ¢,)

The gear runouts generate unbalanced force in the
pinion and the gear; in addition, they give rise to relative
deformation of shafts during the torque transfer. The STE
along with the runout errors that contribute to no-load
transmission error (NLTE) constitute the DTE. The DTE
excites the gear drive at the pitch point, which is assumed as
the sum of mean and variable components with their initial
phases. The difference of STE from tooth-to-tooth is not
considered in this model to avoid complex equations for
derivation. As the LOA is slanted by an angle a with
y-direction, the DTE is modeled to excite the gear mesh
in x and y directions on the exterior of the contact region
created at the pitch point due to gear mesh profile deviation
in the complete mesh cycle (start of engagement of teeth in a
gear mesh to end of engagement of teeth).

It is found in the literature [15] that while modeling
DTE, sinusoidal excitation along the pressure line is given
at the gear mesh frequency by neglecting the initial phase.
In this work, similar to the work of the authors [45], the
initial phase is included in the excitation. Apart from a
constant term, the sine and cosine variations with an initial
phase and higher harmonics of the gear mesh frequency are
also included. As proposed by the authors in their work [45]
and supported by the literature [15], in the present work, the
variable gear mesh stiffness force has been modeled with a
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constant mesh stiffness multiplied by displacement in the
form of loaded STE, which gives external forcing as in
Kahraman et al. [15]. Also, it is assumed that the relative
deformation of gears is completely transformed into elastic
deformation on the surface of teeth. The dynamics of a pair
of gears are mathematically modeled as disks. These disks
at their pitch circle radius joined using spring and damper
having gear mesh stiffness (k,,) and gear mesh damping
(c,), respectively, along the LOA. The LOA is tangent to
the base circle of gears to ensure the contact of the teeth
surface during power transmission. So, the displacement (5)
between the pinion and gear along the LOA is given as:

S=ry—rp+tep—eg+ @, —rpp,—e(t) (4)

where r;; and rp, are elastic deformations of the input and
output shafts; e;, and e;, are gear runouts of pinion and gear
along LOA. For a constant gear ratio, the fifth and sixth
terms of above equation remain same and together they
become zero. Along the LOA, the dynamic gear mesh force
is given in equation (5) as:

Fp = b + k8 S

where k,, and c,, denote the average mesh stiffness and
damping along the LOA, respectively. The DTE modeled in
the x and y directions depict a practical state of power
transmission as shown in Fig. 1(b). The components of § in
the x and y directions, from equations (3) and (4), are given
as:

8, = X1 — X, + e, cos(w,t + ¢,)

— e cos(wyt + ) — ey(t) 6)

8, =y1 — ¥ —e,sin(wyt + ¢,)
— e, sin(w,t + ¢,) — e (1) ™)
The dynamic gear mesh force given in equation (5) is
resolved in the x and y components. The elastic deformation
in the contact region at the pitch point is given by equa-
tions (6) and (7). The components of DTE e, (¢) and e(t) in

the x and y directions are modeled as a mean value and a
fluctuating part [45] and can be given as:

ex(t) =e, + efx(t); ey(t) =e, + ef,.(t) ®)

with

n
e, (1) =Y e, sin(iw,t + 4,,);
i=1

n

e, (1) =Y e, sinfiw.t + ¢.,) 9)

i=1

The displacement vector of the centers of shafts in
geared rotors is given as:

T

q; = [xl i X » (10)

where subscripts 1 and 2 refer to the pinion and gear shafts,

respectively. Using the Lagrangian dynamics, the equations

of motion are derived and presented in the matrix form [45],

which contain forces from the TE, and the unbalances and

runouts are given as:
Mn(z) + Ci() + Kn(z) = £(2) (11)

with
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m 0 0 O C1 +Cp 0 —Cp 0
0 m 0 O 0 Cs1 +Cp 0 —C
M= ; C= ; (12)
0O 0 m O —Cp 0 Co +Cp 0
0O 0 0 m 0 —Cp 0 co +cp
k?l + k 0 —km 0 X1
0 kg + k., 0 —k,,
K= 1 coa={ (13)
_km 0 kx2 + km 0 X
0 _km 0 ksZ + km Y2

me wzcos(a)pt+(/)p)+cm{epa)psin(a)pt+¢p)—e ® sin(a)gt+¢g)+éx(t)}
+km{—epcos(w t+¢,) e cos(w t+d,)+e(t )}—i—c 1€,y sin(w,t+,) —ky e, cos(wyt+¢,)
—mye,apsin(wyt+¢,)+c,, {epa)pcos(a)pt—f—qbp)+egwgcos(a)gt+¢g)+éx(t)}

?18 +km{epsin(a)pt+¢p)+egsin(wgt+¢g)+ey(t)}+cslepwpcos(a)pt+¢p)+k51epsin(a)pt+z]5p)—m1g
1
£(r)= fiz(t) - mzega)f,cos(a)gt—l—qﬁg)—cm{epa)psin(a)pt+¢p)—ega)gsin(a)gt+¢g)+éx(t)}

fyZ(t)

—k,,,{—e,,cos(w,,t—&—gﬁ,,)+egcos(wgt+¢g)+ex(t)}+cs1e,,w‘,,cos(w,,t+¢,,)+kslepsin(wpt+¢p)
mye, wisin(w,t+¢,) —c {epa)pcos(a)pthg{)p)+egwgcos(wgt+¢g)+éx(t)}

—k,, {epsin(wpt—i—(ﬁp) +egsin(wyt -+, ) +ey(t) } —C0€,0,COS(Wyt +p,) —kgpe,sin(w,t+h,) —m,g

(14)

where f(7) is the force vector, and M, C, and K are the mass, damping, and stiffness symmetric matrices, respectively. Also,
my and m, are the mass of the pinion and the gear, respectively; kg, and k, are shaft stiffness for the pinion and the gear,
respectively; and c,; and c,, are shaft stiffness for the pinion and the gear, respectively.

This novel approach makes use of existing simple measurement techniques available for the lateral vibration in rotor
dynamic systems to validate the system model and identification of asymmetric TE instead of going for expensive torsional
vibration measuring equipment, which is not available in hand. Also, it is practically easy to access gear transmission shafts
with displacement probes for lateral vibration measurements rather than mounting high-quality encoders to measure the TE
of gear mesh by phase demodulation of the pulse signals of encoders as followed in the transitional approach [12].

lll. TRANSFORMATION OF EQUATIONS OF MOTION TO FREQUENCY DOMAIN

The force vector, given in equation (14), is simplified after substituting equations (8) and (9). Using complex mathematics
as described in Appendix A with Euler’s equation, we have equation (15) in the frequency domain with various frequency
excitation components as:

= r ) + ]Jlr ]II/ ot 4 p]r ,;1; eiopt 4 elr el/ o0t
{SZ, + 155 R, +iR;, Ry, + iRy, Ry, +iR;,

R 15)
R, +JjR, | _ AV o AV e Sp,., +JSh _ (
+ olr R o1j _]wt+ elr elj e}(zwet) + elr elj J(iw,t)
{Rbﬂr +IRy } Z({Sfm + St Sbo, S |

82 e2r bﬂZ/

As described in Appendix B, the equations of motion in the frequency domain are grouped into the components of
forward and backward whirls. The frequency domain transformation helps in clarifying the whirling features of the gear
mesh using its excitation frequency. By combining the static force, the gear mesh force, and the pinion and gear runout/
unbalance forces, the equations of motion in the frequency domain using equations (A-63), (A-89), and (A-118) can be

written as:
A, 0 0 Py Ss
0 A; 0 { Pri } = { Si } (16)
0 0 Ay Poi Sphi

Herein, i depicts the index of harmonic of gear order, and n depicts a number of harmonics that are assumed in TE. With
the presumed value of TE parameters, equation (16) can be used to numerically simulate the transverse vibration response
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of a geared-rotor system. Here, we can observe that the
equations of motion are linear due to neglect of the torsional
vibration coupling. The holistic solutions with assumed
parameters of each harmonic should be summed up fori =1,
2,3, ..., n. The full responses can be written in the matrix
form by combining the equations for all values of i and are
written as:

A 0 0 0 0 0 0 7 Ps

.0 0 0 0 :

Afn 0 0 0 pfn

Ay 0 0 Pv1

0 :

L Sym Abn_ Pon
SS
Sfl

=9 S 17

Sp1
Shn

This can be put in a simple form for the required
number of harmonics as:

Ap=s (18)

The solution of the above equation can be written as:
p=Als (19)

Equation (19) calculates the response function of the
forward and backward whirl gear mesh frequencies with an
obligatory number of harmonics based on the nature of
excitation for known values of all dynamic parameters of
the system model. This will be used to test the IA described
in the next section.

IV. IDENTIFICATION OF GEAR MESH
PARAMETERS

Using the frequency domain formulation discussed in the
previous section, it is attempted to identify critical unknown
dynamic parameters of gear pair in a three-step estimation

Identificaiton: Step 1

Identificaiton: Step 2

Identification: Step 3
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process as described below. Figure 2 gives a schematic
representation of the step-down IA.

* In the first step, the gear mesh stiffness and the mean
TE are estimated using static components of response
taken from numerically simulated full-spectrum plots.

* In the second step, gear mesh damping is calculated
with the help of estimated gear mesh stiffness and
average gearing mass (details of this are given subse-
quently). Also, variable components of TEs and their
initial phases are identified using the gear mesh stiff-
ness estimated from the first step, gear mesh damping
and the gear mesh frequency harmonic responses from
full-spectrum plots.

¢ Inthe third step, the gear runouts and their initial phases
are estimated using the estimates of the first and second
steps, and responses at the pinion and gear mesh
frequencies are taken from full-spectrum plots.

The solution to the identification problem starts with
the initial identification of mean TE and gear mesh stiffness
using static response components. For this purpose, static
displacement coefficients from the frequency domain for-
mulation, given in Appendix A, equations (A-61) and
(A-62) are combined in the matrix form as:

Slr kslpslr +k ( slr — Ps2r)
Slj kslPslj +k ( slj — Pst)

= 20
S2r s2P32r +k ( s2r = Pslr) ( )
S2j ks2P521 + km( s2j Pslj)

by substituting equation (A-41) into equation (20) and
unknown terms are rearranged as:

kmem k‘?lP‘vlr + km(Pslr - Ps2r)

kmem — k‘vlpslj + km(lej - PSZj) +mg (21)
kmem _kSZPSZr - km(PXZr - P‘vlr)

kmem _kSZPSZj - km(Pij - lej) —mg

The gear mesh stiffness and mean TE are separated and
written in matrix form as:

(Plr_PZr) -1 _kslPIr

(Pij=Py) -1 { K }_ —kg Pij—mg 22)
(Py=P1) 1| Lknen S | —kaP

(Py—Py) 1 —ko Py —myg

In the first step of the identification problem, the gear
mesh stiffness (k,,) and the mean TE (e,,) are estimated

eIdentification of gear mesh stiffness
and mean transmission error

eIdentification of gear mesh damping, variable
components of transmission errors and their initial
phases using identified paramter of Step1

eIdentification of gear runouts and their
initial phases using identified parameters of
Steps 1 and 2

Fig. 2. Schematic representation of identification algorithm step-down process.
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using the static response (P) terms. On the left and right sides of the matrix in equation (22), the P terms are taken from full-
spectrum plots. On pseudo-inverting the first (left) matrix in equation (22) we get k,, and e,,.

