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Abstract: In the field of data-driven bearing fault diagnosis, convolutional neural network (CNN) has been widely
researched and applied due to its superior feature extraction and classification ability. However, the convolutional
operation could only process a local neighborhood at a time and thus lack the ability of capturing long-range
dependencies. Therefore, building an efficient learning method for long-range dependencies is crucial to
comprehend and express signal features considering that the vibration signals obtained in a real industrial
environment always have strong instability, periodicity, and temporal correlation. This paper introduces nonlocal
mean to the CNN and presents a 1D nonlocal block (1D-NLB) to extract long-range dependencies. The 1D-NLB
computes the response at a position as a weighted average value of the features at all positions. Based on it, we
propose a nonlocal 1D convolutional neural network (NL-1DCNN) aiming at rolling bearing fault diagnosis.
Furthermore, the 1D-NLB could be simply plugged into most existing deep learning architecture to improve their
fault diagnosis ability. Under multiple noise conditions, the 1D-NLB improves the performance of the CNN on the
wheelset bearing data set of high-speed train and the Case Western Reserve University bearing data set. The
experiment results show that the NL-1DCNN exhibits superior results compared with six state-of-the-art fault
diagnosis methods.
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I. INTRODUCTION
Rolling bearings are the pivot components of the rotating
machinery, and the damage of them directly declines the
performance of the mechanical system, and safety pro-
blems, as well as enormous economic losses, could be
caused. However, the long-time process under adverse
operating conditions could easily cause different kinds of
damage such as crack, abrasion, and gap. Therefore, the
health condition monitoring for rolling bearings is crucial to
protect the machinery system from safety problems [1].

With the development of the internet of things and the
demand for long-term condition monitoring, companies
have obtained enormous industrial data. Since the data-
driven machine learning method could extract features of
the machinery system form historical data automatically, it
has been widely applied in the field of rolling bearing fault
diagnosis. In general, the traditional diagnosis methods [2–
5] mainly include two steps: (1) feature extraction and (2)
fault recognition. The feature extraction [2,6] is to obtain
the features that can reflect the state of the machine through
the feature extraction algorithm. Fault recognition [3,7]
uses a classifier algorithm to identify and classify the
obtained features. However, the manually extracted statis-
tical features can hardly characterize the complex dynamic
features of vibration signals. Moreover, most of these
classifier algorithms are shallow models, which cannot

learn the complex nonlinear relationship effectively.
Thus, it is easy for them to make a wrong judgment.

In recent years, deep learning has attracted more and
more attention in the field of fault diagnosis [8–11]. Com-
pared with traditional methods, the deep learning method
could extract features from lower level to higher level
automatically based on multiple nonlinear operations,
and thus it could diagnose with higher intelligence. In
particular, the convolutional neural network (CNN) has
achieved remarkable success in fault diagnosis tasks due
to its unique feature learning mechanism [12–14]. For
example, Ince et al. [15] proposed a new one-dimensional
CNN (1DCNN) for the real-time fault diagnosis of motors.
Peng et al. [16] used a 1D deep residual CNN to diagnose
the fault status of train wheelset bearing. Chen et al. [17]
combined the CNN with an extreme learning machine to
improve the fault diagnosis performance of the network.
These methods are based on the 1DCNN [15–21], which
mainly takes signals as input and automatically extracts
fault features and diagnoses fault types through 1D convo-
lution. In addition, Xia et al. [22] proposed a multisensor-
based CNN fault diagnosis method to learn spatial and
temporal information from multiple sensors simultaneously
to obtain better results. Wen et al. [23] used two-dimen-
sional CNN (2DCNN) to diagnose the health status of
various mechanical components. These methods are based
on the 2DCNN [22–24], which recombines 1D signal into
2D image or time spectrum, and then uses 2D network
architecture to get the final diagnosis results. However,Corresponding author: Zhiliang Liu (email: zhiliang_liu@uestc.edu.cn).
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compared with the 1DCNN, the network structure and
operation process required by the 2DCNN are more sophis-
ticated. Therefore, in this article, we use the 1DCNN to
solve the fault diagnosis of rolling bearings.

Even though the CNN has been successfully applied in
bearing fault diagnosis, it was initially introduced to solve
computer vision problems such as image segmentation [25]
and face recognition [26]. In order to accomplish these
tasks, CNN needs to pay more attention to the relevant
information of the local neighborhood. Therefore, CNN
lacks sufficient attention to the relevance of long-distance
information.

Nevertheless, the vibration signal of rotating machin-
ery is significantly different from the image. It is a
temporal signal with strong periodicity. In addition,
because of complicated operation conditions, these signals
are always with strong nonlinearity and instability. There-
fore, there is a strong correlation among different time
points. Among these periodicities and correlations, there
may be a large quantity of valuable information hidden.
For example, as shown in Fig. 1, when a bearing has a local
fault, the faulty part and other components produce a
periodic short-term impact and encourage the bearing
system to perform high-frequency free attenuation vibra-
tion according to its resonance frequency. Therefore, if we
only consider the signal within a local region, diagnosis is
more likely to be interfered with by random factors [27].
Apart from this, comparing the relationship among the
amplitude of impulse points in different periods and
positions is considered practical to understand the infor-
mation in the signal fully.

The nonlocal mean (NLM) algorithm was first intro-
duced by Buades et al. [28] in the field of image denoising.
This algorithm firstly breaks the image into patches of the
same size. Then, it replaces the value at one pixel with the
weighted average based on the similarity among the patch
where the pixel belongs and other patches. In that way, the
NLM could use the dependencies among one pixel and
other pixels. Therefore, this method has a strong ability to
capture long-range dependencies and has shown its extraor-
dinary performance on image denoising. Besides, The
NLM is also widely used in the denoising task of 1D time-
series signals and has achieved impressive results. For
instance, Van et al. [29] presented a fault diagnosis method
based on NLM denoising. Kumar et al. [30] applied NLM to
electrocardiogram denoising.

