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Abstract: This paper introduces a new method based on deep belief networks (DBNs) to integrate intrinsic
vibration information and assess the similarity of subspaces established on the Grassmann manifold for intelligent
fault diagnosis of a reciprocating compressor (RC). Initially, raw vibration signals undergo empirical mode
decomposition to break them down into multiple intrinsic mode functions (IMFs). This operation can reveal
inherent vibration patterns of fault and other components hidden in the original signals. Subsequently, features are
refined from all the IMFs and concatenated into a high-dimensional representative vector, offering localized and
comprehensive insights into RC operation. Through DBN, the fault-sensitive information is further refined from
the features to enhance their performance in fault identification. Finally, similarities among subspaces on the
Grassmann manifold are computed to match fault types. The efficacy of the method is validated using field data.
Comparative analysis with traditional approaches for feature dimension reduction, feature extraction, and
Euclidean distance-based fault identification underscores the effectiveness and superiority of the proposed
method in RC fault diagnosis.
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I. INTRODUCTION

Reciprocating compressors (RCs) are widely used in indus-
trial manufacturing. A continuous and stable operation of
RCs is crucial to guarantee the high-efficient production.
However, once fault or failure occurs in a certain part of RC,
the machinery will operate irregularly or even break down,
which may lead to serious economic loss to the factories or
companies. Therefore, it is crucial to monitor the health
condition of RC and reduce the costly downtime [1].
With the advent of the Internet of Things and wireless
transmission [2], there has been an exponential increase in
the volume of data acquired for monitoring the operating
condition of RC systems. This burgeoning amount of data
presents both a challenge and an opportunity [3]. On the one
hand, it contains a wealth of potentially useful information
indicative of machine health; on the other hand, it may
harbor hidden patterns and regularities that are not easily
discernible by human observers [4]. Consequently, the task
of extracting reliable information from big data and enhanc-
ing the accuracy of fault diagnosis has emerged as a
significant challenge in the field of condition monitoring
[5]. Conventional fault identification methods typically
extract one or several features from the time and/or fre-
quency domain of original signals [6] and then employ
shallow models such as principle component analysis [7]
for feature fusion and dimension reduction. While these
approaches demonstrate good performance in fault identi-
fication, they suffer from three key limitations: (1) Tradi-
tional methods may not fully exploit the rich and local
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information embedded in the vibration signals, leading to
suboptimal feature representation and reduced diagnostic
accuracy. Vibration signals often contain important infor-
mation at multiple scales, ranging from high-frequency
details to low-frequency trends. Traditional methods may
not effectively capture this multiscale information, leading
to an incomplete representation of the signal’s character-
istics. (2) The high-dimensional nature of extracted features
can introduce redundancy, making it difficult to efficiently
and accurately process the data for fault diagnosis. Tradi-
tional methods use shallow model structures to fuse feature,
which cannot remove the noise information effectively.
Shallow models do not provide the hierarchical feature
representation needed to capture multiple levels of abstrac-
tion in the data. This can lead to a loss of important
information, reducing the ability to identify subtle fault
characteristics. (3) Current methods are typically based on
linear assumptions or simplified models that do not ade-
quately capture the complex, nonlinear relationships inher-
ent in RC data [8]. However, actual RC systems exhibit
highly nonlinear behavior due to factors like varying load
conditions, wear and dynamic interactions between com-
ponents. Linear models can fail to account for these com-
plexities, resulting in an incomplete understanding of the
RC system’s behavior, which leads to the limited handling
of nonlinearities of RC signals. To address these challenges,
this paper focuses on three key aspects for research
development.