In the second step of the identification process, the gear mesh frequency components are considered for the
identification of the gear mesh damping and variable TE with its magnitudes and initial phases. For this purpose,
equations (A-20), (A-22), (A-24), and (A-26) are grouped as:

R, €, COS @, — ey;sing, . 1 -1 0 O €, CoS h,
R, _ esing,, + e, cos g, - 0 0 1 1 eySing, (T} 23)
R, €, Cos . + ey; sin qﬁe},, 1 1 0 0 eysing, .
Ry —eysing, + eycosg,, 0 0 -1 1] ejcose,,

Now, the forcing functions due to gear mesh frequency on the input and output shafts are grouped for the input shaft by
substituting these equations in equations (A-42) and (A-43) to get the defined pinion and gear force real and imaginary
components ® in terms of critical gear mesh parameters on the input shaft as:

St 0.0 kn 0 0 T[1 =1 0 07 (egcosgy,
Stai |1 | ~km iwecy, 0 0 0 0 1 1 eysing,
Se.. [ 2] 0 0 iwec, —k, 1 1 0 0 eysing,
Sbe; 0 0 k, iw,.c,]ll0 0 -1 1 e,; Cos 45%_ (24)
iw,c,, —iw,c,, ko, ky, €,i COS h,,
! .—k,,, k, iWCppy  10,Cy { ey,»sz:mj)e)_’
iw,c,, Iw,Cy, k,, —k,, €ising,,,
ko k,, —iw,c,, iw,C,, €,; COS @, .
Similarly, for the output shaft, we can write as:
Se —iw,c,, —k, 0 0 I =1 0 07 (eicose,,
St 1 Ky, —iw,c,, 0 0 0 0 1 1 eyising,,
S, (2| 0 0 —iwme, Kk, 11 0 0|) euing,,
Sbﬂ/. 0 0 -k, —iw,c,,1] L0 0 -1 1 ey, Cos (/)ew )
[—iw,c, iw,Cy, —k,, —k,, €, Cos
N l k,, -k, —iw.c,, —i®.Cpy, eysing,
—iw,c,, —iw,c,, —k, k,, eySing, .
L —k, —k,, iw,C,,  —IW,Cpy €y; COS p,,

These equation formulations are used for the second step of identification by substituting them into equations (A-77),

(A-80), (A-83), (A-86), (A-106), (A-109), (A-112), and (A-115) to get the identification equations of the input and output
shafts.

These equations are written in the matrix form by rearranging terms for the input shaft as:

iwecm _ia)ecm km km €y COS qs‘)xi

1 _km km ia)ecm iwecm e,ViSInqseyi
i0,C,  IW,Chpy k,, —k,, eSing,,,

k,, k,, —iw,Cpy  10,C,, ] \ € COS P,

. . . (26)
—m (iw,)*Py 1, — (iw,)ca Pr1j + kg Pray + kn(Pr1y = Prar) — (iweCp) (Pr1j — Proj)

—my (iw,)? Py 1j + i@, Py 1y + ka Prij + kn(Pr1j — Py oj) + i0oCu(Pr 1y — Py oy)
—ny (iwe>2Pb{,lr + iw,cq Py 1j + kg Py,1y 4 Kn(Pp,1r = Ppoy) + (i0,6,) (Pp,1; = Pp,2))
_ml(iwe)zpbelj - iwecslphelr + ksIPbglj + km(Phé,lj - Pb€2j) + ia)ecm(Pbl,Zr - Phelr)

JDMD Vol. 3, No. 2, 2024



Identification of the Asymmetric Transmission Error and Gear Mesh Dynamic Parameters 119

Similarly, for the output shaft, it can be arranged as:

—iw,C,  1W,Cpp —k,, —k,, €, CoS P,

1 km _km _iwecm _ia)ecm eyl'Sinqﬁey,
2 —iw,c,, —iw,c,  —ky k., eSing,,
_km _km iwecm _iwecm ¢yi COS ¢3yi

. . , 27)
—m, (i, )2 Py o, — 10,2 Pr o + ko Pr .oy + k(P oy — Py 1y) + 1,6, (P 1j — Py o)

(
—my (iw,)* Ppj + iweCo Pp o + ko Py o + k(Pr o = Pr1j) + i@,Cu(Pror = Pr1y)
—m;y (iw,)* Py 2y + i, Py 0 + k2 Py oy 4 kin(Ppor = Pi,1r) + i00C, (Py o — Py, 1)
—my(i®, ) Py 5; — 10,0 Py, o, + ko Py o + ki (Pp,2j = Pp 1) + i0,¢,,(Pp,1, — P2
Herein, the gear mesh damping is estimated from gear mesh stiffness, k,,, and average pinion (m,,) and gear (m,)
masses. The average mass of pinion and gear is given by average gearing mass as:
m,m

_ p'"'g
mavg -
m, + mg

(28)

The gear mesh damping can be calculated using the free vibration damping formula with average gearing mass and gear
mesh stiffness by using an assumed gear mesh damping ratio (£,,) value of 0.01 as:

Cnm = ng\/ kmmavg (29)

equations (26) and (27) are combined in the matrix form as:

iw,c, —iw,c, k, k,,
—k,, k,, iw,c, iw.cp,
iw,c, o, k, —k,, €, CoS P,
1 k,, ki, —iw,c,  i0,Cpy eyisfnfﬁew
2 | —iw,c, iw.cp, —k,, —k,, eysing,,,
km _km TlWCpp TIWCy €y; COS (ﬁey,-
—lw,Cp, —I0,Cpp, —k,, k.,
—k,, —k,, iw,c, —iw,C,
. 2 . .
—my (iw,)* Py, 1, — (iw,)cs1 Py 1j + Kk Pr,ir + ki (Pr1y = Pr o) = (i, ) (Pr,1j — Py o)) (30)

—m (iw,)* P + i1 Pr 1 + Kt Prij + ki (Pr 1 = Proy) + i (Pr1r = Proy)
—my (iw,)* Py, 1, + i0,C1 Py, 1j + k1 Po,1y + ki (Po,1r = Pp,ar) + (i00C) (Py,1; = Ppoj)
—my (iw, ) Py, 1j — i0,C1 Py 1, + ki Py 1j + ki (Pp,1; = Pp,oj) + 0, (Pp,2r — Pp,11)
—my (i0,)* Py oy — 10,0 P 2j + ko Pr oy + k(P oy — Pr1y) + i@,C,, (P 1j — Py o)
—my (i, )Py 5; + iw0,c0Py o + ko Pr.2j + ki (Pr.oj — Pr.1j) + i@, (Pr .o — Py 1)
—my (iw,)* Py 2y + i0,0Py 0 + ko Py oy 4 kin(Ppor = Pi,1r) + 100, (P 0 — Py,17)
—my(iw, ) Py 5j — 10,2 Py o, + ko Py o + ki (Pp,2j — Pp 1) + i00C(Pp,1 — Pp,2r)

Herein, subscripts 1 and 2 represent the input and output shafts. The harmonic number i is from 1 to 5 harmonics of gear
mesh frequencies considered in modeling variable TE, the gear mesh damping from equation (29), the gear mesh stiffness
calculated from Step 1, the input and output shaft stiffness, the masses of gears, and the full-spectrum responses (P terms)
calculated numerically are substituted in equation (30). On taking the pseudo-inverse of the regression equation (30) to
identify the four unknown quantities of fluctuating part of TE and their phases are written as:

€1i COS P, ey
efyisim/)eﬂ _Jexn a1
piSing,, €3
€fyi COS P, €41

On noting equation (31), the fluctuating part of the static TE in the x and y directions are estimated using the sine and
cosine trigonometric relations by combining the first and third components and then by combining the second and fourth

components as:
i =G+ B =+ (32)

From the first and second components of equation (31), we get the initial phases of fluctuating components of the static
TE in the x and y directions which are estimated as:
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e, = cos™ ey /ey); be, = sin™! (ey; /ey;) (33)

In the third and last step, the gear runouts and their phases are identified with the pinion and gear mesh frequency
components of frequency domain transformations. The defined pinion and gear force real and imaginary components (R) in
equations (A-30) through (A-33), (A-35), (A-36), (A-38), and (A-39) are substituted into equations (A-107), (A-113), (A-
110), (A-116), (A-79), (A-85), (A-81), and (A-88), respectively, to get the identification equations on the input and output
shafts for the ith harmonic and are written in the matrix form by rearranging pinion equations as:

(Mm@} — ky, — k) (cmw, + ¢ )) 0 07 (e,cosp,
(enw, + cqw,)  (—myap +k, +kg) 0 0 e,sing,
k,, —Cp®, 0 0 €, COS @,
—Cu@, —k,, 0 0 e, sin @,
—m, (ia)p)2Pbp“ +iwpc Py, +kaPy, +ky(Py, =Py, ) +io,cn(Py, — Py ,) 34
_ml(ia)p)szpU —iw,ca Py, +kaPy, +kn(Py, — Py, ) +iw,cn(Py, — Py, )
mz(ia)p)szﬂr —iw,coPy, = koPy, —kn(Py, — Py, ) = iw0,cn(Py, — Py, )
my (i@, )* Py, + iwp,Co Py, — ko Py, = kn(Py,, = Py,) = i0yCn(Py, =Py,
and gear equations as:
0 0 k,, —Cpy e, Cos @,
0 0 Cn®y k,, e, sin @,
0 0 mzwf, -k, — ko Cn®g + Coo®, e, CoS @,
0 0 —(cpwy+com,) mwl —k, —kg e, sin @,
(33)