Recently, Wang et al. [31] combined NLM and CNN to
introduce nonlocal neural networks, which have superior
performance on image classification compared with other
computer vision methods. We assume that it makes more
sense to improve the long-range dependencies learning
ability of the algorithms applied for processing time-series
signals, compared with that for image data. Therefore,

inspired by [31], we introduced the idea of NLM in the
field of time-series signal denoising into the 1DCNN and
constructed a 1D nonlocal block (1D-NLB) for capturing
long-range dependencies. The 1D-NLB computes the
response at a position as a weighted average of the features
at all positions. It could build connections between one
position and any other positions so that it could capture their
dependencies. The 1D-NLB can be integrated into every
1DCNN as an efficient, simple, and general component for
capturing long-term dependencies in signals. Therefore,
based on 1D-NLB, we propose a nonlocal 1D-convolu-
tional neural network (NL-1DCNN) for fault diagnosis of
rolling bearings. The NL-1DCNN captures the shallow
features, long-range dependencies, and high-level features
of the input signal layer by layer, thereby accurately
diagnosing the current health status of the bearing.

The contributions of this paper are summarized as
follows:

(1) Inspired by the NLM algorithm in the field of signal
denoising, this paper proposes a nonlocal module
based on the 1DCNN for capturing long-term depen-
dencies of signals.

(2) The proposed 1D-NLB can be integrated into every
1DCNN as an efficient, simple, and universal com-
ponent, thereby improving the diagnosis performance
of the network.

(3) This paper proposes the 1DCNN based on 1D-NLB to
diagnose the health status of rolling bearings.

(4) The NL-1DCNN has been extensively verified on the
wheelset bearing data set and the Case Western
Reserve University (CWRU) bearing data set [32],
which has achieved better diagnostic results than six
state-of-the-art fault diagnosis methods.

The rest of this paper is organized as follows. In
Section II, the realization of the NLM algorithm on signal
is described. In Section III, the proposed NL-1DCNN is
described in detail. Section IV verifies the effectiveness and
superiority of the NL-1DCNN. Section VI summarizes the
whole paper.

II. REALIZATION OF NLM ON
VIBRATION SIGNAL

The NLM algorithm for signal denoising is mainly based on
the following procedures. First, a neighborhood block is
constructed with each vibration signal point as the center,
and then structural information, similar to the neighborhood
block, is searched in the global range of the signal. Finally,
the information is weighted and averaged to eliminate noise
in the vibration signal.

Suppose the expression of the vibration signal of faulty
rolling bearing is

yðtÞ = xðtÞ + nðtÞ, (1)

where x(t) is the fault impulse signal, n(t) is the noise
generated by other factors such as resonance and y(t) is
the observed signal.

The mission of denoising is to eliminate n(t) from the
observed vibration signal y(t) so that the original fault
impulse signal x(t) could recover. For any position t, the
estimated K(t) which is the weighted average of signal
values within a predefined search neighborhood N(t) is
given by

Periodic fault 
shock

High frequency 
resonance vibration

Amplitude

FIGURE 1. The demonstration of real faulty signal that contains
both low-frequency vibration generated by the impulse of defect
position and high-frequency resonance vibration.
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KðtÞ = 1
ZðtÞ

X
s∈NðtÞ

ωðt,sÞyðsÞ (2)

where ω(t, s) is the weight associated with sth searched
point and tth desired point in N(t) which represents the
search window centered on position t. ZðtÞ=

X
s∈NðtÞ

ωðt,sÞ is

the normalized factor. The weight, as described in [33], is
given by

ωðt,sÞ = exp

�
−
P

δ∈Δ ðyðt þ δÞ − yðsþ δÞÞ2
2LΔλ2

�

= exp

�
−
d2ðyðtÞ,yðsÞ

2LΔλ2

�
,

(3)

where λ is the bandwidth parameter and Δ represents the
local patch of LΔ points surrounding the position t; the patch
surrounding the position s also contains LΔ points; d2

represents the sum of the squares of Euclidean distances
of the local patches centered on the signal points t and s. The
novelty of NLM is that the weight between two local
patches relies on their similarity rather than their physical
distance [34]. Therefore, the denoising process of NLM is
nonlocal.

III. THE PROPOSED NL-1DCNN
FAULT DIAGNOSIS METHOD

In this section, the generic definition of nonlocal operation
in the CNN is firstly introduced. Then we give an instance
based on the definition. For the last part, the NL-1DCNN
aiming at rolling bearing fault diagnosis is introduced in
detail.

A. DEFINITION OF 1D NONLOCAL

Different from the implementation of NLM algorithm in the
field of vibration signal denoising, the nonlocal operation in
the 1DCNN takes feature signals as input, and then outputs
feature signals containing global feature information.
Therefore, we define a generic nonlocal operation in the
1DCNN as

mi =
1

κðnÞ
X
∀j

f ðni,njÞgðnjÞ (4)

where i is the index of a position on the output feature
signal, and the response at that position is the value obtained
after a nonlocal operation. j is the index that enumerates all
possible positions. n is the input feature signal and m is the
output which has the same length as n. The function f is
responsible for calculating the dependency between indexes
i and all indexes j of the signal. The function g computes the
response of the input signal at position j. The response is
normalized by a factor κ(n).

This operation takes the relationship between position i
with any position j into consideration and regards the
weighted average value of the response as output. There-
fore, it can make the network perceive long-range depen-
dencies among different regions in the input feature signal
at one time. By comparison, the convolutional operation
could only learn the feature within a local neighborhood
whose size equals the size of convolution kernels. Likewise,

a recurrent neural network could only capture the depen-
dencies among neighboring times.

The 1D nonlocal operation is very simple. The basic
idea is to calculate the long-range correlation between the
current position and other positions in the input signal, so
that the algorithm can quickly capture the detailed local
information and global information of the input signal. In
addition, this operation can be easily implemented in the
CNN with only a small amount of parameter increasing.

