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Abstract:As failure data is usually scarce in practice upon preventive maintenance strategy in prognostics and health
management (PHM) domain, transfer learning provides a fundamental solution to enhance generalization of data-
driven methods. In this paper, we briefly discuss general idea and advances of various transfer learning techniques in
PHM domain, including domain adaptation, domain generalization, federated learning, and knowledge-driven
transfer learning. Based on the observations from state of the art, we provide extensive discussions on possible
challenges and opportunities of transfer learning in PHM domain to direct future development.
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I. INTRODUCTION
This paper reflects the important aspects in the field of
transfer learning for prognostics and health management
(PHM) domain. Opportunities and future directions are
discussed. Section II on domain adaptation for fault diagnosis
and prognosis was completed by Professor Weihua Li and
Assistant Professor Zhuyun Chen from South China Univer-
sity of Technology. Section III on domain generalization for
PHM was written by Associate Professor Min Xia from
Western University. Section IV on federated learning for
PHM was presented by Professor Siliang Lu and PhD
candidate Jingfeng Lu from Anhui University. Section V
on knowledge-driven transfer learning for PHM was written
by Professor Ruqiang Yan and PhD candidate Zheng Zhou
and Yasong Li from Xi’an Jiaotong University.

II. DOMAIN ADAPTATION-BASED
FOR FAULT DIAGNOSIS AND

PROGNOSIS
A. OVERVIEW

In actual industrial scenarios, complex systems often oper-
ate in variable conditions, which can make it challenging to
conduct intelligent fault diagnosis and prognosis. This
difficulty is especially pronounced in instances where there
is a significant distribution discrepancy in the training and
testing data, resulting in a well-trained model on the training

set failing to achieve good predictive results on the test set.
Domain adaptation as a subsect of transfer learning is the
method used to address the distribution discrepancy
between the training set (source domain) and the test set
(target domain). The principle of the domain adaptation
method is illustrated in Fig. 1(a). The core of this method is
to transfer domain-invariant knowledge from the source
domain to the target domain using techniques such as model
transfer, statistical criterion, and adversarial learning,
enhancing the model’s performance in the target domain.
Therefore, domain adaptation is currently a focal point in
the field of fault diagnosis and prognosis.

This section provides an overview of domain adaptation
methods applied for intelligent maintenance, as illustrated in
Fig. 1(b)–(d). It summarizes the latest advancements in
domain adaptation from three perspectives: model trans-
fer-based domain adaptation, statistical criterion-based
domain adaptation, and adversarial transfer-based domain
adaptation. Additionally, the challenges and future directions
related to intelligent maintenance of complex systems are
discussed.

B. ADVANCES OF DOMAIN ADAPTION

1. MODEL TRANSFER-BASED DOMAIN ADAPTATION.
Model transfer-based domain adaptation refers to sharing
the structure and parameters of a model between the source
domain and the target domain. For the mechanical intelli-
gent maintenance, model transfer-based domain adaptation
involves transferring the knowledge learned from other
machinery, components, or working conditions to enhance
the reliability of the model for fault diagnosis and life
prediction in a new environment [1]. When there is a large
amount of data in the source domain and few samples in the
target domain, the model transfer-based domain adaptation
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can work effectively through pre-training and fine-tuning
strategies. Specifically, as shown in Fig. 1(b), the model
first undergoes supervised or unsupervised pre-training
using data from the source domain to learn general param-
eters that are shared with the target domain, providing
transferable prior knowledge. Subsequently, labeled data
from the target domain is utilized for further supervised
training of the model to appropriately adjust its parameters
and enhance its adaptability to target tasks. The pre-training
process can be defined as:

θs = argmin
θs

1
Ns

XNs

i=1

LsðF ðxsi Þ, ysi Þ (1)

where xsi and y
s
i represent the samples and their correspond-

ing labels in the source domain, respectively,Ns denotes the
number of labeled source samples, F represents the model,
Ls is the loss function during the pre-training stage, and θs

signifies the model parameters obtained after pre-training.
Additionally, the fine-tuning process can be defined as:

θt = argmin
θt

1
Nt

XNt

i=1

LtðF ðxtiÞ, ytiÞ
s:t: θt is initialized with θs

(2)

where xti and y
t
i represent the samples and their correspond-

ing labels in the target domain, Ns denotes the number of
labeled target samples,Lt stands for the loss function during
the fine-tuning stage, and θt indicates the model parameters
gained after fine-tuning.

The research progress of model transfer-based
domain adaption in the field of fault diagnosis and life
prediction task. Generally, the use of pre-training and fine-
tuning strategies in model transfer-based domain adaptation
can be divided into two implementation approaches: partial

fine-tuning and full fine-tuning [2]. The characteristics of
the summarized articles are shown in Table I.

Partial fine-tuning refers to the practice of freezing
certain parameters of the pre-trained model during the fine-
tuning process and updating only the remaining parameters,
which is applicable to the situation where the data distribu-
tion of the source domain and the target domain is similar,
or the labeled target data is relatively scarce. In the field of
fault diagnosis and life prediction, domain adaptation
methods employing partial fine-tuning strategies have
yielded numerous research achievements in recent years.
For instance, Chen et al. [3] proposed a transferable con-
volutional neural network (CNN) for diagnosing faults.
Various datasets on rotating machinery were utilized as
source domains to assist in pre-training the source model.
The pre-trained model was segmented into multiple blocks,
each of which was fine-tuned separately. Han et al. [4]
introduced a domain adaptation framework based on CNN
for gear and bearing fault diagnosis. Three different strate-
gies for fine-tuning network layers were presented, and the
performance of the model in different diagnosis scenarios
was analyzed under different strategies. Zhong et al. [5]
used a deep convolutional generative adversarial network
(DCGAN) to generate abundant synthetic samples, which
were considered as the source domain to pre-train VGG-16,
while the original samples were treated as the target domain
to fine-tune the deeper layers. In terms of mechanical life
prediction, Berghout et al. [6] initially pre-trained a long
short-term memory (LSTM) network with the source
domain dataset and then fine-tuned the new added layers
using a target domain dataset to improve remaining useful
life (RUL) prediction performance of the target bearings.

In contrast, full fine-tuning means that updating all
model parameters directly without freezing any during the

Fig. 1. Domain adaptation. (a) An illustration of domain adaptation. (b) Model-based domain adaptation. (c) Statistical criterion-based
domain adaptation. (d) Adversarial learning-based domain adaptation.
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fine-tuning process. This approach is suitable for the situa-
tion where the data distribution of the source domain and
the target domain is not very similar, or there is an ample
amount of labeled target data. In the field of fault diagnosis
and life prediction, domain adaptation methods using par-
tial full fine-tuning strategies have shown excellent perfor-
mance in certain scenarios. Shao et al. [7] developed a novel
stacked transfer autoencoder (NSTAE) model for cross-
domain fault diagnosis of bearings and gears. This model
was first pre-trained using data from other rotating machin-
ery, and then the pre-trained model was shared with the
target, enhancing fault diagnosis performance. Zhong et al.
[8] devised a domain adaptation approach that learns CNN
parameters from an image dataset and then fine-tunes the
pre-trained CNN using wavelet scalograms. To address the
issue of predicting the RUL of turbine engines, Zhang et al.
[9] proposed a domain adaptation model based on bidirec-
tional LSTM (Bi-LSTM), which used different types of
aero-engine sensing data to construct source domain and
target domain, and implemented model transfer through
pre-training and full fine-tuning strategies, effectively
improving the RUL prediction performance of target tasks
with scarce data. Sun et al. [10] designed a deep transfer
learning network based on sparse autoencoder (SAE) for
tool RUL prediction in cross-condition scenarios. During
training, this network introduced a feature alignment strat-
egy on top of model transfer to reinforce the adaptation
between the source and target domains, thereby improving
the accuracy of RUL prediction.

2. STATISTICAL CRITERION-BASED DOMAIN ADAPTA-
TION. The statistical criterion-based method aims to
enhance the model’s performance on the target task by
minimizing the discrepancy between the source and target
domains. It achieves this by utilizing the distribution dis-
tance between the two domains as the loss function and
leveraging deep neural networks to extract domain-
invariant features. The principle of statistical criterion-based
method is illustrated in Fig. 1(c). First, a statistical criterion
is established for measuring distribution discrepancy

between source and target domains. Then, raw data from
the two domains is transformed into a shared latent feature
space based on the criterion. Finally, the distribution dis-
crepancy within the latent feature space is minimized to
improve performance on the target task.

During the training process of deep neural networks,
the model is able to update its parameters by minimizing the
objective function. The objective function of statistical
criterion-based domain adaptation consists of two compo-
nents: one part is the classification loss function for labeled
instance RCðXL,YLÞ, and the other part is the measurement
of domain discrepancy based on statistical criteria. For
example, the objective function for domain adaptation
based on the statistical criterion maximum mean discrep-
ancy (MMD) is as follows.

L = RCðXL,YLÞ +
Xn
i=1

λiMMDðhSi ,hTi Þ (3)

where MMDðgÞ represents the statistical criterion based on
MMD, hS denotes the source domain, hT denotes the target
domain, n denotes the number of layers for adaptation, and
λi denotes the penalty factor for the i-th adaptation layer.

The research progress of statistical criterion-based
domain adaptation in the field of mechanical fault
diagnosis and life prediction.Methods based on statistical
criteria utilize means or higher-order moments to measure
the discrepancy between domains. According to the differ-
ent criterion types, these methods can be divided into five
categories: (a) MMD and its variants: conditional maximum
mean discrepancy (CMMD), multiple kernels MMD (MK-
MMD), joint distribution adaptation (JDA), (b) correlation
alignment (CORAL), (c) central moment discrepancy
(CMD), (d) Wasserstein distances (WD), and (e) KL diver-
gence. In recent years, various types of statistical criterion
methods have achieved numerous research outcomes in the
field of mechanical fault diagnosis and life prediction.
Table II summarizes the main solutions of statistical crite-
rion-based domain adaptation methods reported in the
literature.