—my (iwy)* Py, —iwyca Py + kg Pr, 4 kn(Pr, =Py, ) = iwgc, (P = P.)
—m, (ia)g)ZPfgl/_ +iwgea Py, + kP, + km(Pfglj - Pfgzj) + ia)gcm(Pfglr - Pfﬂy)
my (iw g)ZPfgz,. +iwycoPr, —koPs, —kn(Pr, = Pf,) + i0yc,u(Py, — Py, )
mz(iwg)szgzj —iwgcoPr,, —koPr, = kn(Pr,, — P, ) —iw,cu(Pr, —Pr,)

By substituting the identified value of gear mesh stiffness (k,,) and gear mesh damping (c,,) from the first and second
steps, chosen geared-rotor parameters given in Table I and full-spectrum amplitudes at respective harmonics (P terms) in
equations (27) and (28) and resulting equations are simplified to get the combined form as:

[myjwp — k,, — kg Cp®, + Cy @), 0 0 i
Cn®@p + Cg @) —mla)g + k,, + kg 0 0
k., —Cp@), 0 0 e, Ccos @,
—Cpu®,, —k,, 0 0 e, sin @,
0 0 k., —Cp @y €, CoS @,
0 0 Cn®y k, e, sin g,
0 0 m2w§ —kn—ko  Cpw, t+ cpm,
i 0 0 —Cp®y — CWy m2w§ —ky — kg |

=y (@,)* Py, + iwpcs Py ks Py A kn(Py, ~Py, ) + i@y (Py, ~Pp )
+ ka Py, + kn(Py, ~Py,) + i@pc, (P, ~Pp )
+ koPy,, + kn(Py, Py, ) + i@pc, (P, —Pp )

+ koPy,, + k(P =Py,,) + i@pc,(Py, —Py )

plr

(36)

plr

—my (a)p)szp]i—ia)pcsle[
-my (a)p)szﬁr +iw,coPy
—m, (a)p)szpzj—incsszlm

—m, (wg)ZPfg]r—iwgc“Pfg” +ka Py, + km(Pfglr—PngV)—iwgcm(Pfg”—Pfng)
—my (wg)* Py, + iwgci Py, + ko Pr, + ky(Pr=Pr ) + iwgc(Pr,, —Py, )
—my(wg)* Py, —iwgcoPr, + koPy, + kn(Pr, —Pr,) + i@gc, (Py,—Py )

—hy (wg)zpngj + iwgCSZPfgzr + kfzpfgzj' + ko (Pngj_Pfglj) + iwgcm (Pngr_Pfglr‘)

In the third step of the identification problem, the matrix in equation (36) is pseudo-inverted using the regression fit for
identifying the pinion and gear runouts. The resulting form of the vector is written as:
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Table I. Gear mesh vibration problem assumptions
Item Measure Worth
Radius of shafts Meter 0.0055
Shafts damping ratio No units 0.01
Length of shafts Meter 0.190
Drive gear mass Kilogram 0.310
Output shaft gear mass Kilogram 1.270
Count of driven gear tooth No units 35
Count of drive gear tooth No units 16
Driving gear RPM RPM 660.0
Torque of driven shaft N-m 0.110
Modulus of elasticity of shafts M Pa 2x10°
Stiffness of shafts N/m 1x10°
Stiftness of gear mesh N/m 6x10°
Gear mesh damping ratio No units 0.02
Gear mesh mass Kilogram 0.3010
Gear mesh damping Ns/m 77.780
Number of harmonics No units 5
Mean TE Micron 50
Gravitational acceleration m/s> 9.81

Fluctuating TE in x (harmonics Micron €1 40

of peak-to-peak TE) o 25
€3 35
€14 20
€115 10
Phase of TE in x Radian 0.785
Fluctuating TE in y (harmonics Micron €yl 30
of peak-to-peak TE) e 15
€n3 25
€y 10
€5 5
Phase of TE in y Radian 1.570
Pinion runout Micron 200
Gear runout Micron 300
Phase of pinion runout Radian 1.047
Phase of gear runout Radian 2.094
€, Cos @, €pl
SV I
g~ Fs gl
e, sin @, €y

On noting equation (37), the pinion and gear runouts
are estimated using the sine and cosine trigonometric
relations by combining the first and second components
and then by combining the third and fourth components as:

— 2 2 . — 2 2
ep = \/ epl + 6‘[727 € = V egl + egz

From the first and second components of equation (37),
we get the initial phases of the pinion and gear runout
frequencies which are estimated as:

(38)

b, = cos™! (e, /e,); be, = cos™! (e, /e,) 39)

With this three-step process, the estimation of all
eleven-gear mesh DTE parameters that influence the lateral

responses of the spur geared-rotor system with parallel
shafts has been presented. Now through numerical simula-
tion, the displacement responses are generated and analyzed
for chosen system parameters. These responses will be used
to evaluate the proposed IA to get the estimation of the
chosen system parameters.

V. GEARED-ROTOR RESPONSE
NUMERICAL SIMULATION

The equations of motion of geared-rotor system are solved
numerically using the Runge—Kutta technique in MATLAB
with function ode45 for time domain solution. Tradition-
ally, the transformation of the calculated solution into
frequency domain FFT gives information about various
frequency components existing in the vibration spectrum. It
contains both magnitude and phase information of response
to analyze the system dynamics. However, the response
spectrum does not indicate about relative phase direction
among different vibration signals. In addition, it fails to
provide the direction of the pinon and gear harmonics with
respect to the direction of the drive shaft.

The geared-rotor vibration signals in the x and y
directions are plotted for two transverse directions to get
orbit. It may include multiple components of the forward
and backward whirls. Both magnitude and phase of various
frequency components are required to get the actual shape
of the rotor orbit. Full-spectrum plot is a convenient tool to
identify whether the orbit at a frequency component is of
forward or backward whirl with respect to rotor spin
direction [26]. Rao and Tiwari [45] analyzed geared-rotor
response to detect qualitatively the asymmetric TE using a
full-spectrum plot. Relative phase correlation of two vibra-
tion signals was used in a full-spectrum plot to split the
geared-rotor frequency into the forward (positive) whirl
frequency component and backward (negative) whirl fre-
quency component, which constitute the orbit. For gears
due to asymmetric TE, the forward and backward whitls
come into existence, and with conventional FFT methods
this asymmetry cannot be found. In conventional FFT
methods, both forward and backward whirls overlap at
the same frequency.

Displacement responses are calculated in the time
domain using linear differential equations of motion using
geared-rotor data given in Table 1. Figure 3 shows the orbit
plot using numerically calculated time domain response.
Different orbit shapes for the input and output shafts are
attributed to different parameters chosen for the pinion and
the gear. Figure 4 shows the full-spectrum response in the
form of Bode plots calculated using fftshift function of
MATLAB applied on the numerically calculated time
domain response. The response displays the features of a
grouping of multiple harmonics. The five harmonics 176,
352, 528, 704, and 880 Hz are manifested in the full-
spectrum response in the forward and backward whirl
frequencies, of which the initial three harmonics are domi-
nant and the rest of the two are minor due to the assumed
lower TE at higher harmonics. The phase shift is also
observed at each of the harmonic in Fig. 4 for both input
and output shaft responses. The utility of full-spectrum
response is to analyze the whirl amplitudes of different
harmonics present in the gear drive due to the TE.

The impact of measurement noise is analyzed using
numerically generated response by mixing 5% Gaussian
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Fig. 4. (a) Full-spectrum Bode plot of drive shaft; (b) full-spectrum Bode plot of driven shaft.

white noise into signal in timescale. Full-spectrum plot in
Fig. 5 with measurement noise shows that the noise has
hardly any effect on the response in the frequency range of
analysis.

VI. NUMERICAL TESTING OF IA

To test the three-step IA described in Section IV, estimation
of TE parameters is performed using numerically generated
full-spectrum responses (P terms, which are real and imag-
inary components of full-spectrum amplitudes) as shown in
Fig. 4(a) and 4(b) where magnitudes of the real and
imaginary components are shown for the first harmonic
of gear mesh frequency. Since the present IA is based on
linear least-squares fit, the algorithm is not dependent on
initial guest and no iteration is involved. For improving the
conditioning of matrix, suitable scaling has been done.
The estimates are compared with parameters chosen
for simulating numerical responses as given in Table II.
The percentage deviation of the estimates with assumed
parameters for numerical simulation is also presented. It is

observed that the proposed IA estimates are perfectly
matching with the assumed values without any deviation.
Also, the estimations are checked by changing the harmonic
number from 1 to 5. For all five harmonics, the estimates are
perfectly matching with assumed variables.

To test the robustness of the proposed IA against noise
present in measurement data, 1 % and 5 % white Gaussian
noise is introduced in the numerically simulated data. The
full-spectrum response is plotted with 5 % Gaussian noise,
as shown in Fig. 6, in the amplitude and phase form (Bode
plot), and is used for the identification purpose. The com-
parison of phase between these two plots, Figs. 4 and 6,
shows the effect of adding 5% Gaussian measurement noise
with quickly varying phase in the entire spectrum in Fig. 6.

With the same identification procedure used without
noise case, the estimates are calculated with measurement
noise in the full-spectrum response by increasing from 1%
up to 5% serially. It is observed that with noise the estimates
of gear mesh stiffness and mean TE are deviating. Table II
shows the percent deviations of estimates with noise and
without noise for varied presumed gear mesh parameters by
changing the shaft speed, gear mesh stiffness, mean TE,
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Fig. 5. (a) Orbit response plot of input shaft with noise; (b) orbit response plot of output shaft with noise.

variable TE, gear runouts, and damping. It is observed that
without considering measurement noise, the identified es-
timates are perfectly matching with presumed parameters
used in numerical simulations, as shown in Table II, for the
first harmonic.

Table II shows the percent deviation in the estimates
with the increase in measurement noise mainly due to
deviation in gear mesh stiffness and slight deviation in

Table Il.

mesh TE in all cases, which is sensitive to static deflection.
Also, it is observed that without passing the deviated gear
mesh stiffness and the mean TE due to measurement noise
in the second and third steps of IA, the estimates of TE and
runout parameters are robust to the measurement noise. To
avoid these deviations, one may calculate gear mesh stiff-
ness using the Hertzian contact formulation presented in
Flek et al. [37] analytically or by the FE model.

