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Abstract: The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding its
dynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, are
crucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aero-
engines, and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratio
was designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid body
kinematics of the dual-rotor system is modeled, with the Newmark method and Newton—Raphson method used for
the numerical calculation to study the dynamic characteristics of the system. Three different simulation models,
including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix) model, were designed to
study the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalanced
response of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. The
effect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotor
system was investigated in detail. The experimental result shows that the beam-based FE model is effective and
suitable for studying the dual-rotor system.
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I. INTRODUCTION

Modern aero-engine and gas turbines usually adopt the
structure of a dual-rotor system, which consists of many
rotary and stationary accessories. The dual-rotor structure
contains many exciting forces and has complex dynamic
behaviors. Therefore, it is crucial to establish an appropri-
ately simplified dynamic model according to the double-
rotor system’s structure and working characteristics. Mean-
while, it is also essential to solve the dynamic differential
equation of the dual-rotor system. Modern numerical cal-
culation methods of rotor dynamics are mainly included in
the finite element (FE) method and the transfer matrix (TM)
method [1,2].

Ruhl et al. [3] derived an impedance matrix between
the bearing support structure forces and the corresponding
displacements, matched with the FE model of the turbo
rotor system. Nelson et al. [4] developed a rotor-bearing
system that used the FE method to establish formulae,
including rotational inertia, gyroscopic moment, and axial
load. Hibner et al. [5] have applied the TM method to the
two-shaft aircraft to introduce the multi-shaft critical speeds
and nonlinear damped response. Wang et al. [6] developed
a one-dimensional Timoshenko beam-type model and a
three-dimensional model for a dual-rotor system with inter-
shaft bearing to analyze the dynamic of the dual-rotor
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system. Wang et al. [7] established a new dynamic model
of the dual-rotor system’s rubbing fault and applied the
numerical integration method to obtain the system’s
dynamic behavior. Wang et al. [8] solved the governing
equations of the dual-rotor system with unbalanced—
misalignment coupling faults by the Runge—Kutta method.
Wang et al. [9] built a FE model of a dual-rotor-support-
casing system with an unbalanced and time-varying pulse
load to analyze the vibration features of the system. Wang
et al. [10] presented the governing equations of motion of
the rod fastening rotor system using the FE method based
on Timoshenko beam theory. Wang et al. [11] proposed a
typical rod fastening rotor model to study the nonlinear
dynamic characteristics, confirming that the unbalanced
magnitude and phase difference are critical systems
response parameters. Jalali ez al. [12] carried out a dynamic
analysis of a high-speed rotor with specific geometrical and
mechanical properties by using a 3D FE model, one-
dimensional beam-type model, and experimental modal
test. Yang et al. [13] established a dynamical model based
on the TM method based on a gas turbine rotor system and
solved the natural vibration characteristics. Yang et al. [14]
modeled a dual-rotor-bearing double casing system to study
the vibration behaviors with pedestal looseness and rotor—
stator rub. Yang et al. [15] utilized the Euler—Bernoulli
beam to establish a double-disk rotor system and studied the
influence of speed and unbalanced phase difference on
vibration response. Fei [16] presented a FE model of
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dual-rotor systems and developed its solution method to
calculate the dynamics. Lu et al. [17] built a simplified
dynamic model of a dual-rotor system coupled with a
bladed disk and analyzed the blade’s impact on the critical
speed and other dynamic characteristics. Jin et al. [18]
designed a dual-rotor experimental rig according to a dual-
rotor aero-engine and established the dynamic model of the
dual-rotor-bearing system of the test rig based on the FE
method. According to the FE approach, Zhang et al. [19]
acquired the distribution of nonuniform stress and defor-
mation of a three-dimensional model of a bolt-disk rotor. Li
et al. [20] studied the dynamic model for the rotor system
with the element and lumped mass modeling method, using
the Newmark-8 method to analyze the system response. Xie
et al. [21] analyzed the vibration characteristics with a
rubbing—misalignment mixed fault of a dual-rotor system.
Liu et al. [22] analyzed the frequency—amplitude charac-
teristics of the flexible rotor system at high speed. Yu et al.
[23] studied the influence of unbalance and rubbing on the
rotor of the double-rotor system in a transient state. Arun
et al. [24] adopted residual generation techniques to detect
eccentricity and imbalance in the rotor-bearing model.
Hsiao-Wei et al. [25] established FE models of the single
rotor and double rotor and studied the dynamic behavior.
Gao et al. [26] proposed a simplified two-rotor system to
study the nonlinear dynamic characteristics of the system.