B. 1D NONLOCAL BLOCK

According to the above definition, the pivot of 1D-NLB
operation is function f which calculates similarity and
function g computing the response. Thus, the realization
of these two functions is highly related to the performance
of 1D-NLB. In this paper, for simplicity, we only consider g
as a linear transformation, which means gðnjÞ = Wgnj,
whereWg is a weight matrix to be learned. According to the
implementation of nonlocal operations in [28,31], a natural
choice of f is the Gaussian function. For the convenience of
capturing the dependencies among different regions in the
signal, we define the f as

f ðni,njÞ = expðnTi njÞ (5)

where nTi nj represents dot-product similarity, which is
much easier to realize in various neural network platforms,
and does not add any training parameters. Thus, the nor-
malized factor is defined as

κðnÞ =
X
∀j

f ðni,njÞ (6)

Figure 2 illustrates the realization of the 1D-NLB in the
1DCNN. n is the input feature signal, n ∈ RB×W×C, where B
is batch size, W means the length of the signal, and C
represents the number channels. At the very beginning, n is
multiplied by nT and get matrix v, v ∈ RB×W×W. Then, v is
fed into softmax layer to obtain the dependencies among

Input n RB×W×C

n RB×W×C

+

RB×W×W

Conv 1×1, C/2

RB×W×C/2

softmax

RB×W×C/2

Conv 1×1, C

RB×W×C

Output m RB×W×C Batch matrix 
multiplication

Element-wise add

×

×

×

FIGURE 2. The illustration of universal architecture of the 1D-
NLB. ‘×’ denotes batch matrix multiplication and ‘+’ represents
element-wise addition. This module can well capture the long-
distance dependencies of the input signal.
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one position of n and other positions. The result could be
expressed as

v̂i =
expðviÞX
j

expðvjÞ
(7)

where v̂ ∈ RB×W×W .
Meanwhile, n goes through a 1 × 1 convolutional layer

to halve its channels. After that, it is multiplied by v̂ and
passes another 1 × 1 convolutional layer so that the number
of channels could recover to C. Thus, the output m is
calculated by

m = Convðv̂ConvðnÞÞ (8)

where m ∈ RB×W×C.
At last, in order to optimize the feature signal while

retaining the original information. We introduce residual
connection on this basis to form a complete 1D-NLB. As a
result, the output m is rewritten as

m = Convðsof tmaxðnTnÞ ⊗ ConvðnÞÞ + n, (9)

The method we proposed computes the dependencies
among one local region of the input signal and the entire
signal. Besides, the information could be extracted by only
increasing extremely few training parameters. The 1D-NLB
is very simple to be plugged into most existing 1DCNN. It
could also be embedded into any layers among the network
to combine the long-range dependencies with short-range
information at different levels. Therefore, this allows us to
build an architecture with a strong ability to learn the global
information contained in the signal.

C. NONLOCAL 1D-CONVOLUTIONAL
NEURAL NETWORK

The 1D-NLB can be simply embedded in the 1DCNN to
improve its learning ability of long-range dependencies of
input signals. Based on 1D-NLB, we propose the NL-
1DCNN, which aims at rolling bearing fault diagnosis.
The universal architecture of the NL-1DCNN is shown
in Fig. 3.

The NL-1DCNN takes a 1D vibration signal as input.
First, two shallow convolution modules are used to learn the
shallow feature information in the signal. Subsequently, a
1D-NLB is used to learn the long-range dependencies
features of the signal. Through the feature learning of the
shallow convolution module, the input signal of 1D-NLB
can encode enough semantic information, so that 1D-NLB
can obtain the temporal correlation in the signal with higher
effectiveness and accuracy. This is why two shallow con-
volution modules are used before 1D-NLB. In addition, the
NL-1DCNN also uses multiple convolution modules to
encode the high-level semantic features of the signal, so
that different types of signals have sufficient distinction. For
each convolutional module, it is consisted of a 1D con-
volutional layer, a batch normalization, and a ReLU acti-
vation function layer. We implement downsampling by
setting a large convolution stride, which can minimize
the corresponding information loss.

For the classification stage, the learned feature is sent to
a global average pooling (GAP) [35] layer followed by a
softmax activation. Assuming there are H different classes,
the output probability Qh for the class h is calculated by

Qh =
expðqhÞP
H
h=1 expðqhÞ

,h = 1,2, : : : ,H (10)

G
A

P
+

So
ft

m
ax

Softmax

Conv 1×1
C4

C3

C2

C1

1D-NLB

Reshape

Signal monitoring Long-range dependencies features High-level features Fault classificationShallow features

Rolling  bearing

Conv 1×1

+××

FIGURE 3. The illustration of universal architecture of the NL-1DCNN. It contains four parts: (a) signal convolutional layer for shallow
features learning, (b) 1D-NLBwhich is used to capture long-range dependencies features, (c) multiple convolutional layers for high-level
features learning, and (d) the fault classification part combined GAP with Softmax layer.
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where qh is the input of the softmax layer. The diagnosis
output is the fault label corresponding to the largest Qh.

The detailed architecture of the NL-1DCNN is dem-
onstrated in Table I. The length of the input signal of the
NL-1DCNN is 2048 × 1, which can ensure that the input
signal contains a complete period. Six convolutional
modules are applied in the NL-1DCNN in total. Among
them, the first two layers of convolution modules are used
to capture the shallow information of the input signal, then
1D-NLB is used to learn long-range dependencies fea-
tures, and the last four layers of convolution modules are
used to learn high-level semantic features. The number of
channels of the network’s convolution module gradually
increases from 16 to 128. Except that the stride of the first
layer is set to 4, the stride of other layers is set to 2, so that
the dimension of the feature signal is finally compressed
to 16 × 128. Inspired by [16,19,36], we use wide convo-
lution kernel to learn more fault-related features of
the signal. In order to balance the feature extraction
capability and the number of parameters of the network
model, we set the size of the convolution kernel to
gradually decrease, that is, the size of the convolution
kernel of the network is gradually reduced from 24 × 1 to
3 × 1. The proposed network model thus uses large con-
volution kernels in shallow layers to obtain sufficient
shallow features from the signal. The extracted features
are then filtered and abstracted using small convolution
kernels in the deep layers to build high-level features that
can be used for device health identification. Apart from
this, we use GAP layer to compress the signal into a
vector, which decreases the number of trained parameters
dramatically compared with using fully connected layer.
The probability is outputted by the softmax function.

IV. EXPERIMENT VERIFICATION
In this section, we perform an ablation study and compara-
tive experiments on the wheelset bearing data set and motor
bearing data from the CWRU to verify the effectiveness and
superiority of the proposed nonlocal operation and fault
diagnosis method.