To extract more local and subtle information, the
vibration signal can be decomposed into sub-modal signal,
each representing a distinct oscillatory pattern. This decom-
position captures localized and intrinsic oscillations and
provides a detailed representation of the signal at multiple
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scales. Wavelet transformation has gained great success in
sub-mode extraction from different scales of signal [9].
However, base functions need to be selected by expertise
before signal decomposition. Inappropriate selections
would select the incorrect scale information and degrade
the fault diagnosis performance. To alleviate this drawback,
Niu et al. developed a novel method based on empirical
mode decomposition (EMD) for fault diagnosis. Vibration
signal is decomposed into several components by EMD to
highlight the local information [10]. Li et al. used an EMD-
based method to decompose the load into different fre-
quency components changing from low to high levels [11].
The EMD method can decompose signals self-adaptively
without the assistance of prior knowledge [12]. It can
emphasize the local frequency information from different
scales of signal. Therefore, EMD is employed to break
down the original monitoring signals of the RC into a
collection of intrinsic mode functions (IMFs). These intrin-
sic functions aptly capture the inherent vibrations of the RC
from localized perspectives. It provides a more confident
representation of its operating conditions and reflects
the underlying dynamics of the system, including non-
stationary and transient behaviors.

To comprehensively capture useful information from
intrinsic vibrations, a multitude of features were extracted
from each IMF. These features were then utilized to con-
struct a high-dimensional vector, enabling a thorough
representation of the RC operating conditions [13]. How-
ever, high-dimensional feature vectors often contain a
significant amount of redundant information. Multiple fea-
tures may reflect similar characteristics of the signal, lead-
ing to the overlap and redundancy of information. This
increases not only the computational complexity but also
difficulty in identifying the most relevant features for fault
diagnosis. Moreover, in the intricate operation environ-
ment, RC vibration signals are susceptible to other
fault-irrelative contamination. Thus, dimension reduction
techniques are essential to eliminate such redundancy of
feature vectors and further bolster the performance of fault
diagnosis. Traditionally, feature dimension reduction in RC
fault diagnosis has been achieved through methods such as
principal component analysis [7] and kernel principal com-
ponent analysis [14]. These techniques extract essential
information from raw signals using linear or nonlinear
matrix transformations. However, given the scale of big
data in RC fault diagnosis, these approaches may not
suffice. Therefore, there is a growing interest in exploring
more robust methods for feature dimension reduction. Deep
learning methods have gained attractions in academic
communities due to their ability to perform feature fusion
in depth [15,16]. Deep belief networks (DBNs) can fuse
high-dimensional features into a lower-dimensional, deeply
fused feature vector. The multi-layer architecture of DBNs
enables the extraction of hierarchical features that capture
complex, nonlinear relationships within the data by consid-
ering mutual information of neighboring layers [17,18].
Thus it preserves essential information and improves diag-
nostic accuracy of RC.

After the features are deeply fused, pattern recognition
method needs to be selected to automatically assign the fault
types. Currently, most fault identification methods either
depend on Euclidean distance [19] or make assumptions
about data following certain distributions [20]. Given that
RC vibration signals are both nonlinear and non-stationary
[21], such an assumption could be unreasonable. It could

overlook crucial nonlinear information, thereby compromis-
ing the fault diagnosis performance. To address this issue,
this paper devises a similarity metric based on Grassmann
manifold (GM) for RC fault diagnosis. GM comprises a set
of subspaces capable of representing the operating conditions
of the RC [22]. The lower-dimensional feature vector is
mapped onto subspaces on the GM. This approach ensures
that the most informative and nuanced features are retained.
The GM provides a geometric framework that captures the
intrinsic structure of the data subspaces, making it well-suited
for analyzing complex nonlinear fault patterns. The similarity
between subspaces of real-time monitoring data and different
fault monitoring data on GM can be evaluated using the
geodesic distance metric [23]. The use of geodesic distance
for comparing subspaces allows for accurate similarity mea-
surement, which is crucial for distinguishing between differ-
ent fault conditions. This methodology enhances the
accuracy of fault diagnosis by retaining essential nonlinear
information and reducing sensitivity to noise and variations
in the data. Additionally, the GM-based approach is robust to
changes in operating conditions, making it highly effective to
RC data of real-world industrial applications where data
variability is common.

In the quest for intelligent fault diagnosis of RC in the
context of big data, this paper presents a hybrid approach
that combines EMD, DBN, and a GM-based similarity
metric. The contributions of this paper can be summarized
as follows.