With the development of rotor dynamics, the rotor
system is developing toward a higher rotation speed. The
stability of the rotor system under high-speed operation is
still the key and difficult point. Some of the above literature
focuses on the dynamic behavior of a single rotor system,
which is different from the actual aero-engine structure.
Wang et al. [27] established a dynamic model of a dual-
rotor system with unbalance and misalignment coupling
faults. They employed numerical computational methods to
calculate the vibration equations of the dual-rotor system
and conducted unbalance experiments on a dual-rotor test
rig. Gao et al. [28] developed a force model for shaft-axial
bearings with localized defects on the outer or inner race
surfaces. They utilized Lagrangian equations to establish
the dynamic equations of the dual-rotor system and ana-
lyzed the nonlinear dynamics of shaft-axial bearings with
localized defects. Yang et al. [29] utilized a hybrid beam-
shell-spring element and model reduction method to con-
sider rotational effects and constructed a FE model of a
rotating-flexible shaft-disk-drum system with bolt connec-
tions. Ma et al. [30] combined FE methods with a free-
interface modal synthesis method to establish a simplified
dynamic model of a dual-rotor system. They particularly
focused on analyzing the nonlinear dynamic behavior of a
dual-rotor system supported by rolling bearings and
squeeze film dampers (SFDs).For complex dual-rotor sys-
tems, the presence of inter-shaft bearings between the inner
and outer rotors adds to the intricacy of rotor dynamics
analysis and design due to the nonlinearities arising from
bearing clearances and Hertz contact. Furthermore, in
pursuit of enhanced operational capacity and efficiency,
rotor systems, especially the inner rotors, are evolving
toward higher speeds and slender configurations, often
surpassing their minimum critical speeds. Presently, the
prevailing support configuration for the high-speed, flexible
inner rotor shaft in many dual-rotor systems typically
adopts a three-point arrangement denoted as “1-1-1" or
“0-2-1". In this paper, we will focus primarily on such a
three-point support configuration.

In this paper, a coaxial dual-rotor system of “1-1-1"
three-bearing support structure of high-speed flexible inner
rotor is proposed according to the structure of the CFMS56
aero-engine. On the basis of this model, the modeling method
and dynamic characteristic analysis are studied. After design-
ing a physical model with an inter-shaft bearing, the dynamic
equation with unbalanced force is derived by applying the
Newmark- method and Newton—Raphson method for
numerical calculation. Then three different simulation mod-
els were designed for this study: beam-based FE (1D) model,
solid-based FE (3D) model, and TM model. The modal
frequencies and modal shapes in the static state are calcu-
lated, and the results of these three models were verified. The
beam-based FE and TM models obtain the Campbell dia-
gram and critical speeds. Finally, the effect of different disk
unbalance phases and different speed ratios on the dynamic
characteristics of the dual-rotor system is investigated in
detail through unbalanced response analysis.

Il. MODELING OF A COAXIAL
DUAL-ROTOR SYSTEM

A. PHYSICAL MODEL

The CFM56 aero-engine is one of the most widely used
aero-engines. As shown in Fig. 1(a), it has two independent
rotor systems: inner (low-pressure) rotor and outer (high-
pressure) rotor. The inner rotor contains a low-pressure (LP)
compressor and LP turbine, while the outer rotor contains a
high-pressure (HP) compressor and HP turbine. These two
rotors were supported by five bearings support: supportl,
support2, support3, support4, and support5, and coupled by
support 4.