Table I. Solutions for model transfer-based domain adaptation

Types Characteristic of methods References Application datasets Tasks

Partial fine-tuning Dividing the pre-trained model into multiple blocks
and fine-tuning each block separately.

[3] Gearbox dataset;
bearing dataset

Fault
diagnosis

Providing three strategies for fine-tuning different
layers to achieve domain adaptation under cross-

condition and cross-class scenarios.

[4] PHM09 gearbox dataset;
gearbox dataset

Fault
diagnosis

Pre-training VGG-16 with generated samples by
DCGAN, then fine-tuning the deeper layers with

original samples.

[5] CWRU bearing dataset;
bearing dataset

Fault
diagnosis

Pre-training LSTM with source data and fine-tuning
new added layers with target data.

[6] PHM12 bearing dataset RUL
prediction

Full fine-tuning Building NSTAE model for cross-condition fault
diagnosis using full fine-tuning strategies.

[7] Bearing dataset; gear
dataset

Fault
diagnosis

Pre-training CNN with image dataset, then fine-
tuning the CNN by wavelet scalograms.

[8] CWRU bearing dataset;
bearing dataset

Fault
diagnosis

Pre-training and full fine-tuning Bi-LSTM using
data from different machinery to achieve effective

RUL prediction in target domain.

[9] XJTU bearing dataset;
gearbox dataset

RUL
prediction

Introducing a feature alignment strategy based on
KL divergence during pre-training and fine-tuning
process to enhance the domain adaptation effects.

[10] CNC machine tool dataset RUL
prediction
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Specifically, He et al. [11] proposed a joint MMD
method to measure the distance between the marginal
distributions and the conditional distributions of two do-
mains. Shen et al. [12] utilized weighted CMMD to achieve
intra-class adaptation, aligning equivalent samples between
the source and target domains. Ding et al. [13] employed
MK-MMD to quantify inter-domain discrepancy, facilitat-
ing the model to learn cross-domain feature representations.
Han et al. [14] combined Marginal MMD and Conditional
MMD to construct JDA, aligning both the marginal and
conditional distributions between the source and target
domains. Qian et al. [15] combined MMD and CORAL
as a novel measure of distribution discrepancy to extract
domain-invariant features. Xiong et al. [16] employed
CMD as a domain adaptation metric regulator to learn
domain-invariant features. Shi et al. [17] utilized the WD
to measure the disparity between domains, aiming to reduce
the distribution discrepancy between the source and target
domains. Qian et al. [18] introduced the AHKL divergence
to assess the discrepancy in both first- and higher-order
moments of datasets.

3. ADVERSARIAL LEARNING-BASED DOMAIN ADAP-
TION. Adversarial learning-based domain adaptation is
achieved by using an adversarial learning framework to
learn domain-invariant representations [22]. In the research
of predictive maintenance of electromechanical equipment,
the domain adversarial migration model can learn the
domain-invariant features under different parts and working
conditions, overcoming the limitations of the traditional
method based on labeled data, and improving the reliability
of the model for predictive maintenance under unknown
working conditions, equipment, and other complex envir-
onments. Specifically, as shown in Fig. 1(d), the domain
adversarial network uses the labels of the source domain to
guide the network learning, followed by the gradient rever-
sal layer (GRL) to counter-train the generator and discrimi-
nator, and finally the source domain features are
transformed to adapt to the target domain features, which
enables the source domain to perform effective classifica-
tion or regression on the target domain. The training

objective of the domain adversarial network is to minimize
the prediction error and maximize the domain classification
error, and the specific process can be defined by
equation (4):

E
�
θf ,θy,θd

�
=

X
xi∈Ds

Ly
�
Gy

�
Gf

�
xi
��

,yi
�

−λ
X

xi∈Ds∪Dt

Ld
�
Gd

�
Gf

�
xi
��

,di
� (4)

where Ds and Dt are the source and target domains,
respectively, xi and yi are the sample and the corresponding
label, respectively, θf , θy, and θd represent the parameters of
the feature extractor, label predictor, and domain discrimi-
nator, respectively, Ly and Ld are the loss of label predictor
and domain discriminator, and di is the domain label.

The research progress of adversarial learning-
based domain adaption in the field of fault diagnosis
and life prediction task. Generally, domain adaptation
methods based on adversarial transfer can be categorized
based on different numbers of source and target domains as:
a. Single-domain adversarial; b. Multi-domain adversarial;
and C. Others. Table III summarizes the characteristics of
different domain adversarial adaptation methods.

Single-domain adversarial aims to model and train the
adversarial network in a single domain to try to learn inter-
domain-invariant features. Therefore, some scholars’
domain adaptation methods using single-domain adversar-
ial have achieved numerous research results in recent years.
Li et al. [23] proposed a novel weighted adversarial transfer
network (WATN) for partial-domain fault diagnosis in
rotating machinery, which used a weighted learning strat-
egy and the domain discriminators to reduce the differences
in the distribution of the shared classes among the domains.
Li et al. [24] proposed a partial-domain adaptive RUL
prediction method for incomplete target domain data of
rolling bearings, which adopted a weighted degradation
fusion scheme of source domain instances with an adver-
sarial learning strategy as the main framework to achieve
conditional domain adaptation under similar degradation
levels. Zhu et al. [25] proposed an open-set adversarial

Table II. Solutions for statistical criterion-based domain adaptation

Algorithms
used Characteristic of methods References

Application target/
datasets Tasks

MMD Employing five Gaussian kernels to construct a multi-
kernel MMD.

[11] C-MAPSS dataset,
XJTU-SY dataset

RUL
prediction

CMMD Designing pseudo-labels of CMMD to construct WCMMD
for evaluating conditional distribution distances.

[12] Bearing dataset Fault
diagnosis

MK-MMD Employing multiple kernels to construct a composite kernel
in order to ascertain the optimal kernel.

[13] IEEE PHM bearing dataset RUL
prediction

JDA Integrating Marginal MMD and Conditional MMD with
minimizing discrepancy in both marginal and conditional

distributions.

[14] Wind turbine dataset,
CWRU dataset, gearbox

dataset

Fault
diagnosis

CORAL Combining MMD and CORAL as a novel measure. [15] Custom-made RTS bearing
dataset SWJTU bearing

dataset

Fault
diagnosis

CMD Aligning the higher-order moments of distributions across
domains.

[16] Gearbox dataset Fault
diagnosis

WD Aligning domain distributions by minimizing the
Wasserstein distance between domains.

[17] C-MAPSS dataset RUL
prediction

KL
divergence

Measure both the first- and higher-order moments between
distributions.

[18] CWRU dataset, gearbox
dataset

Fault
diagnosis
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transfer method to solve the new fault identification in the
target domain of rolling bearings problem by introducing a
weighting module to distinguish the domain knowledge in
multiple auxiliary classifiers. Siahpour et al. [26] proposed
a new open-set RUL prediction method for rotating machin-
ery based on domain adversarial transfer learning.

Multi-domain adversarial learning focuses on the rich
underlying information in multiple domains and uses adver-
sarial methods across multiple related domains in an attempt
to learn inter-domain shared and private features. Therefore,
several scholars have attempted to use multi-domain adver-
sarial methods to solve cross-domain diagnostic and predic-
tion tasks. Shi et al. [27] proposed a multi-source domain
adversarial fault diagnostic network, which employed
shared-space component analysis and entropy penalization
strategy to extract the shared features of rolling bearings
combining domain invariance and discriminability. Chen
et al. [28] proposed a multi-source open-set domain adver-
sarial fault diagnosis method, which employed multi-source
domain data to extract fault information, and introduced a
weighted learning strategy toweigh the importance of feature
distribution alignment between known and unknown class
samples. Ding et al. [29] proposed a new open-set RUL
prediction framework for rolling bearings based on multi-
source domain confrontation using a two-stage domain
adaptation strategy, including domain-specific distributional
adaptation and domain-specific regression adaptation. Ding
et al. [30] proposed a multi-target domain adversarial
method, which adopted an adversarial out-of-domain aug-
mentation framework to improve the generalization ability of
model in RUL prediction in rolling bearings.

In addition, some scholars have also tried to introduce
some mainstream algorithms to optimize the domain adver-
sarial training process to solve single- or multi-domain fault
diagnosis and lifetime prediction tasks. Feng et al. [31]
proposed a novel similarity-based meta-learning network
with adversarial domain adaptation. Through meta-learning
and adversarial learning, domain-invariant features are
efficiently extracted from labeled source data and unlabeled
target data, thus performing well on the target domain and
solving the domain bias problem of rolling bearing fault
identification in partial domains. Liu et al. [32] proposed a
multi-source adversarial online knowledge distillation
method for cross-device rolling bearing RUL prediction
under multiple operating conditions within different
machines.

C. CHALLENGES AND OPPORTUNITIES

Significant progress has been made in domain adaptation
methods, yet many challenges remain for researchers to
explore. In this section, the challenges in domain adaptation
are discussed from three perspectives: model transfer-based
statistical criterion-based and adversarial learning-based
domain adaptation. It is believed that exploring these
challenges will further advance the development and effec-
tive evaluation of domain adaptation methods and deepen
theoretical research.

1) The main challenge in model-based domain adap-
tation is the difficulty of constructing a high-quality
source domain to ensure effective model transfer. Model
transfer-based domain adaptation can effectively utilize

Table III. Solutions for adversarial learning-based domain adaption

Classification
methodology

Algorithms
used Characteristic of methods References

Application
datasets Task

Single-domain WATN Filtering out irrelevant source samples and
minimizing cross-domain distribution dif-

ferences in shared label space.