1. This paper presents a comprehensive and integrated
framework that combines EMD, DBN-based feature
fusion, and GM analysis. This holistic approach en-
sures a more robust and accurate fault diagnosis by
leveraging the strengths of each method in a unified
manner.

2. EMD is used to extract multiscale local features to
highlight subtle variations in signal. High-dimensional
features are extracted from each IMF calculated by
EMD to reflect the operation condition of RC compre-
hensively. In contrast to shallow models for feature
fusion, this paper employs DBN to achieve deep
feature fusion. This approach captures complex, non-
linear relationships within the data, preserves essential
information, and enhances the discriminative capabil-
ity of the feature set.

3. The low-dimensional feature vectors are transformed
into subspaces on the GM, where RC faults are identi-
fied using the proposed geodesic distance-based simi-
larity. Unlike Euclidean methods, this metric measures
the nonlinear similarity on the GM. It retains nuanced
nonlinear information and improves the accuracy of
fault identification. This geometric approach is robust
to data variability and changes in operating conditions.

The paper is structured as follows. Section Il introduces
the developed method and offers a concise overview of
related theories. Section III examines the experimental data
and validates the effectiveness of the proposed approach.
Section IV provides conclusions drawn from the findings
presented in this paper.

Il. PROPOSED METHOD

This paper proposes a novel method for intelligent RC fault
diagnosis. Recognizing the nonlinear and non-stationary
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nature of RC signals, this paper employs EMD to decom-
pose RC vibration signals into IMFs, obtaining intrinsic
fault-related vibrations. From these IMFs, features are
extracted to assemble high-dimensional vectors, offering
insights into local signal characteristics and working con-
ditions. Subsequently, DBN are leveraged to deeply fuse
these features, simultaneously reducing feature vector
dimensionality and eliminating redundant information.
The deeply fused feature vectors are then transformed
into subspaces on the GM, facilitating fault determination
through similarity calculations between subspaces. The
detailed procedure is depicted in Fig. 1 and dis-
cussed below.

1. Vibration signals from the RC are gathered utilizing
accelerometers strategically mounted on the cylinder.
These accelerometers are positioned to precisely cap-
ture the vibrations occurring within the cylinder during
operation.

2. The measured vibration signals are subjected to decom-
position through EMD. This process effectively breaks
down the signals into a collection of IMFs, enabling the
extraction of inherent fault-related vibrations within the
RC system.

3. Features are computed individually from each IMF to
capture the distinct operating conditions of the RC
from a localized perspective. This method guarantees
that the extracted features precisely depict the specific
characteristics inherent to each IMF, offering an intri-
cate understanding of the RC behavior.

. The features extracted from each IMF are amalgamated
into a unified high-dimensional feature vector.
This feature vector serves as a holistic depiction of
the RC operational state, encompassing the diverse
aspects captured by the individual features from
each IMF.

. The feature vectors undergo partitioning into distinct
datasets dedicated for training and testing purposes.
This separation allows for the utilization of one subset
for model training and the other for assessing the model
performance.

. The feature vectors are fed into a DBN to fuse feature
and reduce the dimensionality. This process involves
transforming the high-dimensional feature representa-
tions into a more compact and informative format,
facilitating more efficient analysis and interpretation.

. The feature vectors extracted from the training data are
transformed into subspaces on the GM, with each fault
serving as the reference or base subspace. This trans-
formation process facilitates fault identification by
aligning the feature vectors with the characteristic
subspaces associated with each fault condition.

. The subspaces for the testing data are computed
through an iterative process involving the application
of Steps 6 and 7. This iterative procedure ensures that
the feature vectors extracted from the testing data are
appropriately transformed into subspaces on the GM,
allowing for accurate fault identification and
diagnosis.
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Fig. 1. Schematic of the proposed method.
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9. To determine the fault type, the similarities between the
subspaces representing the testing data and those repre-
senting the fault data are calculated. This involves asses-
sing the degree of resemblance or proximity between the
subspaces derived from the testing data and the reference
subspaces associated with each fault type.