Based on the structure of CFM56, this paper modeled a
dual-rotor system, as shown in Fig. 1(b). Each rotor consists
of a flexible shaft and two solid disks representing the
compressor and turbine. The shaft of the inner rotor is solid,
while the shaft of the outer rotor is hollow. The solid inner
shaft, passing through the hollow outer shaft, is coupled by
the inter-shaft bearing (roller bearing 4). The inner rotor is
supported by deep groove ball bearing 1, roller bearing 2,
and roller bearing 5, and the outer rotor is supported by deep
groove ball bearing 3. Both inner and outer rotors can rotate
independently in different directions and speeds, relying
only on inter-shaft bearing 4 for motion coupling. Two-
wheel disks (disk 1 and disk 4) are mounted on the inner
rotor to represent the LP compressor and LP turbine, and
other two-wheel disks (disk 2 and disk 3) are installed on
the outer rotor to represent the HP compressor and HP
turbine. The specific physical parameters used to describe
the system are listed in Table 1.

B. EQUATIONS OF MOTION

Based on the above physical model, the equation of motion
of the dual-rotor system was established to study the
dynamic characteristics by wusing the FE method.
Timoshenko beam elements model the shaft, and the
disk is regarded as lumped mass elements, shown in
Figs. 2 and 3. Meanwhile, the model also considers the
rotational inertia, gyroscopic effect, rotating shaft shear
effect, and mass of the shaft and disk elements.

The Lagrange equation of motion is converted to
obtain the differential equation of motion of the rigid
disk and the flexible shaft element:
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Fig. 1. Physical model: (a) the rotor-support structure of CFM56 and (b) the structural diagram of the dual-rotor system.

Table I. Model parameters of the dual-rotor system

Physical parameter Value
Length of inner shaft Li (m) 1.2
Length of outer shaft Lo (m) 0.521
Outer and inner radii of inner shaft (m) 0.01,0
Outer and inner radii of outer shaft (m) 0.04,0.03
Elastic modulus of rotational shafts and disks (Pa) 2.06el1
Density of rotational shafts and disks (kg/m3) 7850
Poisson ratio of rotational shafts and disks 0.3

Length of inner shaft L1-L7 (m)

Length of inner shaft L8-L11 (m)

Mass property of disk 1 and disk 4 (kg)
Jd property of disk 1 and disk 4 (kg*m2)
Jp property of disk 1 and disk 4 (kg*m2)
Mass property of disk 2 and disk 3 (kg)
Jd property of disk 2 and disk 3 (kg*¥m2)
Jp property of disk 2 and disk 3 (kg*m2)
Bearing stiffness of bear 1 (N/m)
Bearing stiffness of bear 2 (N/m)
Bearing stiffness of bear 3 (N/m)
Bearing stiffness of bear 4 (N/m)
Bearing stiffness of bear 5 (N/m)
Unbalance mass (kg*m)

0.026,0.248,0.248,0.543,0.049,0.049,0.037
0.0325,0.180,0.2575,0.051
2.031
2.856e-3
5.712e-3
2.561
3.601e-3
7.203e-3
4.27¢7
2.28e8
2.28e8
5.93e7
3.25¢8
2.5E-5

{ Md?vd + Qqu = de (1)
Maqyi — QG = Fy

0
where M, =[m 7 }, G =[ 7 } M, represents the
d P

mass matrix of the disk. m represents the mass of the disk.
J 4 represents the diameter moment of inertia. J,, represents
the polar moment of inertia. € represents the angular
velocity of disk rotation. G represents the gyroscopic matrix
of the disk element. F,; and F,,; represent the correspond-
ing generalized forces:

{ MSéVS + QGSQWS + KSqVS = FVS (2)

Mséws - QGS"IVS + quwx = Fws

where M, K, G, represent the mass matrix, stiffness
matrix, and polar moment of inertia matrix of the shaft
element, respectively. F,, and F,,, represent the correspond-
ing generalized forces, including unbalance force.

The motion differential equation of the inter-shaft
bearing and the ordinary support assembly can be expressed
as:

—Cpqp — Kpqp = Fp 3)
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where C;, represents the bearing damping matrix. K,
represents the bearing stiffness matrix. ¢, represents the
bearing displacement and F;, marks the external bearing
force.C,, and K can be written as:

c c k k
Co=| " Y0LK,=1," 2|, cu=Cp»
b Lyx C.vy} b [kyx kyy} R
ke = ko €y = €30 = 0,k = iy = 0.