[23] Bearing dataset,
gearbox dataset

Fault
diagnosis

DANN Modeling the data relationship across do-
mains using instance level weighting

mechanism

[24] Bearing dataset RUL
prediction

ANMAC Using a weight module to evaluate domain
knowledge in multiple auxiliary

discriminators.

[25] Bearing dataset Fault
diagnosis

CR-DANN Adding consistency-based regularization
terms to eliminate negative effects of

missing information in the target domain.

[26] CMPASS dataset,
XJTU-SY bearing

dataset

RUL
prediction

Multiple-domain MDFN Learning representations with space com-
ponent analysis and entropy penalty

strategy.

[27] PU dataset, IMS data-
set, CWRU dataset

Fault
diagnosis

MWDTN Adaptive weighted learning from multiple
complementary source domain datasets.

[28] Bearing dataset, gear-
box dataset

Fault
diagnosis

TS-MDAN Combining MMD and CORAL metrics for
cross-domain distribution adaptation.

[29] IEEE PHM challenge
bearing dataset

RUL
prediction

AOA An adversarial generator is designed to
maximize the variability and diversity of the

generated pseudo-domains.

[30] IEEE PHM challenge
bearing dataset, XJTU-
SY bearing dataset

RUL
prediction

Others DASMN Integrating meta-learning and domain
adaptive techniques for cross-domain fault

identification.

[31] CWRU dataset Fault
diagnosis

KD-MDAN Integrating knowledge distillation and
adversarial networks to enable mutual

learning between multiple-source models.

[32] IEEE PHM challenge
bearing dataset, XJTU-
SY bearing dataset

RUL
prediction
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data from the source domain to assist model training,
thereby avoiding overfitting issues that arise from directly
training the model on target domain data. However, in real
industrial scenarios, model transfer-based domain adapta-
tion still faces a range of complex challenges. One notice-
able challenge is that, to ensure the model performs well on
target tasks, the source domain should bear a certain
resemblance to the target domain and contain an adequate
number of labeled samples for the model to undergo
supervised training. Failure to meet this requirement will
easily lead to the risk of negative transfer, resulting in a
degradation of model performance. For tasks such as fault
diagnosis and life prediction, it is hard to identify a suitable
source domain, as the source data typically originate from
other machinery, components, or working conditions. In
real industrial environments, there are various forms of
machinery, components, and working conditions, and it
also requires substantial amounts of labor, time, and finan-
cial resources to collect and label samples, which makes it
difficult to find a source domain that is similar to the target
domain and has a large number of labeled samples. There-
fore, to successfully implement model transfer-based
domain adaptation in an industrial setting, overcoming
the above-mentioned issues is undoubtedly a major
challenge.

2) The challenges faced by statistical criterion-based
domain adaptation primarily originate from two aspects:
more complex tasks and theoretical research. a) Inade-
quate for more complex domain adaptation scenarios.
Domain adaptation methods based on statistical criteria
typically assume that the label spaces of the source and
target domains are identical, implying both domains contain
the same object categories. In such cases, the primary
challenge revolves around addressing the distributional
discrepancy between the source and target domains. How-
ever, in industrial scenarios, the label space of the source
domain often differs from that of the target domain. In such
cases, the problem to be addressed encompasses not only
the distributional discrepancy between the source and target
domains but also the discrepancy in their label spaces.
Methods based on statistical criteria align the entire source
and target domains. When the label spaces of the source and
target domains are inconsistent, samples belonging to
private label spaces lack corresponding samples for adap-
tation, thereby impacting the alignment effectiveness of
samples belonging to shared label spaces and ultimately
leading to negative transfer. Therefore, addressing domain
adaptation problems in complex scenarios, such as when
the label spaces of the source and target domains are
inconsistent, is one of the challenges faced by statistical
criterion-based domain adaptation. b) The absence of a
universal statistical criterion framework. Various statisti-
cal criteria have shown good performance in fault diagnosis
and RUL prediction tasks. However, these statistical criteria
are isolated from each other, and there is limited research on
the theoretical relationships between them, resulting in
unclear understanding of the theoretical connections among
various statistical criteria. Therefore, there is a lack of a
theoretical framework to analyze and integrate the theoreti-
cal relationships among various statistical criteria.

3) Adversarial learning-based domain adaption still
have some challenges interfering with the feature repre-
sentation capabilities of the model and affecting the
transferability of domain adversarial learning, originat-
ing from two aspects: difficulty of generalized knowledge

transfer and limited defense against attacks, the more
details are below. a) Difficulty of generalized knowledge
transfer. At present, a large number of results have been
achieved in the research of domain adversarial fault diag-
nosis and life prediction in partial domains and open
domains, but most of them require the existence of labeling
information in the target domain that is related to the source
domain. In the actual industrial field, there exists a large
amount of unknown label data and less common informa-
tion with known fault labels or degradation states, the
shared feature extraction between source and target do-
mains is difficult. In addition, when there are multiple
unknown target domains, the distribution differences
between them can also cause the model to have difficulty
in obtaining the common feature knowledge between the
source and target domains, which affects the accuracy of
fault diagnosis and RUL prediction. b) Limited defense
against attacks. Domain adaptation models are susceptible
to black-box or white-box attacks when performing adver-
sarial training, resulting in difficulties for domain adversar-
ial models to adapt the correct feature information in the
target domain and achieve better transfer results on the
target domain. For example, a black-box attacker cannot
access the internal structure of the domain adversarial
model but can try to trick the model by adding adversarial
perturbations to the input samples in order to make it
produce incorrect fault diagnosis and prediction results,
whereas, a white-box attacker can use the model’s internal
training parameters, gradient information, and fault sample
information, etc., to generate adversarial samples and inter-
fere with the model domain adaptation process.

D. FUTURE RESEARCH DIRECTIONS

This section will discuss the future directions of three
aspects of domain adaptation: model transfer-based, statis-
tical criterion-based, and adversarial learning-based domain
adaptation. These research directions will provide effective
ways to address the current challenges.

1) The implementation of model transfer-based domain
adaptation faces several challenges in fault diagnosis and
life prediction. In actual industrial settings, differences
between the source and target domains, along with the
difficulty in acquiring sufficient labeled samples, put for-
ward a test for the successful implementation of model
transfer-based domain adaptation. In response, the rapidly
growing trend of digital twin [19] technology in recent
years may prove to be a valuable research direction. By
establishing a highly consistent mapping relationship
between the physical and virtual worlds, digital twin tech-
nology enables to create a simulation environment in the
digital realm that closely mirrors the target domain. Gener-
ating data in this simulation environment can yield a wealth
of source data close to the actual target domain. Leveraging
these data for pre-training not only promises better transfer
performance but also eliminates the need to expend labor
and financial resources to obtain labeled samples in the real
environment, achieving significant results with half the
effort. In addition, the recent high-profile large-scale model
[20] technology is also worthy of attention. Large-scale
model technology inherits the advantages of deep learning,
and its massive scale allows the model to absorb and
integrate vast amounts of data collected under various
machinery, components, and working conditions, as well
as simulation data generated through techniques like digital
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twin. Consequently, the data scale of the source domain can
be significantly increased, and richer information is offered
for the model to learn, thus enhancing the effectiveness of
the pre-training stage. Models that undergo pre-training on
such large-scale data will possess more generic and superior
parameters, enabling them to better adapt to the target
domain during the subsequent fine-tuning stage and reduc-
ing the risk of overfitting.

2) Recognizing the existing challenges, the future
research directions of statistical criterion-based domain
adaptation are as follows. On the one hand, significant
progress has been made in addressing the issue of incon-
sistent labels space between the source and target domains.
For example, Li et al. [21] systematically integrated transfer
learning methods across different industrial application
scenarios and provided recommendations for the selection
of transfer methods in various scenarios. Combining meth-
ods based on statistical criteria with advanced methods in
the field to fully leverage the strengths of different domain
adaptation approaches, and addressing complex issues such
as the inconsistent labels between source and target domain,
will also be a research direction in the future. On the other
hand, for domain adaptation tasks, experts and scholars
have designed various statistical criteria-based methods
from different perspectives. Theoretical analysis of these
criteria, studying the theoretical relationships between dif-
ferent statistical criteria, and further unifying various sta-
tistical criteria on a theoretical basis can facilitate the
theoretical development of statistical criteria. This approach
can provide new perspectives for the design of statistical
criteria.

3) Domain adversarial models need to leverage physi-
cal knowledge in order to improve model migration perfor-
mance in complex scenarios, as well as to improve the
model’s defense capabilities against different types of
attacks. The specific research directions are as follows.
a) Supporting complex applications. Currently, domain
adversarial models are less researched in complex domain
scenarios where the target domain is unknown, so how to
build a domain adversarial network that can match the
unknown information space is a future research direction.
For example, in the generalized domain scenario where the
source and target domains do not have relevant label
information, the knowledge and experience learned on
multiple tasks can be adapted adversarial by combining
multitask learning and meta-learning to improve the mod-
el’s generalization ability on unknown domains. In addi-
tion, reinforcement learning can be used to solve the
problem of unknown target domains by first using auxiliary
tasks or self-supervised learning to generate reward signals
and pseudo-domain labels, after which reinforcement learn-
ing optimizes the training process of the domain adversarial
network using the reward signal as the learning objective to
reduce the discrepancy between the pseudo-domain and the
source domain. b) Building general defense system. No
one defense method that can completely eliminate the risk
of countering an attack. Attackers may continuously try
new attack methods to interfere with the fault diagnosis and
prediction process, so the combination of different defense
methods is considered to build a more comprehensive
defense system. For example, the input fault data is trans-
formed using sine or wavelet transforms, which utilizes the
structural similarity between different fault data to reduce
the embedded noise in the samples. The model training
process utilizes techniques such as gradient masking and

neural network repair to enhance the robustness of the
model against attacks. Finally, user access rights are set
during model deployment to ensure that only authorized
users or systems can interact with the model.