A. EMPIRICAL MODE DECOMPOSITION

EMD possesses the ability to break down signals into a
collection of IMFs [24], with each IMF representing a
unique intrinsic vibration mode induced by RC fault ex-
citations. As a result, IMFs provide localized information
about the operating conditions, offering a finer resolution of
fault-related dynamics. The fundamental steps of EMD are
summarized as follows.

1. Compute the upper and lower envelopes of the original
signals by identifying the maximum and minimum
values within a specified window, respectively. Calculate
the mean values of these envelopes, referred to as m;.

2. Determine the difference between the raw signals x(¢)
and the mean m;, expressed as the deviation from the
mean.

x=x(t) —my ey

3. The variable x denotes the raw signal used for com-
puting the first IMFs through iterative applications of
Steps 1 and 2 for k iterations. The formula for obtaining
the first IMF is given as follows.

IMF; =X = x(t—1) — My (2)

4. Repeat the aforementioned three steps until the stop
criterion is satisfied, ensuring the computation of
all IMFs.

5. From the above-mentioned procedures, it can be
inferred that

1
x(t) = Z IMF, + r (3)
i=1

where I represents the total number of IMF compo-
nents, and r signifies the residual component.

B. FEATURE EXTRACTION OF INTRINSIC
VIBRATION FOR VECTOR CONSTRUCTION
To comprehensively capture the localized operating char-

acteristics of the RC, a set of features is meticulously
extracted from each IMF. These features encompass various

aspects of the signal dynamics and are succinctly summa-
rized in Table I. Transient faults often cause brief but
significant changes in the signal. The RMS value can
help in detecting these transient changes by averaging
over time. This makes it possible to identify faults that
may not be obvious in a short time-domain inspection.
Faults can cause non-stationary behavior in a RC system
and cause the non-stationary property of signals. The crest
factor can identify such behavior by comparing peak values
to the overall energy of the signal. Many types of faults
cause impulsive or intermittent events, such as piston rod
breaking. These events produce signals with high peaks and
heavy tails, leading to high kurtosis. By monitoring kurto-
sis, these impulsive events can be detected more effectively.
The peak value directly captures the highest amplitude
excursions in a signal. Faults often manifest as extreme
events or bursts of energy that cause the signal to reach
unusually high values.

Once features are computed from each IMF, they are
assembled into a high-dimensional feature vector. This
vector effectively combines the diverse information cap-
tured by the individual features from each IMF, providing a
comprehensive representation of the RC operational
characteristics.

X= (X1 X, - £ X1) o)

In this expression, X; = [X;;,X;,X;3,X;4] denotes the
concatenated feature vector, wherein each feature is ex-
tracted from the i-th IMF as specified in Table I. These
distinct features are combined to construct a high-dimen-
sional feature vector, thereby offering a comprehensive
representation of the operating condition.

C. DEEP FEATURE FUSION BY DBNS

The DBN encompasses sophisticated architectures that
excel in extracting feature representations from monitoring
data. These architectures are adept at revealing intricate
patterns and characteristics inherent in the data, facilitating
a comprehensive understanding of its underlying complex-
ities [25].

Figure 2 provides an illustration of a standard DBN
architecture, delineating its structural components and in-
terconnections. X = (X;,X,, ---,X,,) represents the
aggregation of high-dimensional features derived from
the IMFs, offering a comprehensive portrayal of the
RC operational characteristics. Conversely, O = (o,
05, *++ ,0,) pertains to the deeply fused features computed
by the DBN. These features are meticulously engineered to
effectively capture fault-sensitive information, thereby

Table I. Extracted features

Feature Equation Symbol Meaning

Root mean square Xngs = D1 ()2 X, Indicating the average energy of signals
n

Crest factor XCrest = W X, Indicating the peak amplitude divided by the RMS value

Kurtosis Xk = Z;%j:;ﬂ) X3 The fourth standardized moment, representing the shape of a probability
‘ distribution and is sensitive to impulsive faults

Peak Xpear = max |x| X, Indicating the intensity of vibration
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Fig. 2. The DBN structure.

facilitating precise fault diagnosis and classification.
The DBN comprises i hidden layers, each hosting
my, my, --- ,my nodes, respectively. Constructed through
a sequence of RBMs, these models learn joint probability
distributions of nodes across adjacent layers. Each
RBM consists of input and output layers, with nodes within
the same layer unconnected, while neighboring layers
are interconnected via weight matrices (and biases).
The outputs of one RBM serve as inputs for the next
RBM in the sequence. The energy of the input can be
expressed as

E(v,h) = —a"v—bTh —vIWh )

In Boltzmann machines, the probability distribution gov-
erning variables i and/or v is established based on the
following energy function

—E(v,h)
Z

where Z is a normalization function.