The independent differential equations of the dual-
rotor system are divided into differential equations of the
LP rotor and the HP rotor:

{ lehl + Q,Giq,, + Kigy = F; )
Mg, — Giqy + Kigyy = Foy
where q, = [Xl, Qxl, X2, sz, .. .T Xins me]T,
= [yl’ eyl’ Y2, 9)72’ VYms 9);m] .
{ thivh + Q0w Gyn + Kinqon = Fyp )
Myuqyn — 2w + KinGy, = Fop

where q1,h=[$m+1, 9m(m+1)a Lm+25 91(m+2)a

<o+ Tmns 0x(m+n)]Ta Qun = [ym+1a 9y(m+1)9 Ym+2>

0y(m+2)’ -+ Ym+n> ey(m+n)]T'

M, and M, represent the integrated mass matrices. Q,G;
and Q, G, represent the integrated rotation matrices. K; and
K, represent the integrated stiffness matrices. F,;, F,,, F\,
and F,,, represent external excitation. m and n represent the
total number of nodes of the LP and HP rotor system,
respectively.

As shown in Fig. 4, when the rotor rotates around the
point Oy and at angular velocity €, the centrifugal force of
the rotor disk mass eccentricity is F, and the direction is
outward along with OC. Points O and C are the center and
center of mass of the disk, respectively:

Fig. 4. Unbalance excitation vector.

F, = myeQ? (6)

Considering all the damping, stiffness, and mass matri-
ces of the shaft, disk, and bearing, the general dynamic
equation of the double-rotor system is

where M, C, and K represent the mass matrix, damping
matrix, and stiffness matrix of the dual-rotor system,
respectively. g represents the displacement vector. £
and G; represent the speed. G; and G, represent the
gyroscopic matrices. €,G; and Q;, G, represent the rotation
matrices. F, represents the unbalance excitation vector of
the rotor system.

lll. SIMULATION ANALYSIS AND
DISCUSSIONS

A. SIMULATION MODELS

In this section, three different models of the dual-rotor
system are modeled: beam-based FE model, solid-based
FE model, and TM model. In order to analyze the dynamic
characteristics of the dual-rotor system, the following as-
sumptions were made in the discrete dynamics modeling
process:

a) The disks of HP compressor, LP compressor, HP
turbine, and LP turbine are all considered rigid disks
with rotary effect. They are concentrated at the cen-
troid position of the disk in the form of lumped mass
and moment of inertia.

b) The shafts of the inner rotor and the outer rotor are
simplified as annular beams with equal sections indi-
vidually. The inner and outer shafts are Timoshenko
beam elements without considering the influence of
torsion and axial force.

c) Ignoring all the damping and the cross coefficient of
the bearing, only the stiffness coefficients of the
horizontal and vertical directions of the bearing are
considered.

d) The inner and outer rotors rotate in the forward
direction, with the outer rotor rotating 1.3 times the
inner rotor.

1. BEAM-BASED FE MODEL. As illustrated in Fig. 5(a),
the dual-rotor system is divided into several Timoshenko
beam elements with nodes for building a 1D FE. The inner

JDMD Vol. 3, No. 2, 2024



Dynamical Modeling and Dynamic Characteristics Analysis

103

Diskl Disk2 Disk3 Disk4
" | H H |
=]
3 E:_'
y ] A o & * |5
Bearingl \ Bearing2 \ : Bearing5
] \ | Bearing3 % Beating4 i
] U \ ! L
Inner Shaft Outer Shaft P
/; g 8 iy 4 S - I
| ’ s B8 S ’ ]
| ’ =] =3 -1 ’ =} %=1 1
: N z = L2 ’ Z iz '
- N o = ~ © a
v o o — \-( L B |
T T =l @ @ @ L) @
: 2 3 % $E 28 3
= = = E4 z =z =z =z
(b)
Diskl Disk2 Disk3 Disk4
X - — — -
|
isi] .= iz}
/;:: ______________ B S B B — " Z
y Bearing1 k‘ Bearing2 &l R = Bearing5
' \ Bearing3 b Beafing4
i T \‘ \ e \ T ! LJ
(c)
Diskl Disk2 Disk3 Disk4
X AR i — =
f5]
v 2= i
"""""""""""""" T & O ] & Z
y Bearing1 k‘ Bearing2 & R . Bearing5
! \ ! Bearing3 N Beating4 :
- \ tJ \ L b |
] \ ! T |
Inner Shaft