III. DOMAIN GENERALIZATION
IN PHM

A. OVERVIEW

In practical PHM tasks, the training data usually comes
from the same types of machines under different working
conditions or different types of machines. Therefore, the
domain shift affects the performance of data-driven PHM
models; therefore, cross-domain models are needed. In
recent years, domain generalization techniques have devel-
oped as an effective way to train deep learning-based
models on multiple-source domains for PHM tasks.
Domain generalization-based PHM models can reduce
the dependence on target domain data and extract general
features from source domains. These features are less
sensitive to domain shifts for online condition monitoring.
The domain generalization mechanism is divided into two
main classes. One is to learn knowledge from different
condition data of the same types of machine. Another is to
extract shared PHM knowledge among multiple different
machines with similar features. This section provides an
overview of domain generalization for intelligent PHM
with a focus on algorithms and applications. The paradigm
of domain generalization applied in cross-domain PHM
tasks is illustrated in Fig. 2.

B. ADVANCES OF DOMAIN
GENERALIZATION

1. DATA MANIPULATION. The quantity, quality, and
diversity of data can influence model performance includ-
ing accuracy, generalization, etc. When training data is
limited, domain generalization-based data processing meth-
ods can effectively enhance the diversity of data, which can
increase the generalization of the model in fault diagnosis
and RUL prediction tasks. Data processing methods include
data augmentation and data generation methods, which can
address insufficient faulty samples, poor cross-condition
generalization, and vibration data distribution bias in PHM.

Data Augmentation: Data augmentation can effec-
tively improve the training performance of the model. The
basic method of data enhancement is to simulate domain
shift. Specifically, this method transforms the original data
into multiple forms but reserves the original labels [33].
Image data augmentation is the most widely used for many
applications including PHM. The image augmentation
consists of four methods, namely image transformation,
adversarial gradients, model-based augmentation, and
feature-based augmentation. In specific, image transforma-
tion increases the number of time-domain or frequency-
domain images of the sensor signal by flipping, rotating,
scaling, cropping, etc., to obtain more features in model
training [34]. However, this can lead to label shifting,
creating conflicts with other tasks. Adversarial gradients
include the task adversarial method and the domain adver-
sarial method, which can learn the domain-agnostic images
to acquire more domain-invariant patterns. However,
adversarial gradients can simulate real-world domain shifts,
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which is more complex than salt-and-pepper noise in sensor
signals. Model-based augmentation uses neural networks to
generate new image data to mix with the original images for
the source domain to improve the model performance of
fault diagnosis. Feature-based augmentation utilizes the
clustering method to extract the within-class and across-
class prototypical representations for feature extrac-
tions [35].

Data generation: Data generation is one of the widely
used techniques in domain generalization for PHM tasks.
This method generates rich and diverse data samples, which
can enhance the generalization of the model in multiple
tasks. Currently, the typical methods are generating adver-
sarial networks (GANs), variational autoencoder (VAE),
and synthetic minority over-sampling techniques (SMOTE)
[36,37]. A global optimization GAN was constructed for
fault diagnosis, which applied AE as a generator to extract
the fault features instead of the data sample [38]. Yan et al.
established a VAE-based conditional Wasserstein GAN
with a gradient penalty framework to generate synthetic
faulty training samples for addressing the insufficient chill-
ier faulty samples [39]. Chen et al. applied the adaptive
synthesis as a novel SMOTE method to rich the fault
samples for improving the accuracy of the wind turbine
blade icing detection [40]. In addition, digital twins are a
novel data generation method, which has obtained increas-
ing attention. Xia et al. established a digital twin to build the
simulation system for generating virtual data, which com-
bined with the transfer learning method for cross-domain
intelligence fault diagnosis [41].

2. REPRESENTATION LEARNING. Representation learn-
ing is a hot topic in machine learning and plays a significant
role in domain generalization. The purpose of representa-
tion learning is to extract effective hidden features to
construct accurate mapping relationships for fault diagnosis
and RUL prediction. Representation learning can be
divided into two categories: domain-invariant representa-
tion learning and invariant risk minimization respectively.

Domain-invariant representation learning. When
the feature representation remains invariant across domains,
this indicates that the features are general and can be applied
to multiple domains. Therefore, the objective of domain

generalization is to reduce the differences between feature
representations of multiple-source domains to keep the
domain invariant, which enhances the generalization of
the model [42]. Currently, this method can be divided
into three methods which are kernel-based approach,
domain adversarial learning, and explicit feature alignment.
Kernel-based methods are one of the primary methods for
representation learning. The method uses kernel functions
to map the original data to a high-dimensional space to
achieve linear differentiability. The kernel methods widely
used in domain generalization are polynomial kernel, La-
place kernel, and Gaussian radial basis kernel function.
Gaussian kernel parameters are imported into one-class
support vector machines to achieve fault detection, which
selects the farthest and the nearest neighbors and “tight-
ness” of the decision boundaries [43]. Cheng et al. proposed
adaptive kernel spectral clustering to adaptively identify
machine anomaly behaviors from multiple degradation
features, which can outperform other feature extraction
methods [44]. Domain adversarial learning has a generator
and discriminator. Where the discriminator can distinguish
the domains and the generator is applied to fool the
discriminator to acquire the domain-invariant feature re-
presentations [45]. Chen et al. constructed a novel domain
adversarial transfer network to deal with large distribution
discrepancies across domains, which employed task-
specific feature learning networks and domain adversarial
training techniques [46]. A universal domain adaptation
method was established for fault diagnosis, which applied
source class-wise and target instance-wise weighting me-
chanisms to recognize the unknown fault modes [47].
Explicit feature alignment is applied to align the features
across source domains by learning domain-invariant
representations. Li et al. applied multitask instance normal-
ization and batch normalization to enhance the informa-
tiveness of the extracted features to achieve the generalized
bearing fault diagnostic framework [48]. A novel transfer
learning-based method was constructed using local maxi-
mum mean difference and K-means to solve structural
information in the unlabeled target samples [49].

Invariant risk minimization. Invariant risk minimi-
zation provides another way to learn the domain-invariance
representation for domain generalization. The method
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considers the best classifier over the representation space to
be the same across all domains, which does not require
seeking to match the representation distribution across all
domains [50]. The causal mechanism does not affect the
mechanism, which can keep the domains invariant. Mo
et al. established a sparsity-constrained invariant risk min-
imization framework, which applied models with better
generalization for environmental disturbances in machinery
fault diagnosis [51]. For graduating the invariance of opti-
mal representation-level classifier, this learning method is
acquired using minimizing the extrapolated risk among
source domains, which can reduce the variance of
source-domain risks [52]. Zhao et al. utilized the iterative
min–max game of mutual information between the domain
generation module and task diagnosis module to learn the
generalized features for resisting the unknown domain shift,
which can realize the domain-invariant representations
from multiple-source domains [53].

The architectures of two typical methods of invariant
representation learning are illustrated in Fig. 3.

3. LEARNING STRATEGY. In parallel to data processing
and representation learning, domain generalization can
adopt different learning strategies in the general machine
learning paradigms, including meta-learning, self-super-
vised learning, ensemble learning, etc.

Meta-learning. The key idea of meta-learning is to
realize “learning from learning” and to construct general
models using multiple methods, including optimization-
based, metric learning-based, or model-based methods.
This approach can learn extracted fragments for future
learning in related tasks. Finn et al. first proposed a novel
model that combined generalized domain with meta-
learning, which can divide the training data into a meta-
training set and a meta-testing set, and can learn features
from the meta-training set to improve its performance [54].
The purpose of this method is to display the domain transfer
of the model in training to better process the domain transfer
in unknown domains. However, existing meta-learning-
based domain generalization methods can only be em-
ployed for multi-source domains with labels and update
the base model using second-order differentiation, which
reduces the effectiveness and increases the computation
cost in large-scale neural networks. Meta-learning has
two important components, namely episodes and meta-
representation. In particular, episodes can separate source
domains into nonoverlapping meta-source and meta-target
domains to simulate domain shift. And meta-representation
is applied to denote the parameters for meta-learning.

In recent years, meta-learning methods have been
rapidly developed in PHM, which are widely applied in
complex working conditions, few-shot fault diagnosis,
and RUL prediction. A novel hierarchical recurrent

meta-learning-based method can be constructed to realize
the fault diagnosis with small samples under different
working conditions, which utilizes a recurrent meta-learn-
ing strategy with a one-shot learning way to train the
proposed model [55]. Zhang et al. constructed a few-
shot learning framework for bearing fault diagnosis using
model-agnostic meta-learning (MAML), which can achieve
the fault classifier with high performance and recognize the
unknown faults using limited data [56]. Yang et al. estab-
lished a MAML framework with a Gaussian process for
RUL prediction, which can add kernel features as a regu-
larization term to reduce the overfitting problem [57].