The marginal probability of a visible vector, with each
element represented as a Boolean value, is determined by
summing over all potential configurations of the hidden
layer. This mathematical expression entails summing the
joint probabilities of various combinations of hidden layer
states, integrating across the entire range of possible hidden
layer configurations.

P(v) = %Z@‘E(V’h) (7
h

e

P(v.h) = (©)

The probability of a visible unit conditioned on a
specific hidden unit in the RBM is calculated by the
following equation

P(vIh) = I P(vin) ®)

On the other hand, the probability of a hidden node A
conditioned on a visible node v can be expressed as

mk
Ply) = 11 P(1Iv) ©

The probabilities of individual activations can be com-
puted using

P(hj= 1) = a(bj + Zw,-jv,) (10)

i=1

mk

=1
where ¢ denotes the sigmoid function. Additional informa-
tion on DBN can consult [26].

D. GRASSMANN MANIFOLD-BASED
SIMILARITY

Following the dimension reduction by DBN, this paper
introduces a similarity metric based on the GM for fault type
identification. This approach involves the creation of sub-
spaces on the GM, with fault types determined by calculat-
ing the geodesic distance of between real-time subspaces
and basis subspaces.

GMs are a type of Riemannian manifold embedded
within a high-dimensional Hilbert space [27]. A GM,
denoted as G, p, comprises a set of d-dimensional sub-
spaces of R”. These subspaces are spanned by orthonormal
matrices Y and are represented as span(Y). Each subspace
within the GM encapsulates a distinct configuration of d
dimensions within the overarching D-dimensional space.
Two deeply fused feature matrices, O; and O,, presumed to
be derived from DBN, are spanned by Y, and Y, € RP*,
respectively. The similarity between the subspaces
span(Y) and span(Y,) is gauged by computing principal
angles, which can be determined using

cosf; = max max  u;v; (12)
u;€span(Y,) v;€span(Y,)
with the following conditions
ulu;=vlv;=1
ufu; =v/v; =0 (13)

i=(1,2, .- ,d) j=(1,2,---,i=1)

where u and v represent the principal vectors of real-time
data subspace and fault basis subspace, respectively. To
compute the principal angles, singular value decomposition
is employed [28]. This mathematical technique facilitates
the derivation of principal angles, which can be expressed
as follows.

Y,Y, = USV* (14)

where U = [uy,u,, --- ,uy] denotes a unitary matrix repre-
senting the principal vectors. § = [cosd;,cos6,, --- ,
cos 6] represents a diagonal matrix containing the cosine
values of the principal angles. Additionally, V* signifies the
conjugate transpose of the matrix V = [vi,vs, -+ ),
which contains the principal vectors corresponding to the
other subspace. The similarity between two subspaces on
the GM is computed on the basis of a geodesic distance.
This is defined as follows.

d
dist(Y1,Y,) = Y _CO8%); (15)
i=1
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In the scenario where 6, = 6, =---= 6, = 0, indicat-
ing that the principal angles between the subspaces are all
zero, the two subspaces, e.g., span(Y;) and span(Y,), are
effectively collapsed into one. When the geodesic distance
dist(Y,Y,) is higher and close to one, it suggests a greater
similarity between two subspaces. This implies a higher
likelihood that the feature matrices O, and O, fall into the
same fault type of RC. In this study, each fault’s subspace
acts as a reference point and is compared with the subspace
of the data being analyzed to assess their similarity. The
fault type is subsequently determined by evaluating the
computed similarity value. This approach enables the com-
parison of data subspace with established fault subspace
references, thereby enabling precise fault identification
based on the observed degree of similarity.