Outer Shaft
’
7

7
‘9 10

Fig. 5. Three models of the dual-rotor system: (a) beam-based FE model, (b) solid-based FE model, and (c) TM model.

rotor is modeled with 18 elements and 19 nodes. The outer
rotor is modeled with 11 elements and 12 nodes. The
bearings are assumed to be linear and isotropic. Bearing
1, bearing 2, bearing 3, and bearing 5 are located at nodes 2,
10, 21, and 18, respectively, while bearing 4 (the inter-shaft
bearing) is located at node 16 and node 31. The rigid disk 1,
disk 2, disk 3, and disk 4 are located at nodes 6, 25, 30,
and 17.

2. SOLID-BASED FE MODEL. As illustrated in Fig. 5(b), a
3D solid-based model is established using the Ansys soft-
ware package for the dual-rotor system. The inner rotor is
discretized into 63020 hexahedral elements and 12690
nodes. The outer rotor is discretized into 76806 hexahedral
elements and 14742 nodes.

3. TM MODEL. In the simulation of the TM model, this
paper adopts the same parameter setting as the beam-based
FE model, which mainly means that the number and
position of nodes of inner and outer rotors remain the
same after discretization. However, it is worth noting
that the mass of the beam-based FE model is evenly
distributed, while the beam in the TM model has no mass.

The simulation results of the above three numeric
models are relatively consistent. In terms of calculation
time, the solid-based FE model takes about 300 s, and the
beam-based FE model and the TM model only take less
than 1 s. The dual-rotor system’s natural frequency varies
with the dual-rotor system’s speed. Then these two methods
are more suitable for the application of real-time computing.
Compared with the beam-based FE and TM models, both
methods adopt the Timoshenko beam hypothesis when
dealing with beam segments, and the shear stress and
moment of inertia are considered. The TM model is simple
to program and has the fastest calculation speed. However,
it focuses on qualitative analysis, which is suitable for
calculating the inherent characteristics of the dual-rotor
system and is difficult to calculate the fault dynamics
analysis. Although the beam-based FE model is compli-
cated to program and occupies a large amount of memory, it
is not worth mentioning in the face of modern computer
technology. At the same time, the most significant advan-
tage is elementary to expansion, especially the transient
dynamic response, which is very important for the dual-
rotor, real-time fault diagnosis system.
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B. CALCULATION OF NATURAL
FREQUENCY CHARACTERISTIC

Based on the above FE mathematical model and the three
simulation models, the modal analysis of the dual-rotor
system is carried out by using the MATLAB program,
Ansys program, and TM program, respectively. TM pro-
gram is solved by the Riccati method and programmed by
the C programming language. The primary purpose is to
calculate the natural frequencies and compare the validity of
the three simulation models.

The beam-based FE model and TM model were
used to calculate the first five order natural frequencies,
and the solid-based FE model was used to calculate the
first four order natural frequencies. The results in
Figs. 6-8 list the modal shapes of the first four natural
frequencies corresponding to each model. It can be seen
that the vibration modes of each natural frequency are
almost the same. The final calculation results are shown
in Table II. The errors in the calculation results are all
within 3%.