Self-supervised learning. Self-supervised learning
can generate labels to learn from the data itself. This method
can train models to predict transformations used in the
image data, such as the rotation and patch-shuffling of the
image. Self-supervised learning can learn generic features,
which is beneficial to overcome overfitting domain-specific
biases. And pretext task is an important part of self-super-
vised methods, which can automatically generate pseudo-
labels to avoid manual labeling and realize unsupervised
extraction. Overall, this method has good generalization,
which is suitable for single-source scenarios and multi-
source scenarios without requiring any domain labels. This
method can effectively solve the insufficient labels of fault
data samples, which can reduce the dependence on histori-
cal data. Currently, the self-supervised learning method has
been widely used in several industrial scenarios, including
incipient fault detection [58], fault diagnosis with unbal-
anced data, and feature extraction from monitoring data.
Kong proposed a multitask self-supervised data mining
approach, which can obtain massive diagnostic knowledge
from unlabeled data to facilitate fault diagnosis [59]. Inter-
instance and intratemporal self-supervised learning frame-
work was constructed, which can process the unlabeled data
integrated with a few labeled data to enrich the capacity of
learnable data and ensure the stability of multitask optimi-
zation [60]. Mao et al. employed the generation of online
RUL pseudo-values via fusing prior degradation informa-
tion, which can establish a novel deep domain adversarial
regression network with multilevel adaptation for estimat-
ing the online RUL values [61]. However, self-supervised
learning-based methods were only applied to the object
prediction and classifier tasks, but few literatures discussed
the performance on out-of-distribution data generalization
tasks. In addition, existing proxy tasks are specific rather
than universal. For example, the rotation prediction task can
mislead the model to capture rotation information instead of
generic features, which can reduce generalization.

Ensemble learning. Ensemble learning combines
multiple models to enhance the capabilities of models in
prediction and classification. This method can construct
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special network structures and develop training strategies to
fuse relationships between multiple-source domains, which
can effectively enhance domain generalization. The model
regards the representation of a sample on multiple-source
domains as an integration, which means that the results of
prediction or classification are obtained by integrating
multiple networks [62]. Ensemble learning includes multi-
ple methods, such as Exemplar-SVM, domain-specific
neural network, domain-specific batch normalization, and
weight averaging, which has been in practical industrial
applications. Yu et al. proposed the Bayesian network-
based probabilistic ensemble learning to address a limited
diagnostic effect for industrial processes, which can satisfy
a particular application [63]. A novel model was con-
structed using an improved domain adaptation method,
which can apply ensemble learning to integrate multiple
classifiers for the final results of fault diagnosis [64].
Degradation-dependent weights are embedded into an
ensemble learning-based prognostic approach for RUL
prediction, which can achieve higher accuracy than other
methods [65]. In summary, ensemble learning is an effec-
tive model in domain generalization, which can effectively
enhance the performance of the model about fault diagnosis
and RUL prediction. The reason is that the method inte-
grates multiple models and reserves the diversity of fea-
tures. However, ensemble learning needs to store multiple
different models, which increases the training cost and
increase the computation time.

The overall framework of domain generalization is
shown in Fig. 4. Table IV summarizes the characteristics
of different domain generalization methods.

C. CHALLENGES AND OPPORTUNITIES

1. DATA SAFETY OF DOMAIN GENERALIZATION. In
real industrial scenarios, it is very difficult for a single
user to acquire well-developed monitoring data. Limited
fault data samples cause challenges in constructing an
effective PHM framework. Typically, similar data with
labels from equipment frommultiple users can be employed
for cross-domain learning, which can improve the perfor-
mance of the model. However, sharing data among users
creates security issues due to potential interest conflicts and
data privacy regulations. Therefore, it is a promising
research direction to construct novel models for jointly

modeling data from multiple users and ensuring data secu-
rity. We can try to improve the domain generalization
model by adopting federated learning to enhance the effec-
tiveness and security of model training.

2. MODEL CAPACITY FOR UNKNOWN CONDITIONS.
The weights of the machine learning models as a feature
extractor are fixed after training in the source domain. This
may lead to the representational ability of a machine
learning model restricted to the seen domains. It reduces
the generalization when the unknown fault distribution is
different from the existing fault distribution. Existing ap-
proaches develop dynamic architecture-based models for
PHM tasks, such as dynamic filter networks and conditional
CNNs, which have achieved good results in processing
monitoring data and extracting hidden features. However, it
is a concern whether dynamic architectures are suitable for
domain generalization in domain shifts. In addition, the
normalization layer has become one of the core modules of
deep learning. In model training, the parameters of the
layers are only able to represent the distribution of the
training data, when computed within each instance or based
on small batches. Therefore, the models need to ensure that
the parameters adapt to these domains of unknown faults or
operational environments.

3. OPEN-SET DOMAIN GENERALIZATION FOR MONI-
TORING DATA. Collecting all-inclusive fault data for
potential fault detection can consume a lot of time in the
PHM task. In online testing, the system can develop new
fault modes and work conditions, which shifts the labels
between the training data and the testing data. Diagnostic or
prognostic models are typically trained to deal with samples
in the source label space. However, if these faults are
outside the source domain, it is critical to identify the
unknown conditions accurately for testing the performance
of the model. Generally, the known class samples in the test
set are closer to the source domain than the unknown class
samples in the feature space. Therefore, it is also a key issue
how to measure the uncertainty of the unknown samples,
which can enhance the interpretability and reliability of
the model.

4. IMBALANCE DOMAIN GENERALIZATION FOR FAULT
DIAGNOSIS. The assumption of most fault diagnosis
methods is a uniform distribution of data. However, imbal-
ance is typically the case such as in the healthy vibration
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data and fault data. Therefore, there is a need to improve the
domain generalization capability of the model under unbal-
anced data. Existing data augmentation and data generation
methods are mainly applied based on data distribution,
which does not consider underlying physical information.
Therefore, how to add physical constraints in domain
generalization-based data processing is crucial.

D. FUTURE RESEARCH DIRECTIONS

1. INTERPRETABILITY AND CONTROLLABILITY. Data-
driven based approaches have made significant progress in
PHM tasks. However, the black-box nature of machine
learning and deep learning increases the uncontrollability
and non-interpretability of feature extraction. The solution
for the above problems is to incorporate domain knowledge
when the models and transferable representations are inter-
preted. For example, causal learning constructs are intro-
duced for analyzing the generalized features of the model
and eliminating unnecessary correlations. Evidence loss
functions can also be introduced to analyze the uncertainty
in the model for fault diagnosis to increase the reliability of
the model in classification and prediction tasks.

2. GENERALIZATION WITHOUT DOMAIN LABELS.
Most domain generalization-based methods need to utilize
domain labels to implement PHM tasks. However, in real

industrial scenarios, domain labels are difficult to acquire
due to the complexity of machine operations. Especially,
the data are from different users and are difficult to label due
to differences between signal data features. Data lacking
domain labels can decrease the performance of the domain
generalization model. Currently, the literature about trans-
fer learning-based models for PHM tasks rarely discusses
about lack of domain labels, which lacks competitive
inferiority to labeled domains in discussion. Because
domain label learning is more effective and scalable, we
encourage future work on the transfer learning-based PHM
model to address this issue. For example, training models
use data from labeled domains, which is used to evaluate the
capabilities of the PHM model without domain labels, such
as unknown fault types and operation conditions.

3. CONTINUOUS LEARNING AND SELF-EVOLUTION. In
fault diagnosis and condition monitoring, the signal data is
usually non-smooth. Therefore, we need to introduce con-
tinuous domain generalization to update the transfer
learning-based model, which can reduce the negative impact
of catastrophic forgetting to adapt to new data. Currently, the
literature on continuous learning focuses on domain adaptive
methods. However, few papers discuss continuous domain
generalization. In addition, in condition monitoring, existing
approaches usually assume smoothness in the health state,
which is not suitable for practical industrial applications.

Table IV. Solutions for domain generalization in PHM

Algorithms
used

Algorithms
used Characteristic of methods References

Application
datasets Task

Data
manipulation

CDAE Extracting features to learn weights for
further fine-tuning.

[37] Laser-induced gra-
phene production

dataset

Condition
monitoring

GO-GAN Using global optimization to generate more
discriminant fault samples

[38] Bearing dataset Fault
diagnosis

ADASYN Oversampling minority class to address the
data imbalance.

[40] Wind turbine fault
data

Fault
diagnosis

Digital twin Constructing simulation models to generate
virtual data to train source domains.

[41] Triplex pump fault
dataset

Fault
diagnosis

Representation
learning

AKSC Adaptive extraction of degradation features
to detect abnormal states.

[44] NSF I/UCR dataset Condition
monitoring

DATN Exploiting task-specific feature learning
networks and domain adversarial training
techniques for handling large distribution

discrepancies across domains.

[46] Bearing dataset,
gearbox dataset

Fault
diagnosis

HWDAL Recognizing unknown fault modes with
class-level alignments without the target

label set.

[47] Bearing dataset Fault
diagnosis

CDN Minimizing the mutual information between
subtask structures and capturing the causal

invariant information for better
generalization.

[48] Bearing dataset Fault
diagnosis

Learning
strategy

DRHRML Using recurrent meta-learning strategy with
one-shot learning way to train source

domains.

[55] CWRU dataset, bear-
ing dataset

Fault
diagnosis

SDARA Extracting temporal supervised information
for the regression task through learning the

degradation characteristics.

[61] IEEE PHM challenge
bearing dataset,

XJTU-SY bearing
dataset

RUL
prediction

DDW-EL Assigning a degradation-dependent weight to
each learner for better accuracy.

[65] Rolling bearing data-
set, C-MAPSS

dataset

RUL
prediction
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Therefore, novel models need to be designed, which have
new domain generalization capabilities to adapt to unseen
fault types. For example, pre-training and self-learning pro-
vide solutions for this topic. Existing pre-training methods
cannot balance the prediction performance and training cost,
so it is worth investigating how to design efficient domain
generalization methods to help large-scale pre-training.