The GM-based similarity considers subspaces rather
than individual data points to match the fault type. This
approach inherently averages out noise and small variations
within the subspaces, making the analysis more robust to
random fluctuations and measurement noise. By capturing
the entire subspace, this approach inherently includes the
variations and interactions within the data, which are often
nonlinear. This holistic representation allows for a more
comprehensive understanding of the underlying structure of
the data, preserving nuances that might be missed when
considering points in isolation. By calculating with sub-
spaces, GM methods can capture the global structure of the
data. This is particularly useful in fault diagnosis, where the
overall pattern and relationships between different variables
can be more indicative of faults than individual variable
changes. The geodesic distance on the GM is the length of
the shortest geodesic path connecting two points (sub-
spaces) on the manifold. This proposed distance metric
takes into account the intrinsic geometry of the Grass-
mannian, thus it can preserve more nonlinear information
of monitoring signal.

lll. EXPERIMENTAL VERIFICATION
AND ANALYSIS

A. DATA DESCRIPTION

Accelerometers positioned above the crosshead gather
vibration data reflecting the operational conditions of the
RC. This collected data are utilized for validating the
proposed method. The schematic represented in Fig. 3
provides a visual depiction of the layout and components
of the RC system, including the arrangement of sensors
within the setup. The accelerometers are mounted above the
crosshead. Within the operational dynamics, an engine is
tasked with furnishing the necessary power to induce
rotation in the drive shaft. This rotational motion is facili-
tated by the reciprocating action of the piston rod, which is

‘(

Engine Ei E
R N
Accelerometer .

>

Gas valve

Fig. 3. Schematic of RC structure.

orchestrated by the crankshaft. In turn, this reciprocation
serves the dual purpose of compressing gas within the
cylinder and facilitating the delivery of high-pressure
gas. In order to ensure the stable operation and early
detection of potential issues, accelerometers are strategi-
cally positioned on the crosshead to monitor and analyze
vibrations occurring within the cylinder. These sensors act
as vital diagnostic tools, providing insights into the mechan-
ical integrity and performance of the system. In the demand-
ing environment of oil refinery plants, a spectrum of
common faults can arise, posing challenges to operational
efficiency and safety. Among these are gas valve leakages,
fractures in the piston rod, instances of cylinder scraping,
and wear and tear in bearing shells. Mitigating these issues
requires vigilant monitoring, proactive maintenance prac-
tices, and swift intervention when anomalies are detected.

Figure 4(a) visually represents a scenario where a gas
valve has fractured, resulting in the leak of gas. This issue
can have detrimental effects on the operation of the system,
potentially leading to safety hazards and operational ineffi-
ciencies. In Fig. 4(b), the illustration depicts a fractured
piston rod which is a common fault observed due to
prolonged operation leading to fatigue failure. This type
of failure can significantly compromise the functionality of
the engine, necessitating immediate attention to prevent
further damage and potential system failure. Figure 4(c) and
4(d) showcase instances of cylinder scraping and the wear
of bearing shell, respectively. These faults typically arise
from component wear-out and delayed replacement. If left
undetected at an early stage, these faults can escalate into
more severe operational issues and potentially catastrophic
incidents.

Vibration monitoring proves to be a reliable approach
for diagnosing faults in the RC. As faults occur, vibrations
undergo noticeable changes, making them a valuable indi-
cator for fault detection. In this study, vibration signals were
gathered to validate the proposed method. Detailed descrip-
tions of the fault data can be found in Table II.

To gauge the effectiveness of the developed method
comprehensively, its performance was scrutinized across
five distinct operating conditions. These conditions were
meticulously designed and maintained at a consistent rotat-
ing speed of 375 rounds per minute (rpm), ensuring a
standardized testing environment. Each operating condition
was carefully sampled at a frequency of 12.8 kilohertz
(kHz). Each dataset comprises 300 signals, with 200 sam-
ples randomly designated for training purposes and the
remaining samples allocated for testing.