(a)
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The simulation results of the above three numeric mod-
els are relatively consistent. In terms of calculation time, the
solid-based FE model takes about 300 s, and the beam-based
FE model and the TM model only take less than 1 s. The dual-
rotor system’s critical speed varies with the dual-rotor sys-
tem’s speed [1,2,31]. Then these two methods are more
suitable for the application of real-time computing. Com-
pared with the beam-based FE and TM models, both methods
adopt the Timoshenko beam hypothesis when dealing with
beam segments, and the shear stress and moment of inertia are
considered. The TM model is simple to program and has the
fastest calculation speed. However, it focuses on qualitative
analysis, which is suitable for calculating the inherent char-
acteristics of the dual-rotor system and is difficult to calculate
the fault dynamics analysis. Although the beam-based FE
model is complicated to program and occupies a large amount
of memory, it is not worth mentioning in the face of modern
computer technology. At the same time, the most significant
advantage is elementary to expansion, especially the transient
dynamic response, which is very important for the dual-rotor
system real-time fault diagnosis system.
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Fig. 6. The first four natural frequencies and natural modals (solid-based FE model).
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Tablell. Comparison of natural frequency components
Beam-based  Solid-based ™ Error
Order FE model FE model model (%)
1 68.94 68.68 69.33  0.94
2 100.49 102.21 100.71 1.68
3 230.19 235.11 231.16  2.09
4 305.74 303.30 303.65 0.80
5 488.22 N/A 49745 N/A

C. CALCULATION OF CRITICAL SPEED
CHARACTERISTICS

The Campbell diagram is a diagram of the natural frequency
and the rotational speed of the rotor system. For the dual-
rotor system, each speed corresponds to a natural
frequency. The Campbell diagram of the rotor system
calculates the natural frequency of the whole system
with one rotor as the primary excitation. While calculating

(a) 18000
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o

the natural frequency, the inner and outer rotor speeds are,
respectively, wl and w2, and w2=1.3 w1. With the increase
in rotor speed, the forward and reverse vortices correspond-
ing to each frequency are not quite the same due to the
gyroscopic effect. As shown in Fig. 9, solid line xFW and
dotted line xBW represent the natural frequencies of for-
ward vorticity and reverse vorticity, respectively. There-
fore, first-order forward vorticity and reverse vorticity are
represented as 1FW and 1BW, and so on. As mentioned
above, the speed of the outer rotor in this paper is 1.3x that
of the inner rotor, so the pink line represents the 1x
synchronous excitation line of the inner rotor, and the
brown line represents the 1.3x synchronous excitation
line of the outer rotor. Therefore, the intersection points
a, ¢, and e of the synchronous excitation line of the outer
rotor and the forward vorticity line are the critical speeds of
the dual-rotor system under the condition of the inner rotor
acting as the primary excitation. The intersection points b
and d of the synchronous excitation line of the inner rotor
and the forward vorticity line are the critical speeds of the
dual-rotor system under the condition of the outer rotor as
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Fig. 9. Campbell diagram for the dual-rotor system: (a) Campbell diagram of beam-based FE model and (b) Campbell diagram of TM

model.
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Table lll. Comparison of first five critical speeds between beam-based FE model and TM model

Order Beam-based FE model TM model Error (%)
First-order critical speed a-(3289,4276) a’ -(3288,4281) 0.11
Second-order critical speed b-(4319,5615) b’ -(4323,5634) 0.09
Third-order critical speed c-(4721,6137) ¢’ -(4713,6132) 0.08
Fourth-order critical speed d-(6168,8020) d’ -(6158,8005) 0.16
Fifth-order critical speed e-(10860,14119) e’ -(10960,14250) 0.93

(@)

(b)

Fig. 10. MATLAB plots the first four critical speeds of the dual-rotor system.

the primary excitation. It can be seen from Table III that the
errors of the critical speed calculation results between the
beam-based FE model and TM model are within 1%. Of
these five critical speeds, the second-order critical speed and
the third-order critical speed are excited by the inner rotor
and the outer rotor as the primary excitation, respectively.
They are very close in numerical terms. The critical speed
modes of the first four orders of the dual-rotor system are
shown in Fig. 10. Hence, it will be probably a challenge to
test these two critical speeds clearly in subsequent
experiments.

D. UNBALANCED RESPONSE

The unbalanced response of the dual-rotor system is also
studied in this paper to learn more dynamic characteristics
of the dual-rotor system. This paper mainly studies the
unbalanced response of inner rotor disks 1 and 4 and outer
rotor disks 2 and 3 when the unbalances are in-phase and
antiphase, respectively, shown in Fig. 11. At the same time,
the unbalanced responses of inner and outer rotors with
different speed ratios are also studied.