Identification summary based on numerical simulation of first harmonic

Varied parameter

Percentage deviation of identified parameter with assumed one (%)

Following parameters are
varied to check the robustness

of IA km €m Cm exi(t) efyi(t) Dexi Deyi €ep €g bp dqg
Noise Speed (RPM)

0 660 0 0 0 0 0 0 0 0 0 0 0
0 1320 0 0 0 0 0 0 0 0 0 0 0
1 660 -96 1.8 0 -12 -14 13 -5 0.2 0.1 -0.1 0.04
5 660 -99 10 0 4.1 -16 103 -52 1.1 0.7 -0.6 0.2
Noise Gear mesh stiffness (N/m)

0 6e8 0 0 0 0 0 0 0 0 0 0
0 7e8 0 0 0 0 0 0 0 0 0 0 0
5 6e8 -99 10 0 4.1 -16 103 -52 1.1 0.7 -0.6 0.2
Noise Mean TE (pm)

0 10 0 0 0 0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0 0 0 0 0 0
5 10 -99 10 0 —4.1 -16 103 52 1.1 0.7 -0.6 0.2
Noise Variable TE (um)

0 10 0 0 0 0 0 0 0 0 0 0 0
0 50 0 0 0 0 0 0 0 0 0 0 0
5 10 -99 10 0 —4.1 -16 103 -52 1.1 0.7 -0.6 0.2
Noise Runouts (um)

0 100 0 0 0 0 0 0 0 0 0 0 0
0 200 0 0 0 0 0 0 0 0 0 0 0
5 100 -99 10 0 4.1 -16 103 -52 1.1 0.7 -0.6 0.2
Noise Damping

0 0.01 0 0 0 0 0 0 0 0 0 0 0
0 0.02 0 0 0 0 0 0 0 0 0 0 0
5 0.01 -99 10 0 4.1 -16 103 -52 1.1 0.7 -0.6 0.2
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Fig. 6. (a) Full-spectrum Bode plot of drive shaft when noise is introduced; (b) full-spectrum Bode plot of driven shaft when noise is

introduced.

Table Il

Identification summary with noise and higher harmonics

Varied parameter

Percentage deviation of identified parameter with assumed one (%)

Harmonic number
is varied from 1 to
5 for 660 RPM

speed km em Cm eni(t) eryi(t) Pexi Peyi ep ey $p Z
Noise Harmonic

5 1 -99 10 0 4.1 -16 103 -52 1.1 0.7 -0.6 0.2
5 2 -99 10 0 -5.5 -5.6 7.6 -3.6 1.1 0.7 -0.6 0.2
5 3 -99 10 0 -9 -9 28 -13 1.1 0.7 -0.6 0.2
5 4 -99 10 0 -7 -7 47 -23 1.1 0.7 -0.6 0.2
5 5 -99 10 0 -2 -2 64 =31 1.1 0.7 -0.6 0.2
Two speeds data at

660 RPM and 1260

RPM are fed to IA

5 1 -99 10 0 -10 -15 40 -18 1.1 0.7 -0.6 0.2

Table III shows the deviation in parameter estimates
for higher harmonics from 1 to 5. These deviations are
helpful in correcting the parameters of the actual gear drive
for practical purposes. Also, the deviations in estimates are
checked by feeding data from two speeds, which are
600 rpm apart to the IA to improve the least-squares fit
estimates. The last part of Table III shows that with two
speed data, the deviation in the phase of TE has reduced from
103 % to 40 %, but the same has increased the deviation in
the corresponding fluctuating TE from —4.1 to —10%.

Vil. GEARED-ROTOR
EXPERIMENTAL PARAMETER RIG

An experimental geared-rotor system was designed and
fabricated for model validation through measured vibration
responses. It consists of two shafts supported on bearings,
and they were connected by a gear pair as shown in Fig. 7.
The test rig can accommodate different gear sets having
shaft center distance (CD) varying from 45 mm to 100 mm.

Threaded holes with 10 mm pitch are provided in the
mounting plate to insert the shaft with bearing heads.
Gear hub has 11 mm bore and 20 mm width (10 mm width
is reserved for face of gear) are designed and fabricated to
resist up to 50 Nm torque during the power transmission.
The experimental rig consists of two parallel shafts, the
drive shaft couples the motor shaft and the driven shaft,
which are loaded with a torque brake. The pinion and the
gear are mounted at the mid-span of these parallel shafts,
which are coupled due to gear tooth meshing. The gear
tooth is loaded in torsion to avoid separation of gears during
the experiment by a magnetic torquer with 0.11 Nm capac-
ity. This causes vibration at the gear mesh due to TE
introduced on gear teeth, which transfers to the bearing
blocks through the shafts.

The horizontal and vertical shaft displacements at gears
are captured using proximity probes, which are mounted on
the base plate. The eddy current-type proximity transducers
have the sensitivity of 7870 mv/mm. The displacement
probe placement, motor, and magnetic torquer of the
experimental setup are depicted in Fig. 7. The reference
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Output shaft ‘ Bearing blocks ‘ ‘ Test gear set Variable frequency Induction motor
flexible coupling Drive
Fixture plate with Dlsplacem?nt probes Input shaft Reference
adiustment taps for measuring gear flexible COllplil’lg h
Magnetic torquer J P vibration phase
Fig. 7. Experimental rig and probe positioning at the Acoustics and Vibration lab of IIT Guwahati
signal is measured on the input shaft, close to coupling Amount of
using another proximity probe. This reference signal is used lead
for the output shaft by expanding the timescale using a gear crowning

ratio of 2.18.

The power was given to the motor through a variable
frequency drive (VFD), as shown in Fig. 7, to adjust the
input shaft speed. The magnetic torquer was set close to a
maximum capacity of 0.1 Nm of resisting torque with the
adjustment key provided with it. The experimental probes
were connected to an oscilloscope to adjust the sensor with
a screw to maintain a specified gap between the probe and
the shaft for getting the right measurement. Each probe was
connected to an eight-channel data acquisition system to
digitize the signal for further processing.

The gear set has a gear ratio of 2.18 with the driven
shaft mounted with a bigger gear. When viewed from the
hub of gears, the torque transfer happens through the left
flank. The smaller gear is fabricated with 5 pm average
profile crown and 0.2 pm average lead crown. The bigger
gear wheel is manufactured with 2.2 pm average profile
crown and 4.5 pm average lead crown. The schematic of the
crowning geometry is shown in Fig. 8.

A VFD-M power source was used as a regulator to
control the speed of the motor as per the requirement of the
shaft spin speed. The motor was set to run at 970 rpm
(16.15 Hz) for taking measurements. The geared-rotor
experimental rig was set to rotate few minutes to attain
steady state condition before taking the measurement. The
dSPACE DAQ system was utilized to store the measure-
ment signal at a sampling frequency of 5,000 samples per
second. A reference signal was utilized for acquiring dis-
placement signals of the shaft for complete multiple shaft
rotational cycles, that is, for wt =2nn, where n is the number
of complete cycles during postprocessing of acquired

Fig. 8. Crowned spur gear tooth.

signals. Using complete cycles of signals avoids leakage
error [46] and gives consistent estimates while using the TA.
The horizontal and vertical measurements taken on time-
scale on both input and output shafts at the pinion and the
gear are combined for each shaft to plot their orbits as
shown in Fig. 9.

VIil. FULL-SPECTRUM RESPONSE
ANALYSES FROM THE
EXPERIMENTAL RIG

Gear mesh frequency of 258.4 Hz is calculated from the
number of teeth in the pinion (16) multiplied by its rota-
tional frequency (16.15 Hz). When the plots of orbits are
analyzed, it is found that they are different for both input
and output shafts. Also, many cycles manifested in the orbit
plot specify the presence of several frequencies. Phase
compensation of the measured signal is done by subtracting
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Fig. 9. Experimentally measured orbit plot of (a) drive shaft (b) driven shaft.

the phase of input and output shafts with the reference
phases on the input and output shafts (output shaft phase is
adjusted with the help of gear ratio) with the help of
measured reference signal at the input shaft. Phase com-
pensation helps to avoid leakage errors by synchronizing
the measurements related to different harmonics present in
the system.

One block of measured time domain responses is
chosen for transforming them into frequency domain.
The phase-compensated full-spectrum plot of experimental
rig responses is shown in Fig. 10, which shows predominant
peaks at five-gear mesh forward and backward whirl fre-
quencies. These harmonics are at 258.4, 516.8, 775.2,
1033.6, and 1292 Hz. The asymmetric amplitudes of the
forward and backward whirls of all five harmonics, which
excite simultaneously at all harmonics, are seen in the
full-spectrum response. The asymmetric full-spectrum am-
plitudes prove the asymmetric static TE hypothesis pro-
posed in this research with the help of the system model and
the numerical simulation in the research work.

-5 a
3 x10 (@)
s E
O
EE
272
Q=
£ 2 J‘
< .5 NS O W
-2000 -1000 0 1000 2000
5 Frquency (Hz)
S~
23
T R2
£ o
0 =
220
g 5 ‘
2 &2
A v
o -2000 -1000 0 1000 2000

Frquency (Hz)

As there is a relatively small TE of the fourth and fifth
harmonics in the present gear, relatively smaller amplitude
peaks are reflected in the respective frequencies in the full-
spectrum response. Also, there is a relative difference in the
peak amplitudes in the forward and backward whirls, which
demonstrates asymmetricity in TE. Peak amplitudes at the
driver and driven gear rotational frequencies are also seen at
16.15 Hz and 7.38 Hz, respectively.

IX. IDENTIFICATION OF GEAR MESH
DTE PARAMETERS USING
EXPERIMENTAL RIG
FULL-SPECTRUM RESPONSES

After getting full-spectrum responses (both magnitude and
phase) of test measured signal, the identification of the
experimental rig gear mesh dynamic TE parameters is
attempted in this section. Phase-compensated full-spectrum
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Fig. 10. (a) Full-spectrum responses of the input shaft from the experimental rig; (b) full-spectrum responses of the output shaft from the

experimental rig.
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Identification of mean STE and gear mesh stiffness using Eqn. (22)

\4

Identification of fluctuating asymmetric TE and their phases using Eqn. (30) —

h 4

A Change the

Identification of gear runouts and their phases using Eqn. (36)

harmonic

l

Yes

If estimates are completed No

for all 5 harmonics

number to get
estimates up to

S harmonics

All 11 DTE parameters estimates are ready, repeat the steps for all 5 harmonics

Fig. 11. Identification algorithm for the estimation of geared-rotor parameters.

responses (real and imaginary components of full-spectrum
amplitudes) from the experimental rig of all the five har-
monics of gear mesh frequencies along with responses at
the gear and pinion shaft rotational frequency, as shown in
Fig. 10, are used in the IA.

The numerically tested IA is discussed in Section IV,
which has three steps in multiple parameter estimation
procedure. The schematic of the three-step IA is shown
in Fig. 11. These estimates are presented in Table IV.
Table V shows percentage deviation of the identified
parameter using the first harmonic by capturing measure-
ments under the same operating conditions. It shows only
minor deviation.