B. VALIDATION OF THE PROPOSED
METHOD

To begin the analysis, data preprocessing is performed first.
The data preprocessing includes the removal of abnormal
data, such as data collected by faulty sensor, and normali-
zation within the range of [0, 1]. Then, the EMD technique
is applied to disassemble the signals into a collection of
individual components, namely the IMFs. These IMFs
capture the inherent oscillatory modes present within the
original signal, allowing for a detailed examination of its
underlying dynamics. The outcomes of this decomposition
procedure are visually depicted in Fig. 5. These visualiza-
tions offer valuable insights into the spectral content and
temporal dynamics of the signal across different frequency
bands, laying the foundation for further analysis and
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Fig. 4. Faults of RC.

Table Il. Date description

Fault type Description Rotating speed (rpm) Sampling frequency (kHz) Size of training/testing data
Normal normal condition 375 12.8 200/100

F1 wear of bearing shell 375 12.8 200/100

F2 cylinder scraping 375 12.8 200/100

F3 gas valve 375 12.8 200/100

F4 piston rod breaking 375 12.8 200/100

interpretation. From each IMF, a set of four features out-
lined in Table I is extracted to form a high-dimensional
feature vector with a dimensionality of 36. In order to
mitigate redundant information and enhance efficiency,
these high-dimensional features are input into a DBN for
feature dimension reduction and deep feature fusion. The
network architecture consists of three RBMs, each config-
ured with parameters as specified in Table III. In the final
layer of DBN, there are 10 nodes, yielding a deep fused
feature vector with the output dimensionality of 10. This
lower-dimensional feature vector encapsulates essential
information extracted from the original high-dimensional
feature space, facilitating efficient representation and anal-
ysis. The initial three components of this deeply fused
feature vector are visually depicted in Fig. 6. In this
visualization, distinct colors are utilized to denote features
corresponding to different operating conditions. This repre-
sentation provides a clear and intuitive visualization of the
feature space, enabling the discernment of underlying

patterns and relationships among the features extracted
from the input signals.

Subsequently, robust subspaces are established on the
GM from the deeply fused feature to discern the type of
fault present. The effectiveness of the developed approach
is thoroughly assessed on the typical RC fault data, with the
diagnostic performance depicted in Fig. 7 via the confusion
matrix. The x-axis and y-axis respectively indicate the
ground-truth and prediction of fault. Within the matrix,
the numbers enclosed in yellow squares signify the accura-
cies of fault diagnosis for each specific fault, while those
within green squares denote the detailed misclassification
ratios for each fault. Notably, the proposed method achieves
impressive fault identification accuracies: 86.6% for fault
F1, 84.2% for fault F2, 85.5% for fault F3, 87.6% for fault
F4, and 87.2% for normal conditions. It should be noted that
the diagnosis accuracies in the paper are the calculated
average of ten trials to ensure the stability of the final
results.
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Fig. 5. EMD results.
Table lll. Parameter setting of the DBN B
Parameter Setting
The number of RBMs 3 N F2 84.20%
The number of input nodes of the 1st RBM 36 E:’
The number of output nodes of the 1st RBM 30 z
D
The number of output nodes of the 2nd RBM 20 8> F3
The number of output nodes of the 3rd RBM 10 g
Learning rate 0.05 ~ F4 87.60%
The number of epochs 30
Normal 87.20%
F1 F2 F3 F4 Normal
Actual Fault

3rd

Ist

2nd

Fig. 6. DBN feature visualization.

C. PARAMETER ANALYSIS AND METHOD

EVALUATION

This part investigates the optimal dimensionality for feature
fusion within the DBN final layer. Figure 8 visually depicts
the correlation between the dimension for feature fusion and

Fig. 7. Confusion matrix.

the corresponding diagnosis performance. This figure re-
veals a notable trend: as the output dimension increases,
diagnosis accuracies show an improvement, reaching the
maximum at 86.22% when the dimension reaches ten.
However, beyond this threshold, the accuracy begins to
diminish. This suggests that lower-dimensional features
encapsulate the most pertinent information, particularly
evident at a dimension of ten. Beyond this point, the
inclusion of additional dimensions introduces redundant
information, thereby adversely impacting the performance
of the method.