As illustrated in Fig. 12, the first two pictures respec-
tively show the excitation of the inner rotor and the outer
rotor with in-phase unbalances. The last two pictures
respectively show the excitation of the inner rotor and

the outer rotor with antiphase unbalances. Furthermore,
the speed ratio between the outer and inner rotor of the four
groups of figures are ratio 1.3, ratiol.5, ratiol.8, and
ratio2.2. The amplitudes of the four bearings have evident
peak values at each critical speed, which correspond to the
critical speed calculated in Table III.

Figure 13 shows the bearing vibration state of the
excitation of the outer rotor with in-phase unbalances.
Whether internal rotor excitation or the external rotor
excitation, bearing 3 of the third critical speed has the
most extensive vibration, while bearing 1 of the first and
second critical speed has the most extensive vibration.
Therefore, bearing 1 and bearing 3 are the best monitoring
locations, providing theoretical support for the monitoring
system construction of the test rig.

As previously introduced, bearing 1 has the most
extensive vibration at the first and second critical speed,
and bearing 3 has the most extensive vibration at the third
critical speed. Therefore, the vibration amplitude at differ-
ent speeds is taken out to obtain the Rate-Response ampli-
tude diagram of bearing 1 in Fig. 14(a) and (b) at the first
and second peaks and the Rate-Response amplitude dia-
gram of bearing 3 in Fig. 14(c) at the third critical peak. As
can be seen from these three figures, bearing 3 has the
maximum vibration amplitude at the third peak point when
the speed ratio is 1.3. Bearing 1 and 2 have the maximum
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Fig. 14. Bearing 1, bearing 2, and bearing 3 vibrations at different ratios.

vibration amplitude at the first and second peak points when
the speed ratio is 1.8. Therefore, setting different operating
speed ratios plays an essential role in the stable operation of
the aero-engine in engine design.

The ratio of antiphase unbalance amplitude to in-phase
unbalance amplitude is amplitude ratio. In order to study the
orientation effect of unbalance, the amplitude ratios
between the in-phase and antiphase unbalance at different
speed ratios in Table IV are presented. When the amplitude
ratio is greater than 1, the unbalanced response with the in-
phase unbalances is higher than with the antiphase. For less
than 1, it is the opposite. Therefore, it can be seen from the
table that the unbalanced response of the in-phase and
antiphase excitation of the inner rotor is 65.842 at the
maximum and 0.260 at the minimum, and some amplitude
ratios are greater than 1, while others are less than 1.
However, the unbalanced response of the in-phase and
antiphase excitation of the outer rotor almost changes little
with the speed rate change at each critical speed. The outer
rotor is less affected by the in-phase and antiphase unbal-
ance excitation, while the inner rotor is easily affected. It
can be seen from the structure that the outer rotor has a small
length-to-diameter ratio and a large stiffness, so it is not
easily affected by unbalance. The length-to-diameter ratio
of the inner rotor is sizeable, and the stiffness is small, so it

is easily affected by unbalance. The above analysis further
indicates that the inner rotor should be focused on the
dynamic behavior of the two-rotor system. It can be seen
from the first three columns of Table I'V that the unbalanced
inversion promotes the dynamic vibration behavior at the
first and third critical speeds while inhibiting the dynamic
vibration behavior at the second critical speeds. At the rate
of 1.3, the effect of the unbalance on vibration is volatile,
which is also of great concern.

E. EXPERIMENT VERIFICATION

In order to verify the validity of the above model and
results, this paper designed a dual-rotor system test rig.
Figure 15 shows that the test rig mainly consists of the inner
rotor assembly and outer rotor assembly. The inner rotor
assembly is directly connected to the inner rotor shaft by the
inner rotor motor through the spring coupling. As the above
model is introduced, the inner rotor shaft mainly comprises
bearing 1, bearing 2, bearing 5, disk 1, and disk 4. The drive
shaft assembly is designed as the external sub-shaft cannot
be driven directly by the motor, as shown in Fig. 15(b). The
driving shaft assembly comprises the driving shaft, driving
shaft lug, two supporting bearings, and related components.
The driveshaft is also hollow and passes through the inner