X. VALIDATION OF GEARED-ROTOR
SYSTEM MODEL AND THE IA

This section is dedicated to the validation of the proposed
geared-rotor system model discussed in Section II and for

further validation of IA developed in Section IV. Using the
full-spectrum responses measured through the experimental
rig, the estimated dynamic TE parameters are obtained and
presented in Table IV. These estimates are fed to the
mathematical model for numerically generating the full-
spectrum responses at both input and output shafts. These
numerically generated full-spectrum responses are now
compared with the measured full-spectrum responses
from the experimental rig for validating both the system
model and the TA for the correctness of estimates.

For this purpose, numerically generated full-spectrum
responses of the input shaft generated with the dynamic TE
parameters estimated through the experimental rig are
compared with the measured full-spectrum responses
from the experimental rig as shown in Fig. 12. The com-
parison shows perfect matching of the gear rotation fre-
quency, pinion rotation frequency, and gear mesh
frequencies up to five harmonics. Also, we can observe
the perfect matching of amplitudes at the pinion and gear
shaft frequencies and higher harmonics of the gear mesh

Table IV. Estimated experimental rig gear mesh DTE parameters

Parameter Units Identified value

Gear mesh stiffness N/m 23.6x10°

Mean transmission error pm 0.23

Gear mesh damping Ns/m 2.445%10°

Pinion runout pm 7.81

Gear runout pm 1.96

Phase of pinion runout rad 0.867

Phase of gear runout rad 2.69

Variable TE harmonics 1 ond 3 4t 50
Variable TE in x-direction pm 99.94 6.09 2.98 4.65 0.57
Variable TE in y-direction pm 17.15 3.36 4.35 3.26 2.04
TE phase in x-direction rad 0.49 0.65 0.97 2.33 1.47
TE phase in y-direction rad -0.40 -0.89 -1.78 -0.55 0.30

JDMD Vol. 3, No. 2, 2024



128 Bhyri Rajeswara Rao and Rajiv Tiwari

Table V. Deviation of identified parameters with repeated measurement

Experiment repeat

Percentage deviation of identified parameter by repeating test (%)

Identified quantities are compared

with Table 4 (Experiment1) km em Cm ©ni(f) enilt) dexi deyi € (- dp dg
Experiment 2 0.3 0.2 0 0.1 0 0.1 0.2 0.1 0.1 0.1 0.1
Experiment 3 0.2 0.1 0 0 0 0 0 0.07 0.07 0.01 0.1
Experiment 4 0.04 0.02 0 0 0.1 0.01 0.1 0.08  0.08 0 0
Experiment 5 0.2 0.04 0 0.1 0 0 0 0.11 0.1 0.02 0
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Fig. 12. (a) Numerically generated full-spectrum responses of the input shaft by feeding estimated dynamic TE parameters of the
experimental rig; (b) full-spectrum responses of the input shaft from the experimental rig.

frequencies of the input shaft in Fig. 12. Here, we can also
observe the asymmetry in amplitude in both forward and
backward whirls at the same harmonic due to the asymmet-
ric TE, which is present in the system model, and same is
manifested in measured response from the experimental rig.

XI. CONCLUSIONS

A novel asymmetric TE-based geared-rotor system model
has been developed. The equations of motion of the system
model have been obtained using the Lagrangian dynamics.
The response generated using time domain numerical solu-
tion is transformed into frequency domain to obtain the full-
spectrum form. It depicts variable amplitudes in the forward
and backward whirl frequencies.

A novel three-step IA has been developed to quantita-
tively identify the ten-gear mesh parameters. The algorithm
is initially tested against numerically simulated full-spec-
trum response. This identification summary shows a stable
solution even when the Gaussian measurement noise is
considered in the numerical identification. Also, it is
observed that the estimates improve on considering re-
sponses for more speeds.

The geared-rotor experimental rig is designed and
fabricated to authenticate the system model and IA. The
full-spectrum responses are generated using experimentally

measured responses using displacement probes. Using the
same three-step IA, the geared-rotor experimental rig
parameters are identified.

Finally, in the validation part, the full-spectrum
response has been plotted using experimentally estimated
parameters with a numerical model and by comparing this
full-spectrum plot with that of the original experimental
rig full-spectrum plot. Excellent correlation between these
two full-spectrum plots is observed at the input shaft.
Overall, the objective of getting reasonably good estimates
of all dynamic parameters of a geared-rotor system is
achieved using both numerical and experimental data.
The attempt to identify gear mesh dynamic parameters
by linear model of the geared-rotor system using test-
measured data will surely give new direction for solving
gear real-world problems.

The proposed gear parameter IA facilitates researchers
for identifying all the critical gear parameters using lateral
vibration measurements using simple displacement probes
(by simple displacement probes, it is practically easy to
access gear transmission shafts with displacement probes)
rather than mounting high-quality encoders to measure
the TE of gear mesh by phase demodulation of the pulse
signals of encoders as followed in transitional approach.
The identified parameters using the proposed IA are very
much helpful for researchers in a wide range of industrial
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applications in automotive and aerospace applications in
fault prediction, design optimization, and preventive main-
tenance to avoid catastrophic failures.
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Appendix A.Time domain to frequency domain transformation using Euler’s
complex identity

From Euler’s complex identity, we can convert the exponential terms into the sine and cosine terms as,

dl@+tn) = {cos(wyt + ¢,) + jsin(w,t + ) }; eI @H) = {cos(w,t + ¢,) — jsin(w,t + ¢,)} (A-1)
@+t = {cos(w,t + ) + jsin(wyt + o) }; eIt = {cos(w,t + p,) — jsin(wyt + )} (A-2)
@40 = {cos(w,t + ) + jsin(w,t + ¢,)}; €@t = {cos(w,t + ¢p,) — jsin(w,t + ¢,)} (A-3)

which gives

sin(w,t + ¢,) = (el @) — 7@ +0)) 1255 cos(w,t + ) = (b)) 4 e7i@t+40)) /2 (A-4)
sin(wgt + ) = (@4t — e7i@:+6:)) /25 cos(wyt + By) = (@ He) 4 ¢7i(@et40)) /2 (A-5)
Sin(wet + ¢€) = (ej(wet+¢e) — e_j<wat+¢e))/2j; cos(a)e[ —+ ¢e) = (ej(wﬂt+¢r> —+ e_j<wﬂt+d)ﬂ>)/2 (A-6)

On substituting above equations (A-4) to (A-6) in the force vector, equation (14), as,
ke, + 0.5m e, (e @+ h) 4 emi@pitdy))
gpwp(ej(wp[+¢p) — e—j(w,,r+(/),,)) - egw (ej(ng’(/’g) —_ g_j<wgt+¢g>)
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The force given in Eqn. (14) is acting at the gear mesh pitch point, which is resolved in the x and y components. Forces
are now split into various components as follows,

k e jmlepwg(ejﬁwpt+¢p) + e_ijpt+¢[)))

f(t) _ _mlg _|_ kmem + l _mlepwlzj(e.l(("pt"'d)p) —_ e_](wpl+¢p))
B —kynen 2j jmzega)g(ej(”’g”‘ﬁx) + i@ 1))
—npg — kmem mZega)g (ej(“’gt+¢g) — e‘j(wg’+¢g))

623] e. . (ej(”’pt+¢p) — e—j(ﬂ)],tJr(/)],))

L:IJe Cl) (e‘<ath+¢1,) + e—j(a)Pt+¢l,))

+ 232 oo (e'(wgrmg) — ei(@tt4,))
J]ega)g(ej(wgt+¢g) + e—j(wgt+¢g))
_%jep(€j<wpt+¢p) + e‘j(wl,t+¢p)) e,w, (ej(m t+dp) _ p=ilwpttd,) ) — e, (ej Wt+g) _ pilog t+r/)g))
+ %‘lel’(ej(pr%) — et Cn | jepo (eJ(wpf+¢p) + emi@prtdy)) +je,w (e_] (@gttd) 4 gmi(@gttay))
_%jeg(€j<wgt+¢g> 4 e—j(wgr+¢g)) 2j —e,, (ej(w,,r+</1p — e w,,z+¢,,)) e a)g(el(“’s’+¢g) _ ity ))
_l%eg(ej(wgf“r‘ﬁg) — e_j(wgt+¢g)) —Je @ (ej(a) t+¢,) + e—](m],l+¢p)> —Je w (ej(w t+y) + e—J((u t+(/)g))
]

i(exiw (ej(i(l]gtJr{pexi) + e—j(im H’(/’«“)))
RN +j(ieyw (e](’wel+¢5w) +e (’w5t+(/’e\,)))
m Z ( €x,we(€]<ia}”t+¢”xi) + il t+¢5")))
Jrj(_ieyiwe (e.i(ia&l-&-d'e},) +e (lw£t+4}ew)))

_jep(ej(mpt+¢p) + e—j(%ﬂrfﬁp)) _|_jeg(ej(wgt+¢g) =+ e—j(wgt+¢g))
k, e, (el @rth) — gipitd)) 4 o (@it - emil@toy))
2j jep(ej(wpfﬂ/)p) + e—j(wpl+¢p)) - jegwg(ej(wgtwg) + e—j(wgf+</>g))

—ep(ej(“’t”+¢l’> — eTi@rtdy)y — eg(ej(wgtmg) — i@t )

(e_] iw, t+t/)( _ —J i@t +, ;) )
Xl
S K iRinaes
2] = ex,(ej iw, (/)"n _ o+, )
i= e (e] io, t+¢eH _ (lm t+t/lg)l))
Vl
(A-8)
Now, defining complex displacements as,
ri=x;+jy;and r; =x; +jy, (A-9)

The equations of motion Eqn. (11) can be written, in terms of the complex displacements as given in equation (A-9) as,

myry + (C1 + C)it = Cuia + (Kgy + k)1 = Ky = £ (1) (A-10)
My + (Cop =€)y = Cpiy + (kg + Ky )1y = kyry = f(2) (A-11)

with
frl(t) zfxl +jfy1 and frZ(t) zfx2 +jfy2 (A'lz)

Defining a force vector in complex form as,

wo= {7 = ) =
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Replacing for force component terms form Eqn. (A-7), to get
me w]z)(ej(m pl+d,) +e —j(w,t+,) )
f (l) — (kmem) +j(_m1g + kmem) +l —m,e,w, (e_](wpt+¢p) —-e J(pr—d)p))
g - (—kmem) +J(—m2g - kmem) 2 mye, wz(gl(wgt+¢§) + e (wgt+d,) )
+ m2e a)2<ej(a’gt+¢g> — e_.l(w t+¢g))
e. (ej(a]pl+¢lz) — e_j((upt+¢p)