A. EXPERIMENT SETUP

Deep learning-based methods need a large quantity of
samples to optimize parameters and the process of slicing
the training samples with overlap proposed by [16,19]

could enormously increase the number of training samples.
Therefore, we adopt the same method for data augmenta-
tion. The length of each sample is 2048 while the step size
of sliding segmentation is set to 128 in our experiment.
2048 is greater than the number of sampling points in one
rotation cycle of the device, so each sample contains
complete cycle information.

The proposed NL-1DCNN is realized in the Keras
library under Python 3.5. The training and testing process
are performed on a workstation with an Intel Core i7-6850K
CPU and a GTX 2080 GPU. In addition, we changed the
division standard deviation to division variance in z-score
normalization. We find that this can make the network
achieve better performance. During the training process, we
adopt Adam optimizer and the learning rate is set to 0.0001.
The batch size is 196 and 96 on wheelset bearing data set
and motor bearing data set, respectively. In this paper, we
adopt three generic performance indicators: accuracy,
recall, and precision.

To better stimulate strong noise disturbance of bearings
in the real circumstance, we added additional Gaussian
white noise to the raw signals. The definition of SNR is
shown as

SNRdB = 10log10

�
Psignal

Pnoise

�
, (11)

where Psignal and Pnoise are the power of signal and the
noise, respectively.

In this paper, the NL-1DCNN is compared with six
state-of-the-art deep learning-based methods. First, we com-
pare the NL-1DCNNwith dislocated time series CNN (DTS-
CNN) proposed by Liu et al. [27]. The DTS-CNN uses a
dislocate layer, so that the network can learn the correlation
between different time series in the signal to a certain extent.
In the experiments,m, n, and k of the DTS-CNN are set to 10,
512, and 30, respectively, and a dropout layer with a dropout
rate of 0.2 is used in the fully connected layer to suppress
overfitting. In addition, we compare theNL-1DCNNwith the
LSTM-based methods. The LSTM has a good learning
ability of timing correlation features. In this experiment,
the used LSTM has two LSTM cells, where its time steps
are 64 and the input dimension is 32.

Finally, we also selected the two state-of-the-art
1DCNN-based fault diagnosis methods, namely wide
first-layer kernels CNN (WDCNN) [19] and residual learn-
ing-based CNN (ResCNN) [18], which use wide convolu-
tion kernel and residual network structure, respectively; and
the two state-of-the-art 2DCNN-based fault methods,
namely Wen-CNN [23] and hierarchical learning rate adap-
tive deep CNN (ADCNN) [24], both convert 1D signals
into 2D images, and then use different structures of 2D
networks to learn fault features. To fairly compare the
performance of different methods, we have trained and
tested these methods under the same experimental condi-
tions, and four-fold cross-validation is also applied to verify
the performance of every method.

B. CASE 1: WHEELSET BEARING FAULT
DIAGNOSIS

1) DATA DESCRIPTION. The wheelset bearing test rig
provides the experiment data. As shown in Fig. 4, the

TABLE I. The detailed architecture of NL-1DCNN

Layer Type
Kernel/
channel

Stride/
padding Output

1 Conv+BN 24 × 1/16 4/Yes 512 × 16

2 Conv+BN 12 × 1/32 2/Yes 256 × 32

3 1D-NLB – – 256 × 32

4 Conv+BN 12 × 1/32 2/Yes 128 × 32

5 Conv+BN 6 × 1/64 2/Yes 64 × 64

6 Conv+BN 6 × 1/64 2/Yes 32 × 64

7 Conv+BN 3 × 1/128 2/Yes 16 × 128

8 Global Average Pooling 128

9 Softmax 12

C1 C2 C3 C4 : : :
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wheelset bearing test rig is mainly composed of a drive
motor, a belt transmission device, a lateral loading set, a
vertical loading set, and two fan motors. The vertical and
the lateral loading sets are designed to mimic two-dimen-
sional loads in real train operation. An axle and its two
supporting bearings are assembled to the test rig. Use an
acceleration sensor to collect the vibration signal of rolling
bearing. The acceleration sensor is fixed at 9 O’clock and 12
O’clock of the axle box, and the sampling frequency is
5120 Hz. The experimental bearings used double-row taper
roller bearings. The photos and models of these faulty
bearings are shown in Fig. 5. These faulty bearings are
naturally produced during the operation of high-speed train.

There are various faults occurring to wheelset bearing
during the real operation. Therefore, 12 different kinds of
typical fault conditions combined with health conditions are
set. The faults are distributed in the inner race, outer race,
rolling element and cage of the wheelset bearing, and the
severity of the faults is different. The information of the
testing wheelset bearing is shown in Table II. For each fault
type, we set five different running speeds: 60, 90, 120, 150,
and 180 km/h, combined with four different vertical loads
(56, 146, 236 and 272 kN) and two lateral loads (0 and
20 kN). In that case, there are 40 different working con-
ditions for each fault type, which fully validate the robust-
ness of the intelligent diagnosis method under various
operation conditions. After data augmentation, the number
of train sample and test sample is 142 420 and 45 668,
respectively, for every experiment.

As shown in Fig. 6, the raw vibration signals of the 12
health conditions of the wheelset bearing data set are dis-
played. In addition, in order to explain the influence of noise
on vibration signal, we show the vibration signal after adding
different degrees of noise. As shown in Fig. 7, we added
6 dB, 0 dB, and −6 dB Gaussian white noise to the vibration
signals of the two fault categories. It can be seen that when a
small amount of noise is added, the noise has little effect on
the vibration signal. However, when a large amount of noise

is added, the original waveform of the vibration signal is
completely destroyed by the noise, so that it is difficult to
distinguish. In actual situations, noise is inevitable. There-
fore, in the following experiments, we will also discuss the
influence of noise on the deep learning model and the
antinoise performance of our proposed method.

2) INFLUENCE OF THE POSITION OF 1D-NLB. The pro-
posed 1D-NLB can be embedded in any layer of the

Wheel and Axle

Lateral Loading 
Set

Vertical Loading 
Set

Axle Box
and Test Bearing

Fan Motor

Drive Motor

Belt Transmission 
System

Fan Motor

FIGURE 4. The introduction of wheelset bearing test rig.