4. DATA REQUIREMENTS AND PERFORMANCE EVALU-
ATION. The performance of existing domain generaliza-
tion method models is similar to that of empirical risk
minimization methods in PHM-related benchmark datasets.
However, it cannot be proven that the performance of
domain generalization does not have obvious advantages
over traditional methods. The reason may be inappropriate
evaluation methods, and datasets limit the performance.
Therefore, we believe that researchers should address da-
tasets with significant domain gaps. At the same time, the
datasets should be general to accommodate the modeling
demands of different scenarios, machine specifications, and
PHM tasks. These databases can facilitate practical appli-
cations and promote the development of domain generali-
zation-based methods.

IV. FEDERATED LEARNING IN PHM
A. OVERVIEW

Current mainstream PHMmethods rely mainly on sensors to
collect large amounts of real-time data from devices, and the
real-time performance of such methods is one of the most
important indicators of PHM tasks [66,67]. Owing to the
problem of communication load, current PHM methods
cannot be easily integrate directly into the Internet of things
(IoT) technology [68]. In practical applications, data collec-
tion hardware typically uses open-source third-party com-
munication protocols for compatibility reasons, which can
pose a significant data privacy risk. The combination of FL
technology with PHM models to solve the aforementioned
problems has garnered considerable attention [69]. FL is a
distributed computing technology based on the IoT and
machine learning [70,71]. As shown in Fig. 5, the core
idea behind the framework is to allow the clients to complete
the partial model training directly using the locally collected
data and the central server to no longer aggregate the original
data of all the clients but receive only the trained parameters

of each part of the model. After all the parameters are
integrated and optimized, the global models are deployed
to each client. The core technology of FL can be decomposed
into two cores: (1) the architecture and learning strategy
between the central end and the client and (2) the encryption
technology that protects the transmission of the model
parameters between the two ends [71].

Compared with traditional distributed machine learn-
ing techniques, FL has more unique advantages owing to its
two core ideas. From an architectural perspective, the
traditional distributed machine learning architecture is fully
controlled by the central server for all the clients, with the
data fully centralized on the central server [72]. The data
storage and model update calculations are entirely under-
taken by the central server, and the clients perform only the
inference tasks. Meanwhile, the FL architecture emphasizes
the data privacy of the client. In theory, in the FL architec-
ture, the client will have complete local autonomy and can
decide how and when to participate in collaborative learn-
ing [71]. In terms of computation, the FL architecture is
more efficient than traditional architectures, because the
client in an FL architecture can participate in the data
storage and model update calculation tasks, and the com-
munication content between the central end and the client
will change from raw data to gradient information and
model data parameters, thereby making it more advanta-
geous in communication and energy consumption [73]. In
terms of data privacy protection, in the FL framework, the
model information transmitted between the client and
the central end can be classified as indirect information of
the working object [74]. When a hacker steals data from the
IoT, they will only be able to infer the original information
based on the model parameters or gradient information.
Compared with the raw data transmitted through traditional
distributed frameworks, those transmitted through an FL
framework will encounter a natural barrier, which can
considerably increase data theft difficulty. In addition,
under an FL framework, clients will have high autonomy
and be aligned with privacy protection agreements created
in collaboration with various enterprises.

B. ADVANCES OF FL IN PHM

FL was first proposed by Google in 2016, which prompted
many scholars to conduct research on the technique to
propose effective methods [75–77]. The field of PHM
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focuses mainly on the FL architecture, and some studies
combined FL with PHM methods to address real-time and
data privacy issues in the multidimensional fault diagnosis
of complex electromechanical equipment in an IoT envi-
ronment. Research on the FL framework can be grouped
into three main categories [72,78].

1. HORIZONTAL FL (HFL). As shown in Fig. 6, the core
of horizontal FL (HFL) is data from different clients having
a similar feature but different forms. In PHM, the clients are
commonly computing systems that use sensors for the data
collection. HFL is essentially sample union and widely used
owing to its simple and effective structure and concept. In
the field of PHM, the application of FL is based mainly on
the fusion of the horizontal structure and other methods, that
is, an FL client network with different sensors to perform
multidimensional and high-precision PHM on an object,
such as bearings, motors, and so on.

Currently, previous research focused on the method of
combining an FL framework with a PHMmodel. Using the
Case Western Reserve University rolling bearing dataset,
[79] proposed a self-supervised model with FL to address
the data island problem in industry IoT. Reference [80] used
lightweight technology, including nonstructural pruning
and fine-tuning, to enhance an FL framework and lay the
foundation for FL deployment in edge computing (EC)
devices. Besides, previous research focused on the FL
framework structure and tested the compatibility of pro-
posed frameworks with different algorithms to ensure their
effectiveness and generalization ability. For instance, [81]
represented an FL framework by combining a process
description with a software architecture and verified the
approach by using industrial datasets and different FL
algorithms. Reference [82] presented on-demand FL as
an enhanced HFL method, which is a client deployment
approach for FL, to expand the available capacity of a client
and improve the horizontality of the FL framework. Mean-
while, [83] designed a Paillier-based communication

scheme to preserve the raw information of shipping agents,
and [84] proposed a hierarchical FL framework and diag-
nosed the fault of a power transformer with privacy
protection.

2. VERTICAL FL (VFL). In a vertical FL (VFL) network,
the users are commonly similar and few, and different data
features are combined, as shown in Fig. 7. In PHM, few
sensors are used in the monitoring network, and a single
type of data is collected. However, different extraction
methods are employed to obtain the multiple features,
which are combined to achieve the fault diagnosis and state
monitoring. The statistical features of electromechanical
equipment are derived from raw data conversion algo-
rithms, rather than collected directly, such as users’ age,
income, expenditure, and movement trajectory, similar to
mobile IoT [85]. Therefore, VFL in PHM will not typically
form a distributed network with hardware but will focus
mainly on the feature extraction algorithm. At the algorith-
mic level, VFL essentially involves using multiple feature
extraction algorithms to extract as much information as
possible from a single data source, then fusing it. Reference
[86] introduced the method of combining a generic frame-
work (i.e., FedMeta-FFD) with an easy-to-implement
enhancement technique (i.e., AILR) to address the few-
shot problems in fault diagnosis and regarded such pro-
blems as verticality enhancement in an FL framework.
Meanwhile, [87] presented a new model alignment method
based on data-free knowledge distillation to generate
pseudo-features that can improve model performance,
which can also address the verticality of an FL framework.

3. FEDERATED TRANSFER LEARNING (FTL). Federated
transfer learning (FTL) is demanding and challenging, in
which little overlap exists between the customer samples
and the features, as shown in Fig. 8 [88]. In PHM, few
sensors are involved, as well as single data types and limited
feature extraction algorithms [89]. In other words, despite
its difficulty, very few features can be extracted in a PHM
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task. In common, special and important equipment with a
complex data acquisition process and sensor placement will
have strict requirements. In such a case, the entire distrib-
uted PHM model must be transferred based on the transfer
learning and FL fusion using the common condition data of
the devices as the source data domain [90]. FTL is one of the
most effective methods for solving the problem of obtaining
data for major equipment. Therefore, the current research
focus is shifting gradually from HFL to FTL, which has
become a key research direction for FL-based PHM. For
example, [89] proposed an FTL framework with discrep-
ancy-based weighted federated averaging to address the
problem of potential domain shift in traditional federated
averaging algorithms and validated the effectiveness and
superiority of the method on self-made bearing datasets.
Reference [91] developed the first unsupervised vertical
FTL method for equipment fault diagnosis, which involved
VFL and FTL. Reference [92] proposed a deep adversarial
network-based FTL to address the domain shift phenome-
non and data privacy problems.

4. FL-BASED CLOUD-EDGE COLLABORATION (CEC)
COMPUTING. EC technology (ECT) and FL developed
rapidly nearly during the same period [93,94]. The core idea
behind ECT is the enhancement and simplification of deep
learning models to complete inference tasks or model
training tasks in edge devices with low computing resources
to achieve high real-time performance [68,94,95]. The
underlying PHM control hardware and data acquisition
system commonly exploit low-process chips to resist com-
plex electromagnetic interference and vibration interfer-
ence, which can lead to limited computing resources.
The introduction of ECT can effectively solve the applica-
tion problems of high-performance models for PHM tasks,
reduce the communication links of information transmis-
sion and results feedback, and improve real-time fault
diagnosis performance and intelligent operation and main-
tenance. In addition, the characteristics of ECmake it highly
adaptable to FL. EC is the technical cornerstone of distrib-
uted training in FL, and FL is a distributed application
scenario for EC [85,96]. Therefore, in recent years, an
increasing number of scholars have begun to pay attention
to FL-based cloud-edge collaboration (CEC) and exploit its
advantages in computational performance, bandwidth
reduction, and privacy protection to improve the perfor-
mance of traditional PHM methods. For example, [97]
effectively enhanced the EC performance of an FL frame-
work and proposed a new FL framework, namely FedCAE,
for bearing fault diagnosis. In an early research on CEC in
RUL, [98] proposed an FL-based RUL prediction method.
Moreover, to address the zero-shot problems in an ultra-

supercritical thermal power group, Ref. [99] introduced a
bidirectional alignment network and FL-based CEC, which
was essentially a VFL framework.

5. SUMMARY OF FL APPLICATIONS FOR PHM. The
development status of FL applications for PHM is summa-
rized in Table V, and the current development status FL-
based PHM can be summarized based on the characteristics
of the objects, data types, and framework forms. FL-based
PHM mainly involves the diagnosis of mechanical faults in
objects such as bearings and gears, owing to the easy data
acquisition process for such objects and the mature research
on fault mechanisms. From a data perspective, vibration
data are the main type of data driving the model, and
establishing a highly intelligent PHM system would be
monotonous for industrial IoT (IIoT). Thus, future studies
should effectively combine temperature, current, voltage,
and magnetic field strength information with an FL frame-
work to present large PHM systems with continuous evo-
lution capabilities. Moreover, few studies adopted a hybrid
FL framework, and research on FL-based PHM framework
integration demonstrates considerable potential. Existing
studies on FL-based PHM focused mainly on single objects,
such as bearings, which can limit the scale and breadth of
FL frameworks. An ideal universal FL-based PHM frame-
work should cover all the devices in an IIoT and perform
intelligent maintenance on every working object, including
gears, bearings, motors, and machine tools.