A wgttdy) _ p=i(wgt+dy)

~—

JZLIJe 1) (e.l(‘%“"/’p) + e_J((Upt+¢p))
] 2:2Je ) (e](m t+dy) +e —j(w,t+ep, )) }

\_/\/\/

(
—_ kz»_Vj]jep (ej(mpt+¢p> —+ e_j (pr'(pp)
’ (

+J ( (wpt+¢p) —e J(w[)t+¢p))
];‘;Je ej(mgt+¢g) + e_j((‘)gt"'[ﬁg) ] }

e, (e i(0gttde) — emil@e+dy))

_je @ (ej(pr'd’p) — e_j(w;)t+¢1)>) +_]€ 0] ( (wgt+¢g> — e (‘U t+¢g>)
cm +jep (e](wpt"'(/)p) + e (wpt+¢p)) +_]€ wg( (wgt+¢g) + e J(wgt+(/’g))
ty jepwp(eﬂwpmﬁp) — @)Y — je, @, (el @t — i@ty
_jepwp(ej(wpt+¢p) + e_j<wpt+¢p)) _jegwg<ej(wgt+¢g) + e_j(ng"ﬁg))
(A-14)
_ep(ej(w,,t+¢p> + eTi@pttdy)) 4 eg(el<“’ A [T )
km + ep(ej(wpt+¢1)) — e_j(pr"/’p)) + eg(e](wgt+¢g> —_ e (wgt+¢g))
ty e, (@) eI @tth)) — o @, (l(@st+ds) 4 ei@ctdy))
_ep (ej((ﬂpH'f/),,) - e_j(mpl"'(/)p)) -_— eg(e](mgH'{/]g) -_— e_.](”)gt+¢g))
i(eyw, (€@ FPes) 4 gmiliot+dey) )
+ c7m n +J(le ) (e'(lwef"'(pfw) +e (lwﬂt+¢e‘,)>)
2 £ i(—eyw, (el(i'wfr+¢w) + eTlwettee,)y)
+]( le}la) (e|(1w1,1‘+¢(,y) +e —j(iw, t+¢e ))>
_j(exl(emwptwg,) — iliwt+d,,) )
ko ie.. e]<””£t+’/’ey,-) _ ta}et+r/)e"
playn ] Gt - )
2 P (4 jey (el Pey) e j(iw i+, )
(—iey[(e](’w”t""ﬁ"yf) _ iliw.t+g,,) )
On collecting similar exponential terms, to get
(k e ) +J(_m1g + kme )
fr(t) -
—kpmen) +j(—mag — kie,)
mpe a),,e Wﬂe ot +]cmep(upe i gt +Jcnega)gel‘/’gel‘”x '
lk epewpejwp 4+ 1 k epejszejwp 1 k eye —itp p=iwpt k e,e —itp g=iopt
+5 k e, eltselvet 1 k e, elts el 4 L k ege it oI ——k e.e i giogt
mye a)gemge]“’ ¢ — jeue,m,e J‘/’ﬂ ‘J“’P —jcm ega)geJ‘/’geJ"”
kmepe_|¢pe_|m t kmepeJ(/)pe_lmpt + lkmepe_J¢pe_J“],1t lk e e J[/)p _jmpt
——k e el — 1k, e ePced?! — 1k, e eiPceTiO 4 lk e e s eI
2le e, eltr elpt —2—Jepwpe ity g=impt — 2—Jepa)peJ¢PeJ“’l’ —2—Jepa)pe ~itp eIt (A-15)
+ Co egw ey/)ﬁ elet Czsjz egwge—]qﬁg e Iwgt + Czs_;ega)gel"/’ge]mg + %egwgeﬂ’/’g eIwgt

+

_Ll iy piopt _ kst , =ity p=i® kst o ity pi@pt _ kst o o=ithy p=iwpt
e,el’re ste,eIPreT It 4+ 5 epe?re Srepe et
le/’geJm 1 kz ege—Jrﬁge—Jw r_ %e P8 it 4 ’ﬁe e~ i8 p=iwgt

le eCrm e e] (o) +J€ e]((/fu ) i(iw,1) + (e .e =i(¢bey;) +_]€ e (¢¢),)) —j(iw,t)
P e eJ¢fx1 +_]€ e]¢e), )e_] iw,1) _(e o j(be,;) +]€ o (fﬁe‘,))e —j(iw,t)

Z{ —je 6] (ey;) + e, eJ ¢e‘.i )ej ia)() (]e e~ j(¢ey;) eye (‘fh )) j(iw, 1) }
(jeielPes) —e, e'(/'”w Jel@et) 4 (—je e i) + eye Ade)y gmiliae)

Excitations at various frequency components are divided into the forward and backward whitls, by regrouping the
coefficients as per its whirl components, to get
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(kmem) +j<_m1g + kmem) 0 .
f.(1) = + e’
1+ {0)

(_kmem) + j(_ng - kmem

4 { (mie,ane e — ke,e™) + j(c e, 0,67 + ce,e7i) — kye,e i }e‘j“’v’
knepe ¥ — j(ce,0,e7)
ke, @ + j(cpe,mqel?s) : 0] _;
) ) . JW,t —jw,t (A-16)
+ { (mye e — ke, eJ‘ﬁc) —J(C e,w, e”’g + Cpe,mel?s) — ke el T o

+ Z{ in (e V) + e, 7)) + 5 (<jege V) + e o)) }eiomgz)
D (g6 Pe) + jei (@) )—7'”(—]6)C ) e é (Pe)

lw(‘CIH

+ Z { lweLm

(¢e”) + Je,}e ) (
k,

e —i(dey;)
" & ¢“ +e i€ )) }e—j(iwet)
exze i(ey) +]e),e o ) +5 )

=l
2 (= ) +eye Ay

The static, and the forward and backward whirl components are present in Eqn. (A-16). For the simplicity, the static
components of force vector are expressed, as,

Sl = Slr +jSlj = (kmem) +j(_mlg + kmem) (A'17)
S2 = SZr +jS2j = <_kmem) +j(_m2g - kmem) (A'lg)

For input shaft, we get

R thl’ + ]Rfd =t Z {la) o (exie]((]ﬁ%) +j€yi€i(¢<))'i>) +
=1

Kon
2

(—jeuel @) + ey,-e“""’ﬂ’)} (A-19)

On separating the real and imaginary components, we can write
" iw,C
eCm . ko . .
Ry = E > {exi cos ¢, — eyismd)e)i} +2 {ex,» sing,  + e,;cos g, },
i=1

n .
I®,C,, i K, )
Ry, = g > {ex,-smqﬁ%_ + e, cos ¢ew} — B4 e;Ccosp,, — eyisznzﬁeﬂ_

i=1

(A-20)

Similarly, for output shaft, we get

iw,c,, k, .. (b
Ry, =Ry, +iR;, _+Z{ e o) + jed )y + 7(Jex,eJ (e) —ey,-é%))} (A-21)

On separating the real and imaginary components, we can write
"~ iw,C
eCm - ky - .
R, =-— E — {exi cos ¢, — eyism(l)eﬂ} - {exi sing, . + ey;cos ¢, },
i=1

n .
,C, . k, .
Ry, =— E 2 {exismqﬁeﬂ + e, cos ¢eﬂ} + 2] eqcos g, — ey,'smqﬁgw

i=1

(A-22)

where subscripts: f signifies the forward whirl, r signifies the real part and j signifies the imaginary part.
In the same way, for the backward whirl of the gear mesh frequency, we have
For the input shaft, we define

. ] eCm j . —i(¢, . j —j
Ry, =Ry, + Ry = Z {sz (exe I P) + jeyie o)) — (<jee i P) + ee J(¢””‘))} (A-23)

i=1
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On separating the real and imaginary components, we can write

n

3 iwC ~ Wl s
Ry = 5 {exi cos ¢, + eyism¢eyi} + 3 { ey sing, — e, cos ¢e,,» ;

o iw,c (A-24)
Ry = Z % {—exisimﬁe”_ + e, cos ¢e).,-} + % {exi cos ¢, + eyisimﬁeyi}
i=1
For the output shaft, we define
. 2 w,C (s T ky . -i(d.
Ry, = Rpor + jRp 25 = Z {_ ; " (eqe ) + je,e o)) — 7m (jexe ) — eyie J(¢’""))} (A-25)
i=1
On separating the real and imaginary components, we can write
" iw,c ) ‘ .
Rble = _Z % €y COS ¢eﬂ» + eyiSlnq&e“‘ - Tm €y; SIn ¢en- - eyi cos d’e).i ;
= (A-26)

iw,cp, . X .
Ry =— E 5 {—exisznqﬁele + ey, cos g{)ew} — 2 Je cosgp, + eyismd)eyi

i=1

R;, = e cos,, — ey,-szn(peyi; R; ; = eysing, , + e, cos qﬁeﬂ

where . .
Ry, = e,;cos ¢, + ey;sin qﬁeﬂ_, R, = —eysing, + eycos ¢eﬂ_

where subscript b signifies the backward whirl, r signifies the real part and j signifies the imaginary part.
As there are no forward whirl components of pinion runout frequency component, we can write from Eqn. (A-16)

pr] = O; prz = 0 (A_27)

Similarly, the pinion backward whirl runout frequency component is written as,

Ry, =Ry, +ijp” = (mlepwlz, —kye, — kslep)e_j‘ﬁﬂ + j(cnepm, + cslep)e_j‘f’ﬁ (A-28)

Ry

P2

=R,

'p2

iRy, = kmepe‘j¢ﬂ - jcmepwpe‘j(/’rf (A-29)

The real and imaginary terms, for the input shaft, are written as

Ry, = (mie,w; — ke, —kge,) cosdy, + (cpe,w, + c1€,0,) sin g, (A-30)
R, = (cme,, + c51e,0,) cos ¢, + (—mlel,a)ﬁ + ke, + kg ) sin g, (A-31)

Similarly, the real and imaginary parts, for the output shaft, are written as

Ry, = (kne,)cos ¢, = (cue,m,)sing, (A-32)
Ry, = (—cne,w,) cos ¢, — (kye,) sing, (A-33)

The gear forward whirl runout frequency component is written as,

Ry, =R, +iRy, = (kyey)eis —j( = c,e,m,)ei?s (A-34)

gl gl

The real and imaginary terms, for input shaft, are written as,
nglr = kmeg cos ¢g - (Cmegwg) sin ¢g (A-35)

Ry, = (cnegwy) cos g + ke, sin g, (A-36)