Inner race pitting (SKF197726)

Rolling element cracking (SKF197726)

Mixed fault with outer race flaking (10 mm×45 mm) and rolling element pitting
(352226X2-2RZ)

Cage cracking (SKF197726)

Outer race flaking with a size of 10 
mm×30 mm (197726TN)

Rolling element flaking with a size of 1 
mm×1 mm (SKF197726)

Inner race flaking with a size of 10 
mm×45 mm (352226X2-2RZ)

Inner race flaking with a size of 3 
mm×45 mm (197726TN)

Rolling element flaking with a size of 3 
mm×35 mm (SKF197726)

Rolling element pitting
(352226X2-2RZ)

Flaking with a size of 10mm 45mm 
(197726TN)

FIGURE 5. The photos of faulty bearings. These faulty bearings
are naturally produced during the operation of high-speed train.
The model of the experimental bearing is given in parentheses.

Category: C1 Category: C2 Category: C3

Category: C4 Category: C5 Category: C6

Category: C7 Category: C8 Category: C9

Category: C10 Category: C11

Catett gory: C4 Catett gory: C5 Catett gory: C6

Catett gory: C7 Catett gory: C8 Catett gory: C9

Catett gory: C10 Catett gory: C11 Category: C12

FIGURE 6. The raw data of the high-speed train wheelset
bearing data set.

TABLE II. Health information for 12 experimental
Wheelset bearings

Location Fault mode Label

None Normal Cl

Inner race Pitting C2

Rolling element Pitting C3

Rolling element Flaking with a size of
3 mm × 35mm

C4

Inner race Flaking with a size of
3 mm × 45mm

C5

Rolling element Cracking C6

Outer race and
rolling element

Mixed fault with outer race flaking
and rolling element pitting, and the
flaking size is 10 mm × 45mm

C7

Inner race Flaking with a size of
10 mm × 45mm

C8

Outer race Flaking with a size of
10 mm × 30mm

C9

Rolling element Flaking with a size of 1 mm × 1 mm C10

Cage Cracking C11

Outer race Flaking with a size of
10 mm × 45mm

C12

Original 
Signal

Category: C3 Category: C4

Noise: 6 dB

Noise: 0 dB

Noise: -6 dB

FIGURE 7. The vibration signals after adding different degrees
of noise are displayed.
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network to capture long-range dependencies of the feature
signal. However, because the length and semantic level
of the feature signal in different layers are not consistent,
the features learned by 1D-NLB on these layers are
also different. Therefore, embedding 1D-NLB in different
locations on the network brings different diagnostic
performances.

In order to explore the impact on performance when
embedding 1D-NLB in different layers of the network, in
this experiment, we set up a total of seven different network
structures, which are the 1DCNN (the same structure as the
NL-1DCNN but does not include 1D-NLB), NL-1DCNN-
1, NL-1DCNN-2, : : : , NL-1DCNN-6, in which, the num-
ber after their name indicates the layer after which the
1D-NLB is embedded. With SNR=−6 dB, we performed
experiments on these seven methods. Table III and Fig. 8
show the accuracy, recall, and precision of these methods
on the wheelset bearing data set.

The experimental results show that the 1DCNN only
obtains 76.80% accuracy, 74.30% recall, and 75.56% pre-
cision. After adding 1D-NLB after the first convolutional
layer, the NL-1DCNN-1 achieves 81.64% accuracy,
80.13% recall, and 82.90% precision which means they
are improved by 4.84%, 5.83%, and 5.75%, respectively.
This is a huge improvement, which illustrates the effective-
ness of the proposed 1D-NLB. The NL-1DCNN-2 has
further achieved better performance, and its accuracy,
recall, and precision have improved by 7.53%, 8.60%,
and 8.26% over 1D-NLB, respectively. This shows that
the 1D-NLB can encode enough long-distance dependen-
cies from shallow feature signals, so that the network can
achieve better performance.

In addition, we also observed that starting from NL-
1DCNN-3, the diagnostic performance of the network
decreased compared to NL-1DCNN-2. Furthermore, the
performance of NL-1DCNN-6 is even worse than the
1DCNN. This shows that the 1D-NLB is very sensitive
to its location in the network, and its performance changes
with its location in the network. In summary, we can
conclude that as the location of 1D-NLB in the network
deepens, its performance increases first and then decreases.
This phenomenon is well understood. The main role of 1D-
NLB is to capture the long-range dependencies of the
feature signal, and whether sufficient temporal dependen-
cies can be captured is closely related to the input of the 1D-
NLB.When the 1D-NLB is located in the shallow layer, the
input feature signal has sufficient length, but the semantic
level is low, so increasing the semantic level of the input
signal can improve the performance of 1D-NLB. When the
1D-NLB is located in the deep layer, the length of the
feature signal becomes a greater restrictive factor. In par-
ticular, the length of the feature signal outputted by the sixth
convolution layer is only 16. In this case, the 1D-NLB has
been unable to learn any temporal-related features from
such a short feature signal. As a result, the performance of
the network has declined since NL-1DCNN-3. Therefore,

when designing a 1D-NLB-based fault diagnosis method, it
is necessary to balance the two key factors which are the
semantic level and feature signal length.

In order to understand the improvement of network
performance brought by 1D-NLB more clearly, we use T-
SNE technology [37] to visualize the distribution of the
features of NL-1DCNN-2 and the 1DCNN on a 2D space,
respectively. It is worth noting that the only difference
between NL-1DCNN-2 and the 1DCNN is that NL-
1DCNN-2 has 1D-NLB and the 1DCNN does not. The
visualization results are shown in Fig. 9. Different-colored
dots represent different health conditions. According to the
subfigures A1 and B1, the shallow features of these two
networks are not distinguishable. Subsequently, the
1D-NLB makes the NL-1DCNN-2's features more distin-
guishable. Thus, the discrimination of the features of
NL-1DCNN-2 is better than the 1DCNN. For example,
the features in the subfigures B2 and B3 are always
clustered together. The degree of dispersion of A2 is greater
than that of B2, and the degree of dispersion of A3 is greater
than that of B3. This shows that the features in A2 and A3
are more discriminative. Therefore, the discrimination of
the features of subfigures A2 and A3 is significantly better
than that of subfigures B2 and B3.