C. CHALLENGES AND OPPORTUNITIES

This study summarizes the future trends and challenges of
combining PHM methods with FL by reviewing the devel-
opment of different types of FL technologies. In addition,
this study discusses the main directions for future research,
including numerical calculation stability, system volume,
and sustained intelligence.

1. FL-BASED FAULT DIAGNOSIS USING INFORMATION
GENERATION MODELS. Sensor signal characteristics
such as vibration, current, voltage, and magnetic field
strength are extracted with algorithms or artificially defined.
Thus, no differences exist between samples and features in
FL-based PHM [100,101]. As sample generation techni-
ques based on deep learning develop, signal sample and
feature generation will exhibit convergence and become an
essential information fusion form [102]. Information com-
bination can substantially improve the horizontality and
verticality of FL frameworks. However, as estimated values
based on numerical statistics, generative information is
naturally unstable and fatal for industrial applications. In
addition, the clients in an FL framework are relatively
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independent, and the lack of global information will lead to
severe weak generalization problems in the model.

2. STABLE DISTRIBUTED FTL FRAMEWORKS FOR
PHM. FTL is rarely combined with PHM models owing
to the high demand for method stability in industrial
scenarios, serious overfitting problems in data-driven mod-
els because of the periodicity of equipment signals, and the
increasing instability of factors because of the parameter
migration of the model and the distributed FL framework at
the algorithmic and hardware levels [103]. Therefore,
designing distributed TL models and FL systems has
become a highly important challenge in the future owing
to the absence of data on extreme operating conditions for
major equipment [104].

3. EVOLUTIONARY PHM SYSTEMS BASED ON CONTIN-
UOUS FL FRAMEWORK. As a continuous task, PHM
requires the use of a CEC FL framework to further enhance
the intelligence and autonomy of existing models, espe-
cially in the event of sudden unknown faults and unfamiliar
working conditions during the PHM process [105].
Optional solutions include CEC-based self-updating mod-
els, unsupervised learning, and FL strategies that combine
knowledge distillation, sample generation, and other opti-
mization methods to form robust and generalized solutions
that will consider the changes in the device environ-
ment [106].

V. KNOWLEDGE-DRIVEN TRANSFER
LEARNING IN PHM

A. OVERVIEW

The purpose of transfer learning is to improve generaliza-
tion ability in a new data domain with distribution shift. To
solve this problem, the above domain adaption, domain
generalization, and federated learning techniques generally
aim to learn invariant representation from variable data
domains to achieve generalization in joint distribution.
Therefore, one of the key viewpoints of transfer learning
is how to enable model to learn invariant representation
with respect to domain shift. This is why we need to turn our
attention to knowledge-driven model. In general, knowl-
edge comes from our perception of physics phenomena and
has strong adaptability to new data domain. It means
knowledge itself is a kind of invariant representation

with respect to domain shift, so it can generalize well to
new domain. In addition, knowledge is usually independent
of data acquisition. Therefore, compared to the above three
techniques realizing transfer learning from data level,
knowledge-driven transfer learning can provide extra per-
spective to learn invariant representation.

The sources of knowledge are diverse, including exper-
iment, theory, computing science, and even data. From the
viewpoint of experiment, knowledge can be concluded
from the evolution law behind experimental results, like
Newtonian mechanics. In this stage, knowledge is verified
by observation and hypothesis testing. From perspective of
theory, knowledge is derived by deductive inference and
usually formulated as mathematical equations or model. In
this stage, knowledge emphasizes universal laws and for-
malization. In the aspect of computing science, knowledge
is based on complex mathematical model and solved by
computing algorithms. In this stage, knowledge is reflected
in information system. Currently, the most important source
of knowledge is big data. The framework of data knowledge
is built upon the above experimental observation, theory
models, and computing science. In this stage, knowledge is
usually implicit in complex models or algorithms and not
easy to understand intuitively. Therefore, to make our
direction paper more distinguishable, we limit the knowl-
edge sources to the first three aspects, as shown in Fig. 9.

In this paper, we mainly illustrate application of three
kinds knowledge in PHM, that is, signal processing, physics
model, and experience induction. These three kinds knowl-
edge have a long history of development in the PHM field
and are supported by experimental observation, theory
model, and computing science. In terms of signal proces-
sing, we can design various algorithms to extract interpret-
able feature from raw time series data. For example, we can
use Fourier transform or wavelet transform to extract sparse
impulse or period components from signal to investigate
healthy condition of system. For physics model, it repre-
sents the basic understanding for the physical system of
interest. In general, the first principle theory, like law of
conservation of force or energy, is used to derive physics
model. Depending on the nature of the concerned problem,
different physics models can be constructed, such as
lumped parameter model or finite element model. For
experience induction, it has a broad definition, derived
from the observation and summary of experiments, theo-
ries, and computing science. For example, for a prognostics

Table V. Summary of FL applications for PHM

Ref. PHM object Signal type FL direction

[79] Bearing Vibration HFL

[80] Bearing, gearbox, and bogie Vibration HFL

[83] Bearing Vibration HFL

[84] Power transformer Voltage HFL

[86] Bearing Vibration VFL

[87] Bearing and gearbox Vibration VFL

[89] Bearing Vibration FTL

[91] Bearing and gearbox Vibration VFL, FTL

[92] Bearing Vibration FTL

[97] Bearing Vibration CEC

[98] Milling cutter Vibration CEC

[99] Ultra-supercritical thermal power group Process variables CEC, VFL
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problem, we expect to build a monotonous, smooth, and
trended healthy index to capture physical degradation. In
the next part, we will summarize previous works on how to
embed the knowledge from signal processing, physics
model and experience induction into a data model, to realize
knowledge-driven transfer learning.

B. ADVANCES OF KNOWLEDGE-DRIVEN
TRANSFER LEARNING IN PHM

Many scholars have begun to study knowledge-driven trans-
fer learning methods in the realm of PHM and have made
certain progress. According to the existing research [107],
knowledge is defined as information about a domain that can
be utilized to solve issues in that domain. For the PHM
domain, this paper subdivides knowledge into physical
knowledge, signal processing knowledge, and inductive
knowledge. By combining these knowledges, the model
can obtain stronger transferability and generalization ability.

1. SIGNAL PROCESSING KNOWLEDGE. Signal proces-
sing knowledge is usually extracted from signal analysis
and utilized to improve preprocessing methods or guide
model design to eliminate domain shift. Kim et al. [108]
employed low-pass filter and resample strategy to convert
vibration signals from two mechanical systems into com-
mon pattern space. This can reduce feature distribution
discrepancy between different datasets, thereby promoting
invariant feature learning. Yu et al. [109] employed wavelet
packet transform to construct time-frequency feature map,
in which zigzag stitching reorders the coefficient matrix of
leaf node. The constructed two-dimensional input is more
sensitive to fault frequency and can be better combined with
transfer algorithms. Kim et al. [110] considers that vibration
signals from bearings can be described by impulse excita-
tion with fault characteristic order, which is affected by
rotational frequency and centrifugal force. Therefore, in the
face of fault diagnosis problems under continuous nonsta-
tionary working conditions, multiple preprocessing meth-
ods are combined to reduce the influence of these two
factors. These methods include speed normalization, angu-
lar resampling, envelope extraction and spectral analysis.
The preprocessed signals from different domains can

exhibit domain invariance. Li et al. [111] argued that the
consistency of multi-scale entropy for the same class is
capable of assisting transfer learning. For each sample,
multi-scale symbolic dynamic entropy is calculated and
thereby fed into the network. By combining two commonly
used regularization loss terms in domain adaptation, the
model can accurately diagnose fault types across domains.
Obviously, such methods typically mine knowledge from
the mechanisms of signal generation and attempt to con-
struct invariant feature representations for different
domains.

There are also some methods that promote the model to
learn generalizable feature representations from the per-
spective of model construction. For instance, Liu et al.
[112] developed a time-scattering convolutional network
(TScatNet), in which Morlet wavelet kernel replaced the
traditional convolution kernel to learn fault features. The
predefined Morlet wavelet module possesses translation
invariance and the deformation stability, allowing the
learned scattering features from different working condi-
tions to obtain similar distributions. Experiment results
have indicated that the network can learn domain-invariant
feature representations without applying any transfer learn-
ing techniques. Liu et al. [113] further proposed the nor-
malized TScatNet (NTScatNet) for domain generalization
tasks across different transmission paths. For a linear time-
invariant system, it has been theoretically proven that the
feature output from a scattering normalization layer is
domain-invariant. He et al. [114] simplified the design of
the network and only applied wavelet kernel convolution in
the first layer of CNN. Specifically, the model enhances the
transferability by initializing weights of the first layer with
optimized wavelet weights. Experiments have revealed that
this embedded knowledge can assist the model generaliza-
tion. Yin et al. [115] embedded band-pass filters into
convolutional layer to encourage the network to learn
from regions with concentrated fault frequency. The prior
knowledge about fault frequency improves the transferabil-
ity of the network.

Overall, signal processing knowledge is closely related
to the mechanism of fault occurrence, and reasonable
application can enhance the cross-domain generalization
ability of the model.