A comparative study with alternative approaches is
carried out across three pivotal regards: feature extraction
methods, feature fusion and dimension reduction methods,
and fault recognition methods. The summarized compara-
tive outcomes are presented in Table IV. In method 1,
features are extracted directly from the original time-
series signals. However, this approach exhibits subpar

JDMD Vol. 4, No. 1, 2025
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87 v ' ' Table V. Method evaluation
86 | Number  Method FI F2 F3 F5 Normal
85+ 1 SVMEFE [29] 72.8 79.9 80.0 77.8 84.1
Ssal 2 ID-CNN [30] 83.3 81.8 80.2 86.6 84.5
\3' 3 Proposed 86.6 842 855 87.6 87.2
S 83
=
o
2 82+
a1l noisy vibration signals. Similarly, the effectiveness of
SVMEFE is also compromised. This is likely because
80 SVMEE is particularly suited for diagnosing gas valve
faults, where the impulse present in the signal is minimal.
7 4 p " 10 12 14 When handling signals with significant impulsive features,

Output dimension

Fig. 8. The relationship between output dimension and accuracy.

performance in practical applications due to its limited
ability to capture nuanced variations in the data. Contrast-
ingly, method 2 leverages EMD to refine inherent vibration
signals by multiple IMFs, thereby enhancing diagnosis
performance by capturing more localized operating condi-
tion characteristics. This approach enables the extraction of
essential features from the decomposed IMFs, obtaining
improved discriminative power and diagnostic accuracy
compared to Method 1. Methods 3, 4, and 5 are compared
to demonstrate the effectiveness of deep feature fusion and
dimension reduction techniques. Remarkably, Method 5
showcases superior performance in comparison to method
3. This outcome underscores the effectiveness of DBN in
seamlessly integrating features while retaining valuable
nonlinear information that is often overlooked by conven-
tional methods. Furthermore, method 5 outperforms
method 4, indicating that the GM-based geodesic distance
can effectively retain more reliable information of nonline-
arity in feature classification; the intrinsic geometric struc-
ture captured by GM contributes significantly to the
enhancement of fault diagnosis accuracy.

The proposed method is compared with other state-of-
the-art methods to illustrate its superiority. The comparison
results are listed in Table V. As shown in the table, the
proposed method outperforms the other methods, achieving
an accuracy of approximately 86.22% across four types of
faults. In comparison, SVMFE and 1D-CNN achieve
78.92% and 83.28% accuracy, respectively. The 1D-
CNN method performs fault diagnosis using differential
pressure and differential temperature signals, which are
cleaner than vibration signals that often contain significant
noise interference. Cleaner signals make it easier to identify
regular patterns. However, the effectiveness of 1D-CNN is
compromised in RC fault diagnosis when dealing with

Table IV. Method evaluation

the performance of SVMFE decreases.

IV. CONCLUSION

The proposed methodology integrates intrinsic oscillation
features extracted via EMD, deep feature fusion, and
dimension reduction using DBN and assesses similarity
on the GM for fault diagnosis in the RC.

EMD method is adopted in the application. It can
effectively separate intrinsic oscillation modes, providing
localized insights into the RC’s dynamics.

Features are extracted from each IMF and constructed
into high-dimensional vectors, and then, DBN is used to
produce a lower-dimensional, deeply fused feature vector.
It preserves nonlinear information and enhances discrimi-
native capability.

The fused features are mapped onto subspaces on the
GM. Geodesic distance is calculated to compare test data
with fault data, retaining nuanced information about non-
linearity and improving fault identification accuracy.

Validation with RC fault data from an oil refinery
demonstrated the method’s effectiveness in refining local-
ized information and deeply fusing features, providing a
comprehensive understanding of RC system behavior and
fault characteristics. Additionally, this method can be
extended to diesel engine fault diagnosis.

Future research will consider feature correlation at
different time steps to further enhance RC fault diagnosis
performance.
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