This phenomenon shows that the long-distance depen-
dency captured by 1D-NLB is helpful for the network to
distinguish and diagnose different fault categories. This not
only proves the validity of 1D-NLB, but also proves that the
long-distance dependence of the signal helps the network
fully understand the hidden features of the signal. It is
precisely because 1D-NLB learns these features that the
ordinary CNN networks cannot learn, so that the network
can obtain better diagnostic results.

3) INFLUENCE OF THE NUMBER OF 1D-NLBS. In order
to further explore the impact of the number of 1D-NLB on
diagnostic performance, we add one and two 1D-NLBs to
the network on the basis of NL-1DCNN-2, which are
named NL-1DCNN-2-1 and NL-1DCNN-2-2, respectively.
With SNR=−6 dB, we performed experiments on these
three methods. The accuracy, recall, and precision of these
three methods are shown in Table IV.

TABLE III. Experimental results of the effect of 1D-NLB position on network performance (−6dB)

Indicators 1DCNN NL-1DCNN-1 NL-1DCNN-2 NL-1DCNN-3 NL-1DCNN-4 NL-1DCNN-5 NL-1DCNN-6

Accuracy 76.80 ± 0.18 81.64 ± 0.40 84.33 ± 0.55 81.43 ± 0.34 79.59 ± 0.70 75.88 ± 0.84 74.73 ± 0.66

Recall 74.30 ± 0.61 80.13 ± 0.60 82.90 ± 0.72 79.81 ± 0.42 77.48 ± 0.93 73.27 ± 1.43 71.43 ± 1.08

Precision 75.56 ± 0.35 81.31 ± 0.47 83.82 ± 0.51 80.81 ± 0.47 78.74 ± 0.77 74.33 ± 0.91 72.60 ± 0.62
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FIGURE 8. The results of the influence of the position of 1D-
NLB.
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We find that the number of 1D-NLB has little effect on
network performance. The NL-1DCNN-2, NL-1DCNN-2-1,
and NL-1DCNN-2-2 achieved similar fault diagnosis per-
formance. This shows that using only one 1D-NLB can
capture adequate long-distance dependencies and greatly
improve the performance of the network. Although the NL-
1DCNN-2–1 is slightly better than NL-1DCNN-2, adding
more modules also increases the computational burden to a
certain extent. Therefore, in the subsequent experiments,
the network structure of our proposed method is consistent
with NL-1DCNN-2.

4) EFFECTIVENESS OF 1D-NLB IN EXISTING METH-
ODS. In order to verify the wide applicability of 1D-NLB
in the CNN-based fault diagnosis methods, this experiment
continues to explore the performance of 1D-NLB in the
existing CNN methods. We use the WDCNN as the base-
line, and then embed 1D-NLB into different layers of the
WDCNN. A total of five different network structures are
designed, which are named WDCNN-1, WDCNN-2, : : : ,
WDCNN-5. The number after their name indicates the layer
after which the 1D-NLB is embedded. With SNR=−6 dB,
we performed experiments on these six methods. Table V
and Fig. 10 show the accuracy, recall, and precision of these
methods.

Obviously, we find that the proposed 1D-NLB can also
effectively improve the fault diagnosis performance of the
WDCNN. For example, the accuracy of the WDCNN-2 is

improved by 4.09% compared with the WDCNN. Consis-
tent with the phenomenon of previous experiments, as the
position of 1D-NLB in the WDCNN gets deeper, the
diagnostic performance of the network increases first and
then decreases. This also shows that the length of the feature
signal and the semantic level have a great impact on the
performance of 1D-NLB. In addition, we find that the im-
provement of the WDCNN-2 compared with the WDCNN
is smaller than that of NL-1DCNN-2 compared with
1DCNN. This is because the WDCNN used a very large
downsampling rate in the first convolution layer, which
caused the length of the feature signal too small, resulting in
1D-NLB being unable to achieve better performance. This
also shows that in order to maximize the performance of
1D-NLB, we need to design a relatively reasonable network
structure. Even though the WDCNN is not optimized for
1D-NLB, this module still considerably improves the fault
diagnosis performance of the WDCNN. This strongly
proves the wide applicability of 1D-NLB.

This experimental phenomenon proves that the pro-
posed 1D-NLB can be simply embedded in other existing
CNN architectures to improve their performance, even if
these CNNs are not specifically optimized for 1D-NLB.
Therefore, 1D-NLB has a very wide application potential,
and it could be used as a general module to improve the
performance of most CNN networks.
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FIGURE 9. The features visualization of NL-1DCNN-2 and the 1DCNN. The figure proves that the 1D-NLB can improve the
discrimination of features.

Table IV The Results of the Influence of the Number of
1D-NLBs (−6dB)

Indicators
NL-1DCNN-

2
NL-1DCNN-

2-1
NL-1DCNN-

2-2

Accuracy 84.33 ± 0.55 84.48 ± 0.12 83.73 ± 0.43

Recall 82.90 ± 0.72 83.51 ± 0.53 82.20 ± 0.59

Precision 83.82 ± 0.51 84.18 ± 0.12 83.42 ± 0.46

TABLE V. Experimental results of the effectiveness of 1D-NLB in existing methods (−6dB)

Indicators WDCNN WDCNN-1 WDCNN-2 WDCNN-3 WDCNN-4 WDCNN-5

Accuracy 72.38 ± 0.78 76.20 ± 1.77 76.47 ± 1.21 74.27 ± 1.57 73.21 ± 1.67 72.36 ± 0.83

Recall 69.30 ± 1.03 74.08 ± 1.76 74.44 ± 1.20 72.06 ± 1.59 71.08 ± 1.75 69.71 ± 0.86

Precision 70.03 ± 1.09 74.99 ± 1.81 75.30 ± 1.12 72.97 ± 1.46 71.71 ± 1.77 70.20 ± 0.67
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FIGURE 10. The results of influence of the number of 1D-NLBs.
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5) COMPARED WITH STATE-OF-THE-ARTS METHODS.
In order to verify the superiority of the proposed NL-
1DCNN and explore its performance under different noise
conditions, we compare the NL-1DCNN with six state-of-
the-art deep learning-based fault diagnosis methods under
three different noises (SNR=−6 dB, 0 dB, and 6 dB).
Table VI shows the accuracy, recall, and precision of our
method and comparison methods.