Table IV. Comparison of amplitude ratios between the in-phase and antiphase unbalance

Speed ratio Inner-peaki Inner-peak2 Inner-peak3 Outer-peak1 Outer-peak 2 Outer-peak 3
1.3 65.842 0.344 0.260 0.358 0.291 0.686

1.5 3.180 0.571 1.196 0.358 0.291 0.68586
1.8 3.200 0.569 1.341 0.359 0.293 0.68041
2.2 3.150 0.568 1.557 0.359 0.292 0.68195
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Fig. 15. Dual-rotor system test rig: (a) overall view, (b) drive part view, and (c) measure and excitation position.

rotor shaft and is supported by two support bearings. The
external rotor motor can transfer the driving force through
the drive gear to make the drive shaft rotate. The driving
shaft and the inner rotor are provided with four lugs
connected by soft, thin wires. In this way, the drive shaft
can transfer torque through the four pairs of soft, thin lines
without any other direction of force, thus driving the inner
rotor rotation. The motor of the test rig has a rated power of
2.2 KW, a maximum speed of 10000 rpm, and a speed
accuracy of £2 rpm.

Experimental modal analysis of the test rig’s inner
rotor shaft system was conducted using the hammer impact
method. As illustrated in Fig. 15(c), a force hammer was
positioned at fixed point A, while a vibration sensor was
placed at fixed point B to measure the rotor’s vibration
acceleration signals. By striking the rotor along the vertical
direction and capturing the time—domain response curves
via the acceleration sensor, as depicted in Fig. 16(a), the
collected vibration signals underwent frequency spectrum
analysis. After fast Fourier transform (FFT) processing,
frequency—domain response curves were obtained, as de-
picted in Fig. 16(b). The results indicate that only the first-
mode frequency of 66.5 Hz was excited during the experi-
ment. This finding closely matches the natural frequencies
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obtained from the preceding simulation model, which were
68.68 Hz, 68.94 Hz, and 69.33 Hz. Therefore, the experi-
mental results validate the accuracy of the simulation
models.

IV. CONCLUSION

In this paper, a dual-rotor system with a high-speed flexible
inner rotor “1-1-1" three bearing support structure is mod-
eled to study the modeling method and dynamic character-
istics. Based on the dual-rotor physical model, a FE model
with unbalanced force is designed by using the Timoshenko
beam elements. After three different simulation models
were designed, the modal frequencies, modal shapes, and
critical speed characteristics were calculated. The unbal-
anced response of the system under unbalanced excitation
was studied. The main conclusions are summarized as
follows:

1) The natural frequency error rate calculated by the
beam-based FE model, solid-based FE model, and
TM model is less than 3%. The critical speed based on
FE and TM is verified, proving the established
model’s effectiveness. The results show that the
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Fig. 16. Experiment results: (a) time—domain diagram of vibration signal and (b) spectrum diagram of vibration signal.
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beam-based FE model has a very high computational
speed and is elementary to expand for further
dynamic research. These advantages are very suitable
for studying the rotor system real-time fault diagnosis
system.

2) The unbalanced response of the dual-rotor system is
not linear but has a great relationship with the speed
ratio. When the speed ratio is 1.8, the vibration
amplitude of the first and second critical speeds is
the largest. When the speed ratio is 1.3, the vibration
amplitude of the third critical speed of the rotor
system is the largest. Attention should be paid to
designing the dual-rotor system.

3) The in-phase or antiphase unbalance mass affects the
bearing vibration when the inner rotor is excited, but
the outer rotor excitation does not. The reason is that
the inner rotor has a sizeable length-to-diameter ratio,
and the stiffness is minor, while the outer rotor has a
relatively large stiffness. Therefore, compared with
the outer rotor, the dynamic balance of the inner rotor
is more critical, which will affect the stability of the
whole system.

Based on the above study, further research about the
dynamics of unbalanced force is of great significance in
fault diagnosis and prognosis of the dual-rotor system. The
modal experiment validates the simulated results, and
further experiments will be conducted to confirm their
validity.
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