JDMD Vol. 3, No. 2, 2024



136 Bhyri Rajeswara Rao and Rajiv Tiwari

Similarly, for the output shaft the forward whirl gear runout frequency components is written as,

Ry, =Ry, +iRs, = (me,0 —kye, — kpeo)ei?s — j(c e w, + cpem,)ei? (A-37)

On separating the real and imaginary parts, we get
R, = (mzega)§ — ke, —kype,) cos g + (Cpe,m, + Cpe,m,) sin g, (A-38)

and

oy = (—Cm€s @y — Cpy,) €08 by + (Mye g — ke, — ke, ) sin g, (A-39)

As there is no backward whirl of the gear runout frequency, so we can write
Rbgl = 07 Rbgz = 0 (A'40)

Appendix B. Grouping of the forward and backward whirl components

Similar frequency components are collected and expressed them in frequency domain for the static, forward and
backward whirl components, as follows

Slr = kmem; Sl'

j = M8 + kmem; SZr = _kmem; SZ‘ =

j —mg = km € (A'4 l)

St = (iweCulRy, + kR )/2; Sy = (iwecyRy, = knRy,)[2; A-42
St = (—iweCuRy, —kRy )/2; Sy, = (—iwc, Ry, + KRy, ) /2 (A-42)
Sb“r = (iwecmRbe, - kabL,)/27 Sbrlj = (ia)ecmqu_ + kabH)/2, A43
Sbl,z, = (_iwecmRb(, + kabL,/-)/z; Sb(,zj = (_iwecmqu - kabe,)/2 ( i )
On substituting Eqns. (A-41) to (A-43) in Eqn. (15), we get the force vector as,
NPESNT Ry +IiR | R, +IR, _~ R, + Ry ,
+ plr Il e]wl,t + 'plr plj e ]wpl + glr glj e](ugt
{ Sy + JSZJ pry + Jpr’?/ Rb,;z, +J byoj ngZr + J o2
(A-44)

R,  +iRy Se  + Sy i AV AT i
+ glr 2lj —]w + elr elj e/(m)[,t) + elr " Delj e—j(zmgt)
{Rbg +~] by ’ Z err +] ferj Sb +.]Sb )

e2r 2

On substituting forces from Eqn. (A-10) to Eqn. (A-11) and Eqn. (A-44) into Eqn. (11), equations of motion in a matrix
form is written as,

m 0 ;'] + Cs1 +Cpy —Cm };1 + kxl + km _km r —
0 my ;‘2 —Cy Csn + Cm i"z _km ksZ + k ry
51} {Rfl Jm}- { +JR, }_' {Rf +JRy }
+ plr P4 plopl 4 Dp1r P K eTIOpl 4 glr sl L plwgl 4 A-45
{52 Ry, + IRy, Ry, +iRs, Ry, + iRy, (A-45)

Ry, +IR, _ Sr.,, 1S, +JSs, ;
glr )" Dg1 joot + elr elj (tw 1) + Detr elj J(la)(,[)
{ Rbglr + JRb } Z { Sf¢2r+J ferj Sb + JSb )

92 e2r 2j

Here S, S, , S, . Sp,and S, contains the TE amplitude and phase of the gear mesh, i signifies harmonics of gear order
and n represents number of harmonics considered in the TE. For presumed value of TE and its variable components, Eqn.
(A-45) can be solved to get the response of the geared-rotor system. Since equations of motion are linear, assumed solution
for each harmonic can be added up using the principle of superposition, as
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For i harmonic, Eqn. (A-45) can be written as,

myry + (C + €)1 = Cpiy + (kg + ky)ry = kyry =

Sl + Sf lej(imet) + Sb ]e—j(imet) + Rf 1ejm,,t + Rf le—j(u,,t + Rf lejmgt + Rf ]e—jmgt (A-46)
e e 14 4 8 8
and
maFy + (€ + Cp)Fy — iy + (kg + Ky )ry = kyyry = A (A-47)
S2 - S}‘ zej(lw"t) - Sb e_'l(lw"l) + R}‘ zeJ“’f” + Rf ze_J“’f” + Rf zeJ‘”g’ + Rf eIt :
Je 2 Jp P g J g2
with
Sl = (kmem) +j(_mlg + kmem>; SZ = _(kmem) + j(_ng - kmem) (A'48)
and
Sf{*l = Sfelr + ijel/'; Sb('] = Sbelr + ijv]j; (A_49)

St = St T35, Sb = Sbes, T3S

2j

where §; and S, are the static components, and Sy, S;,,, S, and S, , are the fluctuating components with harmonics of
gear mesh frequency. Herein, f and b subscripts signify the forward and backward whirls.

From Eqn. (A-46) and (A-47), we can write

Only the static force, it will give

(ki + ky)ry = kyry = S5 (kg + ky)ra —kyyry = S, (A-50)

For the forward whirl force, we have

miry + (¢ + )iy = Cuiy + (kg + ky )1y = kyyry =

(Sfelr + ij«lj)ej(iwet) + (pr]r +ij[r]]')ejwpt + (ng]r +ijglj)engl (A-50)
and
myfy + (Co + Cp)ia = Cpity + (ky + Ky )ra = kyry = (A-52)
(Sf/.’Zr + ij«zj)ewwdt) + (prZr +jR.fp2_f)erpt + (ng2r +ijg2j)ergt -
For the backward whirl force, we have
miry + (Cg + cu)Ft = cuia + (ks + kp)ry —kyra = (A-53)
(Sprr + Sp1j)e @D + (R + iRy, e " + (R, + iRy, e )
and
myfy + (Co + )iy — cit + (kg + kp)ra —kyri = (A-54)
(Spar + iSpo)e @D + (R, + jR, Je ' + (R, + jRp,, )e ! )
Assuming a solution due to the static force for Eqn. (A-50), as
r = Pslzpslr +szlj and Iy = Ps2 = Pslr +szlj (A'SS)

where Py and Py, are in complex form as Py = Py, + jP;. Presuming the forward whirl solution for Eqns. (A-51) and
(A-52), as

ri(e) = By, &) By 00 4 Py 000

and
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ra(1) = Py el 4 Py ellon) 4 Py ellion) (A-56)

where Py and Py, are in the complex form as Py = Py, + jP;. Presuming the backward whirl solution for Eqns. (A-53) and
(A-54), as

rl (t) = Pb()le_j(iwet) + Pbple_j<iwpt) + Pbgle_j<iwgt)
and

rz(t) = Pbeze_j(iw"w + Pbp2€_j<iw/’t) + Pbg2€_j<iwgt) (A-57)
where P, is in complex form as P, = Pj, + jP;. On substituting back Eqn. (A-57) into Eqn. (A-50), we get

For the static force, we get
(ksl + km)Psl - kas2 = Sl; (ksZ + km)PsZ - kaxl = SZ (A'SS)

Now, Eqn. (A-58) can be arranged in the real and imaginary parts, as
(ksl + km)(Pslr +szlj) - km(PsZr + JPAZI) = Slr + JSlj (A'59)

and
(ks2 + km)(PSZr +sz2j) - km(Pslr + szlj) =8, + jSZj (A-60)

Both sides of Eqns. (A-59) and (A-60) by extraction the real and imaginary parts, to get the static force real and
imaginary parts, as

(ksl + km)Pslr - kaSZV = Slr; - kaslr + (kSZ + km)PSZr = SZr (A'61)

and
(ksl + km)Pslj - kaSZj = Slj; - kaslj + (ksZ + km)P_ij = S2j (A'62)

On combining Eqns. (A-61) and (A-62), we get

Asps =S (A'63)
with
ksl + km 0 _km 0 Pslr Slr
_ 0 kg + ky, 0 —k,, ] _ ) Paj |, Sy
Aisl 0 kewke 0 [T BTy (0 ST, (A-64)
0 —k,, 0 ko + ky, Py; S

On substituting back Eqn. (A-56) in Eqns. (A-51) and (A-52), for the forward whirl force, we get

—mPwiP; | + jio,(cy + Cp) Py, — jiw,c,Pr, + (kg + k)Pp — kP, =S5, (A-65)
—my i a)szl +jiw, (e + cn) Py, —jiw,cn Py, + (kg + kp)Pp — kP, =Ry (A-66)
—mPagPy  + jiog(cy + cp) Py, = jiwgc, Py, + (kg + ky)Pr, = kyPp, = Ry, (A-67)
—myPwlPs + jio,(co + C) Py, — jiw,cPr, + (ko + k)P, — knPr, = =S (A-68)
—myi a)sz , +jio,(co + cm)pr2 = jiw,cnPy + (ke + km)pr2 —knPs, =Ry, (A-69)
—myi a)sz , +jiwg(cn + cm)Pfg2 — jiwgc, Py, + (kg + km)Pfg2 —knPr, =Ry, (A-70)

where i=1,2, --- ,n.

JDMD Vol. 3, No. 2, 2024



Identification of the Asymmetric Transmission Error and Gear Mesh Dynamic Parameters

These are organized into the real and imaginary components, as

_mlizwg(Pfelr +ijel/) + (jl'a)e)(csl + Cm)(Pfelr +ije1/) -
+ (ksl + km)(Pfgl, +-]Pfe1j) -

kln(Perr + ijer) =

(jiwe)cm (.Pfez,- + ijer)
(Sf('lr + JSfelj)

—m, lzw% (prlr + ijpl/) + le[’ (CSI + Cm) (prlr + ijplj) - jiwpcm (Pff’z’ + ijij)

+ (ksl + km)(Pf,,lr +ijplf)

—myi*w} (P

—my izwz (me + ijez,') + jiwe ('652 + Cm) (Pfﬁr + ijeZ/)
+ (ksz + km)(wa +-]Pfez;')

—mai*wp (P, + iPry) + jia)pfcsz + ) (P, +3Pyy) = jiopen (P,
+ ks2 + km)(prz, +JPf],|/) -

Fatr +j felj ) + jiwg'(csl + cln)(Pfglr
+ (ko + k) (Py,,, +3Pr,) =

- km(przz + ijij) =

kn(Pror +3iPy,,) =

- km (Pfelr

km(pr]r +ij,;1j) =

(pr]r + ijp]j)

+ ijdj)

+ ijglj) - jiwgcm (P_fg‘Zr + ijng)
(R, 1 +IRys,,)

] - jiwfcm (Pfelr + jl)felj)
+iPr,,) = (5.,

' +iPr)
(prZr + -]prz;)

—mzl (0] (Pf o +JPf 2) +Jla) ( Cso +c )(Pfgz,. +ijg2j) _jiwgcm(Pfglr +ijglj)