Obviously, the fault diagnosis performance of the NL-
1DCNN under the noise of −6dB, 0dB, and 6dB is better
than the other six deep learning methods. According to the
experimental results, the NL-1DCNN achieves a diagnostic
accuracy of 99.67% at SNR= 6 dB, which is 1.41% higher
than that of Wen-CNN. This effectively proves the fault
diagnosis ability of the proposed method in a weak noise
environment. In addition, when SNR=−6 dB, which
means the noise intensity is 3.98 times the raw signal,
the NL-1DCNN can still obtain 84.33% fault diagnosis
accuracy, which is 11.95% higher thanWen-CNN. This is a
good proof that the NL-1DCNN has good antinoise perfor-
mance even without any denoising preprocessing. In addi-
tion, we find that the LSTM with long-distance dependency
learning ability has a good performance in this data set.
At SNR=−6 dB, it can obtain a diagnostic accuracy of
81.06%. This also confirms that networks with long-
distance dependency learning capabilities can effectively
capture more essential signal features and thus obtain better
fault diagnosis results when dealing with time-series signal.
By contrast, the DTS-CNN only obtained 64.15% accuracy
at SNR=−6 dB. This shows that the applicability of the
DTS-CNN is not satisfactory, and it is difficult to adapt to
the fault diagnosis task of wheelset bearing data set.

Table VI also shows the parameter quantities of our
method and the comparison method. Since we only added
one 1D-NLB module, the number of parameters in our
model is still relatively small. Therefore, the proposed
method achieves a large performance boost with little
parameter increase.

C. CASE 2: MOTOR BEARING FAULT
DIAGNOSIS

1) DATA DESCRIPTION. Motor bearing data set is pro-
vided by the CWRU bearing data center through fault
simulation experiment. There are four health statuses of
rolling bearing: normal, outer race fault, inner race fault,
and ball fault. Introduced by electro-discharge machining,
each fault type was set in three different fault diameters
(7 mils, 14 mils, and 21 mils). Therefore, this data set
contains 10 different fault types, where same fault types
with different fault diameter are attached with different label.
The fault information is shown in Table VIII. After data
augmentation, the number of train sample and test sample is
79 924 and 26 100, respectively, for every experiment.

2) COMPARED WITH STATE-OF-THE-ART METHODS.
In order to explore the applicability of the proposed method
on the CWRU bearing data set, we compare the NL-
1DCNN with six state-of-the-art deep learning methods
under three noise situations (SNR=−6 dB, 0 dB, and
6 dB). Table VII shows the accuracy, recall, and precision
of these methods.

We find that the NL-1DCNN has better fault diagnosis
performance than six comparison methods under three

TABLE VI. Experimental results of the NL-1DCNN and six state-of-the-art deep learning-based methods on Wheelset
bearing Data set

SNR Indicators NL-1DCNN LSTM DTS-CNN WDCNN Wen-CNN ResCNN ADCNN

6dB Accuracy 99.67 ± 0.13 97.65 ± 0.34 95.70 ± 0.14 97.90 ± 0.18 98.26 ± 0.21 96.34 ± 0.53 86.65 ± 0.34

Recall 99.67 ± 0.15 97.39 ± 0.39 95.29 ± 0.20 97.64 ± 0.19 98.08 ± 0.22 95.99 ± 0.42 84.66 ± 0.31

Precision 99.65 ± 0.14 97.40 ± 0.37 95.36 ± 0.15 97.62 ± 0.34 98.16 ± 0.24 95.97 ± 0.59 85.00 ± 0.44

0dB Accuracy 98.26 ± 0.40 94.47 ± 0.20 88.03 ± 0.50 93.13 ± 1.02 93.52 ± 0.29 89.37 ± 1.01 77.33 ± 0.79

Recall 98.14 ± 0.48 94.00 ± 0.23 86.93 ± 0.38 92.54 ± 1.11 92.93 ± 0.40 88.23 ± 1.41 74.81 ± 0.99

Precision 98.28 ± 0.43 94.18 ± 0.18 87.17 ± 0.42 92.64 ± 1.11 93.14 ± 0.16 88.40 ± 0.67 75.33 ± 0.65

−6dB Accuracy 84.33 ± 0.55 81.06 ± 0.80 64.15 ± 0.60 72.38 ± 0.78 71.05 ± 1.00 67.11 ± 1.59 57.03 ± 1.15

Recall 82.90 ± 0.72 79.43 ± 0.80 60.49 ± 0.74 69.30 ± 1.03 67.86 ± 0.91 62.26 ± 1.84 50.40 ± 1.52

Precision 83.82 ± 0.51 79.99 ± 0.75 60.96 ± 0.68 70.03 ± 1.09 68.72 ± 0.98 64.74 ± 0.83 52.12 ± 1.61

Parameters – 1.10M 2.20M 10.20M 0.75M 7.20M 6.30M 0.23M

TABLE VII. Experimental results of the NL-1DCNN and six state-of-the-arts deep learning-based methods on motor
bearing Data set

SNR Indicators NL-1DCNN LSTM DTS-CNN WDCNN Wen-CNN ResCNN ADCNN

6dB Accuracy 99.89 ± 0.09 96.24 ± 0.29 99.80 ± 0.05 99.76 ± 0.07 99.79 ± 0.05 99.82 ± 0.04 98.68 ± 0.20

Recall 99.90 ± 0.08 96.37 ± 0.28 99.81 ± 0.05 99.78 ± 0.07 99.80 ± 0.05 99.83 ± 0.04 98.72 ± 0.19

Precision 99.90 ± 0.08 96.38 ± 0.29 99.81 ± 0.05 99.78 ± 0.07 99.80 ± 0.05 99.80 ± 0.05 98.71 ± 0.19

0dB Accuracy 99.17 ± 0.16 88.47 ± 0.72 98.90 ± 0.09 98.37 ± 0.31 98.56 ± 0.37 98.08 ± 0.36 96.03 ± 0.47