+ (ks2 +km)(sz, +JPf2)

where i=1,2, --- ,n

k (Pfglr +ijgl/') =

(Rf o + JRf 2 )

Both sides of Eqns. (A-71) through (A-76) are extracted for the real and imaginary parts, as

Forward whirl real component

—m PPy, —iw,(cot + )Py, + i@cCy Py, +
—myi a)sz] wy(cs1 + )Py, +iwpc, Py, +
—myi szfl w,(cq + Cm)Pfglj + iwgCy Py, +
—myi 602Pf o e(CsZ + Cm)Pfa/ + iwecmPfﬂ/ +
—myi a)sz . —iwy (e + ¢p)Py, + i@, Py +

—myi 0)2Pj 2 (CSZ + cm)Pfg3j + iwgcmpfgl/ +

Forward whirl imaginary component

—myi szf] + io,(cs1 + )Py,

—myi a)2Pf| +iwpy(cq + cn)Pr,, —

_mll a)2Pfl + iw (Csl + Cm)Pfg“ -

—myi szfz + iw, (¢ + c) Py,

—myi a)szz +iwpy(co + cn)Pr, —

- iwecmPf e2r
iwpcmPfljz,_
ia)gcmPfﬂr +
—iw,c, Py, +

iwpcmpr], + (ksz + km)Pf,,zj

(ks + ki )Py,

(ks + k) Py,
(kg1 + k) Py,
(ko + Ky )Py,
(ksy + k) Py,

(k52 + km)Pfgzr

+ (ksl + km)Pfﬂlj
+ (ksl + km)prlj
(ksl + km)Png

(ks2 + km)Pfezj
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kafeo,

—knPy, =
—knPy,, =
— kP, =
— knPy,, =

- kafg]r =

- kaf£2j
- leprz/
- kafg2/

- kafelj

- kafp]j

- Sfelr

fear

Ry,

M gar

= Sfelj

=Ry,

= nglj

= Sf e

=Ry,
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(A-71)

(A-72)

(A-73)

(A-74)

(A-75)

(A-76)

(A-77)

(A-78)

(A-79)

(A-80)

(A-81)

(A-82)

(A-83)

(A-84)

(A-85)

(A-86)

(A-87)
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—myi a)2Pf y tiwg(co +¢,)Pr, —iwgc, Py + (kg + ky)Pr, —kuPr, =Ry, (A-88)

On combining Eqns. (A-77) through (A-88), we get

Afipfi = sfi (A-89)
A, 0 0
Ap=|0 Ay, 0 (A-90)
0 0 Afgi
with
[—m P02 + (kg + k) —iw,(cs1 + C) —k,, iw,c,, ]
A = iwe(csl + Cm) —m lzwg + (ksl + km) _iwecm _km (A-91)
Jel —k,, iw,C,, —myi*w? + (kg + k) —iw,(cg + C)
L _iwecm _km iwe(CsZ + cm) _mZiZwS + (k‘v2 + km) -
'—mlizw2 + (kg + k) —iw,(cg + Cp) —k,, i,y T
A = iw,(c + ¢) —my i a)p + (kg + k) —iw,Cyy -k, (A-92)
Tt —k,, i,y —m2i2w12, + (kg + k) —iw,(co + ¢)
L _iwpcm _km iwp(CsZ + Cm) _m2l wp + (kSZ + km) .
'—m1i2w§ + (kg + k) —iwg(cg + Cp) —k,, i0,4Cy, T
A - iwg(cy1 + ) —mlizwf, + (kg + k) —iWyCpy —k,, (A-93)
Il —k,, iwyC,y, —mzizwg + (kg + k) —iwg(cg + ¢y)
L —iCOpCm _km ia)g(csZ + Cm) _m2i2m52’, + (ks2 + km) .

On substituting back Eqn. (A-57) in Eqns. (A-53) and (A-54), for the backward whirl force, we get

—mPwlPy,  —jiw,(cs + )Py, + jiw,cn Py, + (ks + ky)Py, — kyPp, =S, (A-94)
—mlizmlz,Pbp] —jiwy (e + )Py, + jiwpc, Py, + (kg + ky)Py, —kyPy, =Ry | (A-95)
—myi cozP,,l —jiwg(cs1 + )Py, + jiwgc, Py, + (kg + k) Py, — kP, =Ry, (A-96)
—myiPwlPy, , — jiw,(C + ¢) Py, + jiw,c Py, + (kg + kyy)Py, — kyPy, =S, (A-97)
—myP Py | —jiwy(co + )Py, + jiwycu Py + (kg + k)P, —kyPy =Ry, (A-98)
—mzl COZPb 2 —Jla) ( Cop + Cm)Pbgz +jia)gcmegl + (ksz + km)Pbgz - kabg] = Rng (A-99)

withi=1,2, --- ,n
These are organized into the real and imaginary components, as
—m2w(Py, + Py, ) —liwe(cq + )Py, +iPy,,) + jio.cp(Py, +iPy,) (A-100)
+ (kl +k )(Pbelr +JPbelj) - km(Phez,- + JPhez,') = (Sbelr + JSbelj)
—my P 2(Pbpl, +iPy,,) —iiw,(c + cu)(Py, +iPy,) + jiw,c(Py, +iPy,) (A-101)

+ (ks + k) (P, 1,+JPb,1/) k (Pb,2,+.] b,,zj) (Rb i +IRy )

rlj
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2

—myPwg(Py,, + Py, ) = jiwy (e + Cu)(Py,, +iPp,) + i@ (Py, + Py, )

(Py,,
+ (kg + km)(Pb +iPs,,) = kn(Pp,,, +iPp,) = Ry, + iRy, )

olr olr o1j

—myitw:(Py,, + Py, )~ jia)e(_csz + ) (P, +iPs,,) + jiwec,(Py,, +iPy,;)
+ (ko +k )( b + 3Pbs;) = k(P +iPs,,;) = (Sp,,, +iSs,,)

elr

_m2l a)p(Pb 2r +.] by ) Jl(‘)p(cﬂ + Cm)(Pb 2r +JPb ) +jiprm(Pb!,]r +ij,,]‘,v)
+ (ke + k) (P, +iPy,,) —k (P +JPbpl,) (Ry,, +IRy,)

p2r plr

_mziza)é(Pbgzr +ijg2j) —jiwg(csz + Cm)(Pbgz, +jPibg2j) +jia)gcm(Pbglr +ijgU)
+ (k2 + ki) (P, +iPs,,) = kn(Ppy,, +iPs,,) = (R, +iRs,,)
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(A-102)

(A-103)

(A-104)

(A-105)

The real and imaginary components are separated on both sides of Eqns. (A-100) through (A-105), to get:

The real component of the backward whirl

_mlizwgph(,], + ia)e(csl + Cm)Phglj - iwecmPheZi + (ksl + km)Pbgl,. - kahd, = Sbel,

kab

p2r = Rbplr

—myi a)szl + iw,(cy + ¢ )Pbl iw,C Py, + (kg + k) Py

by1r

—myi a)2P,, o, O o (C1 + cm)P,,glj — iwyCp, Py, + (kg + km)Pbgl, —knPp, =Ry,

_m2l szb 2r + i ( Cs2 + cm)Pb,,Z_,- - iweCmegU + (ks2 + km)Pbgz -k Pb

elr

_mZI a)zpb p2r + iw ( C + Cm)Pb p2j iprmeplj + (ks2 + km)Pb],2, - kab,,l, = Rb
My PPy, + iy (Cop + C )Py, — 1oy Py, + (K + ki) Py, — kP

o Rngr

The imaginary component of the backward whirl

PPy, — iw,(cgy + C)Py,, + i0.cuPy, + (kg + k) Py, = kP, =S,
—mi a)zP;, . w,(cq + Cm)Pb,_l, + i0,¢, Py, + (k1 + km)Php],- - kabpz;' =Ry,
—m PPy~ iwg(c + )Py, + 0oy Py, + (kgt + )Py = kP, = Ry,
—myitw2P, . — o — 10e(Co + Cp) Py, Fiw,c, Py, + (kg + k)P, — knPy, =S,
—myi a)sz o —iop(co + )Py, +iwyc, Py + (ko + k)P, —k,Py =Ry
—myi CU2P/; wy(co + cm)Pthr + iwgc,, Py, + (ke + km)P;,gz/. - ka;;g” =R,

On combining Eqns. (A-106) through (A-117), we get
ApiPpi = Spi

JDMD Vol. 3, No. 2, 2024

(A-106)

(A-107)

(A-108)

(A-109)

(A-110)

(A-111)

(A-112)

(A-113)

(A-114)

(A-115)

(A-116)

(A-117)

(A-118)
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with

Abei =

P

-—mliza)g + (ksl + km)
_iwe(csl + cm)
_km

iw,cp,

_—mllQO)IZ, + (ksl + km)
_iwp(cxl + Cm)

_km

L W,y
_—m|i2w§ + (ksl + km)
_iwg(cxl +cp)
_km

L Wy Cyy

Bhyri Rajeswara Rao and Rajiv Tiwari

iwe(csl + cm)
_mlizwg + (ksl + km)
—iw,C,,

_km

iw,(cg + ¢p)
—mliza)g + (kg + k)
—lWyCy,
—k,,

iwg(cs1 + )
—m1i2w§ + (kg + k)
=W, Cyy

_km

0 0
Abp: 0
0 by
—k,,
iw,c,

—myiPa; + (ko + ky)
_iwe(cﬂ + cm)

_km
i, Cpy
_mZiza)g + (ksZ + km)

—iwy,(cy + ¢p)

_km

Wy Cyp

—myi*w} + (kg + k)

—iwg(co + Cp)

The displacement and force vectors are given in the matrix form as,

Py,
L
P
L
Ly
L

Pri =
Pf p2ri

S
St
S
St
Ry,
Lo
Rf p2ri

L
Py

elji

beori

Py,

2ji

Pbplr[

Py

_ i .
Pvi = )

bpori

P byji
P bgiri

Py

glji

[

P byji
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—iw,Cy,
_km
iwe(cs2 + Cm)
_m2i2wz + (ks2 + km) i

—lwpCy,
_km

iw,(co + ¢)

—myi* 0} + (ko + kyy)

—iyCyy,

_km

iwy(c + )

—mzizwg + (ksz + km) i

Sboi
S
Sy

Sy,

elji
eori
ji
Rb,;] ri

_ Rbp 1ji
Spi =
bpori
Rpr/'i
Ry

olri

Rbg 1ji

beari

Rth/i

(A-119)

(A-120)

(A-121)

(A-122)

(A-123)