Recall 99.20 ± 0.16 88.91 ± 0.75 98.94 ± 0.09 98.43 ± 0.30 98.60 ± 0.35 98.14 ± 0.35 96.15 ± 0.46

Precision 99.20 ± 0.15 88.95 ± 0.76 98.95 ± 0.08 98.45 ± 0.25 98.61 ± 0.36 98.12 ± 0.40 96.15 ± 0.45

−6dB Accuracy 91.23 ± 1.04 65.27 ± 0.81 88.69 ± 1.32 85.17 ± 0.96 86.75 ± 0.80 85.89 ± 1.22 81.45 ± 1.40

Recall 91.49 ± 1.00 66.50 ± 1.05 89.03 ± 1.28 85.63 ± 0.95 87.16 ± 0.78 86.30 ± 1.20 81.98 ± 1.33

Precision 91.34 ± 1.04 66.98 ± 1.05 89.10 ± 1.23 85.48 ± 0.92 87.01 ± 0.77 86.73 ± 1.15 81.92 ± 1.33
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noise conditions. Under SNR= 6 dB, the NL-1DCNN
achieved 99.89% accuracy of fault diagnosis. At SNR=
0 dB, the noise power is equal to the raw signal power, and
the NL-1DCNN achieved a 99.17% accuracy for fault
diagnosis. This shows the excellent fault diagnosis perfor-
mance of the NL-1DCNN. Moreover, the NL-1DCNN
performs better on the motor bearing data set than the
wheelset bearing data set, and it can obtain 91.23% accu-
racy at SNR=−6 dB. In addition, we find that the LSTM
obtained only 65.27% diagnostic accuracy on this data set.
However, the DTS-CNN exhibited relatively good results,
which achieved an accuracy of 88.69% at SNR=−6 dB.
Although the performance of the DTS-CNN is still far from
that of the NL-1DCNN, this proves once again the impor-
tance of long-distance dependencies for fault diagno-
sis tasks.

From the performance of these methods on two data
sets, the performance of the DTS-CNN and the LSTM is
greatly affected by the data set, and they can only exert their
good performance on some data sets. The NL-1DCNN can
achieve excellent performance on both data sets, which
shows its good adaptability. This reflects the application
potential of the NL-1DCNN in other fault diagnosis tasks of
rotating machinery to a certain extent.

In order to show the performance of these methods
more clearly, we use the T-SNE technology to visualize
the final output distribution of the NL-1DCNN, the LSTM,
the DTS-CNN, the WDCNN, the Wen-CNN, the ResCNN,
and the ADCNN in a two-dimensional space. The visuali-
zation results are shown in Fig. 11, where different colors
represent different health conditions of motor bearings.
Obviously, the output distribution of the NL-1DCNN has
the best discrimination, followed by the DTS-CNN and the
Wen-CNN. This is consistent with the results of Table VIII,
which shows that the proposed NL-1DCNN has better
performance on the motor bearing data set.

In order to better understand the diagnostic perfor-
mance of the proposed method for each health category, the
confusion matrix of the proposed NL-1DCNN at SNR=
6 dB is displayed in Fig. 12. Obviously, our method can
distinguish normal samples and fault samples with 100%
accuracy. In addition, in the identification of fault types, the
NL-1DCNN can also identify inner race fault and outer race
fault with 100% accuracy, and it can accurately identify the
degree of bearing failure. The NL-1DCNN only made a few

misjudgments in the diagnosis of ball fault. And, these
misjudgments are just judging a certain fault degree of ball
fault as other fault degree. This shows that our method can
accurately distinguish different fault categories, and there
may be few misjudgments when determining the degree
of fault.

V. CONCLUSIONS
In this paper, we propose the NL-1DCNN for rolling
bearing fault diagnosis. This method aims to improve the
long-range dependencies learning ability of the network, so
as to fully understand the hidden features of the signals. To
this end, we introduced the nonlocal mean method to the
CNN and built a 1D-NLB for capturing long-range depen-
dencies. The basic idea of 1D-NLB is to calculate the long-
range correlation between the current position and other
positions, so that the network can quickly capture the local
and global information of the input signal. We validate the
effectiveness of the method on two bearing data sets.
Experimental results show that the diagnostic performance
of the NL-1DCNN is considerably better than the six
outstanding methods. The conclusions are summarized as
follows: (1) the long-distance dependence can help the
network to fully understand the hidden information of
the signal, and this information is also very important for
fault diagnosis tasks. (2) The proposed 1D-NLB absorbs the
advantages of the nonlocal mean denoising algorithm and
has excellent learning ability for long-distance dependen-
cies. It can be easily embedded in most CNN architectures
to improve its fault diagnosis performance. (3) The NL-
1DCNN has good fault diagnosis performance, and it has
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FIGURE 11. Scatter plots of the NL-1DCNN, LSTM, DTS-
CNN, WDCNN, Wen-CNN, ResCNN, and ADCNN in two-
dimensional space.

FIGURE 12. Confusion matrix of the NL-1DCNN under
SNR= 6dB.

TABLE VIII. Description of the motor bearing Data set
information

Fault location Fault size (mil) Load (hp) Label

None 0 0,1,2,3 Cl

Ball fault 7 0,1,2,3 C2

Ball fault 14 0,1,2,3 C3

Ball fault 21 0,1,2,3 C4

Inner race fault 7 0,1,2,3 C5

Inner race fault 14 0,1,2,3 C6

Inner race fault 21 0,1,2,3 C7

Outer race fault 7 0,1,2,3 C8

Outer race fault 14 0,1,2,3 C9

Outer race fault 21 0,1,2,3 C10
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consistent performance on two data sets, which shows its
application potential in other fault diagnosis tasks.

In addition, the performance of the proposed method is
still relatively low in the case of strong noise, which cannot
meet the needs of practical applications. Moreover, in
practical situations, it is often impossible to obtain enough
fault samples, and the proposed method cannot cope with
this situation well. Therefore, in future work, we will focus
on improving the model’s performance in strong noise
environments and introduce the idea of few-shot learning
to improve the performance of the diagnostic model in the
case of limited labeled samples.
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