Fig. 9. Knowledge-driven transfer learning in PHM.
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2. PHYSIC KNOWLEDGE. Physical knowledge is derived
from objective physical laws and can be expressed through
mathematical tools. This work divides the physical knowl-
edge that drives transfer learning into two types: one is to
establish a dynamic model to generate virtual data, and the
other is to build physics-informed neural network (PINN).
For the latter, Liu et al. [116] constructed a phenomeno-
logical model for the vibration response of bearings. On this
basic, the full life cycle data of bearings can be obtained
using exponential degradation. Finally, using simulation
data as the source domain and real data as the target domain,
domain adversarial neural network was combined to realize
the model transfer. Zhang et al. [117] acquired life cycle
simulation data of bearings by using a dynamic model with
5-freedom, in which degradation process is divided into
four stages. Through the evolution of the bearing fault size,
the vibration signals can show degradation trend. Domain
adaptation techniques were utilized to transfer models from
the virtual domain to the real domain. For the data scarcity
problem in RUL prediction, by establishing simulation
models, data sources can be enriched and the adaptability
of the model in real environments can be significantly
improved. Some studies adopt similar frameworks to model
the objects to be monitored and combine them with transfer
learning for training, including gas turbine [118], continu-
ously stirred tank reactor [119], and triplex pump [120], etc.
For the former, Gong et al. [121] proposed a PINN accord-
ing to the physics mechanism of aerospace control actuator
gyro. The association relationships between telemetry sig-
nals is modeled with neural networks, and changes in this
relationship are used to detect anomalies. The indicators for
anomaly monitoring are constructed through fine-tuning
transfer learning strategy. Borate et al. [122] proposed a
PINN to predict lab earthquakes. Fault physics is encoded
into the loss function to improve predicted performance
under the unknown condition. Lin et al. [123] constructed
PINN using the physical topology structure of the power
grid system, and spectral graph convolution network is
applied to modeling node relationships. Through transfer
learning technology, the network can achieve online eval-
uation for power system transient stability. Zhou et al. [124]
designed PINN by introducing intrinsic correlation of
physics between labeled gear fault data and unlabeled
gear fault data. On this basis, this study further combines
generative adversarial network, which significantly im-
proves the generalization ability of the method.

The integration of physics knowledge usually im-
proves the transparency of model decision-making and
makes them more interpretable. This knowledge can drive
the network to transfer to some unknown environments to
solve problems. However, it should also be noted that the
modeling of complex systems cannot be accurate enough
and requires careful design to achieve excellent generaliza-
tion effects.

3. INDUCTIVE KNOWLEDGE. Inductive knowledge is
usually derived from experimental data or phenomena.
By embedding inductive prior knowledge in the transfer
framework, it can help the model generalize to different
domains. For example, Mao et al. [125] considered that the
data from bearing entities with similar degradation tenden-
cies as the target domain is more conducive to transfer.
Moreover, a transfer domain validity index is designed to
quantify the contributions from different degradation fea-
tures. Further research from Mao et al. [126] showed that

feature transferability is affected by fault mode and degra-
dation characteristic and a new indicator is constructed to
assist the model selectively transfer features. Experimental
results and theory analysis indicate that the proposed
method is effective for cross-condition RUL prediction.
Similarly, Zhu et al. [127] believed that uncertainty can also
reflect whether features are suitable for transfer. In the
feature space, samples with low uncertainty is generally
located in a region of rich information. Therefore, a Bayes-
ian neural network is designed to estimate sample uncer-
tainty from the source domain and is utilized to guide
samples to selectively transfer. Some researchers have
proposed that sparse model parameters can better extract
the feature representations of vibration signals. Xing et al.
[128] designed a periodic cyclic sparse pattern in the
convolutional layer and fully connected layer, in which a
large number of model parameters are set to 0. Experiments
illustrated that a reasonable sparse induction prior is bene-
ficial to model cross-domain diagnosis. Li et al. [129]
constructed a variational sparse attention layer in trans-
former network, in which Dirichlet distribution is set as the
prior distribution to ensure sparsity. The visualization
attention map reveals that high attention weights can cor-
respond to fault-related features. Domain generalization
experiment conducted in a bevel gear dataset verified the
superiority of this inductive prior knowledge. Causal mod-
els are also often applied in conjunction with transfer
learning. Guo et al. [130] attempted to guide domain
generalization through causal metric interaction between
two CNN models. To be specific, a CNN model selects the
most causal regions as new data to assist the other CNN
model train, in which conditional mutual information is
employed to evaluate causal relationships. By learning the
causal relationships among features, the network acquires
stronger domain generalization capabilities.

Inductive knowledge is usually a phenomenon artifi-
cially summarized, rather than having strict definitions and
rules like physical knowledge. Therefore, the fusion with
transfer learning often does not require excessive redundant
design, which makes such methods easy to train. But it
should also be emphasized that inductive knowledge is not
necessarily entirely correct, and unreasonable application
may lead to negative transfer problem. Table VI sum-
marizes the above literature on PHM objects, knowledge
sources, and knowledge embedding methods.

C. CHALLENGES AND OPPORTUNITIES

According to the literature review above, knowledge-driven
transfer learning has achieved some advancements. Despite
this, such research still faces some challenges that need to
be addressed by researchers.

1. COMPLEX KNOWLEDGE REPRESENTATION. For
complex monitoring objects, domain knowledge is often
unstructured. It is challenging to represent this knowledge
and embed it into models in a reasonable way. For example,
for a mechanical system, the established dynamic model is
difficult to approximate the real physical model. Virtual
data generated using dynamic models is likely to lead to
negative transfer phenomena. Or, the transmission paths of
different sensor signals are inconsistent, making it difficult
to express knowledge under unknown conditions. This
work suggests that future research should attempt to explore
cross-domain-invariant knowledge and represent it using
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reasonable embedding methods. Digital twin-driven trans-
fer learning should be given attention, as it realizes
information exchange between physical and virtual do-
mains. Digital twins can mine the physical knowledge of
monitoring objects and update the evolution process of
objects in real time, achieving generalization in the time
domain.

2. GENERALIZABLE INTERPRETABILITY. Embedding
knowledge as domain information into a transfer learning
framework is often accompanied by a focus on interpret-
ability. Interpretability means that humans can understand
the decision-making basis of the method, which requires a
transparent and trustworthy model. Although some of the
research mentioned above, especially in the field of physical
knowledge, involves interpretability, it is currently not
closely connected to transfer learning. In particular, few
studies focus on the interpretability of models generalizing
to unknown conditions. Sometimes, the accuracy of the
model does not decrease significantly, but the decision logic
may change due to domain drift. This review suggests that
future research should try to focus on generalizable
interpretability. The method can not only learn domain-
invariant feature representations but also learn domain-
invariant decision-making logic, which is beneficial to
the application of the method in the industrial field. This
puts forward higher requirements for the representation and
integration of domain knowledge. Moreover, how to
achieve doubly fed optimization between interpretability
and generalization also needs attention. In other words,
there is a need to study the work of interpretability guiding
model generalization and model generalization embodying
interpretability.

D. FUTURE RESEARCH DIRECTIONS

To bring development of knowledge-driven transfer learn-
ing to a better level and enable it with stronger generaliza-
tion ability, better flexibility, and more interpretability,
there are mainly two directions from both theory and
application to further research in this topic.

In theory part, we should concern the acquisition
approach of knowledge, the way that knowledge is repre-
sented, and how to embed knowledge into data models. In
terms of knowledge acquisition, knowledge usually re-
quires expensive labor and time costs to condense and
requires trial and error to verify in experiments. So how
to optimize the acquisition pipeline of knowledge is the first
problem we should solve. The next problem is how to
represent knowledge. As knowledge is often expressed as
complex and unstructured relation and sometimes there are
no explicit formulas, we have to utilize several techniques
to capture the property of knowledge, such as knowledge
graph or fuzzy rule theory. The technical part is to build a
universal framework of knowledge embedding approach to
data models, which is also the mainstream trend in recent
researches. Generally, knowledge is viewed as some kinds
of constraint for data models, and there are two strategies to
realize such constraint. The first strategy is to modify the
model structure to confirm knowledge, and then the predic-
tion logic of model will be constrained by knowledge. For
example, we can utilize Fourier transform or wavelet
transform to design the structure of neural network. and
then the feature extraction module will follow the basic
logic in signal processing. The second strategy is to con-
struct an optimization regularization from knowledge, and
then the solution of data model will be limited in a

Table VI. Summary of knowledge-driven transfer learning for PHM

Ref. PHM object Knowledge source Embedding method

[108] Bearing Signal processing Data preprocessing

[109] Bearing Signal processing Data preprocessing

[110] Bearing Signal processing Data preprocessing

[111] Bearing Signal processing Data preprocessing

[112] Bearing Signal processing Model design

[113] Bearing Signal processing Model design

[114] Bearing Signal processing Model design

[115] Bearing Signal processing Model design

[116] Bearing Physics Physical simulation model

[117] Bearing Physics Physical simulation model

[118] Gas turbines Physics Physical simulation model

[119] Stirred tank reactor Physics Physical simulation model

[120] Triplex pump Physics Physical simulation model

[121] Aerospace control moment gyro Physics PINN design

[122] Earthquakes Physics PINN design

[123] Power system Physics PINN design

[124] Gear Physics PINN design

[125] Bearings Inductive Indicator construction

[126] Bearings Inductive Indicator construction

[127] Bearings, lithium-ion battery Inductive Indicator construction

[128] Bearing Inductive Model design

[129] Bearing, gear Inductive Regular term design

[130] Gear Inductive Model design
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regularized space. PINN is a typical example of such
strategy.

In application part, an important thing is to define an
evaluation approach to verify the effect of knowledge-
driven transfer learning in generalization ability. As
claimed that knowledge is an invariant representation
with respect to domain shift, knowledge-driven data models
are expected to generalize well in new domain, such as
varying working condition or multi-modal noise. However,
we can only review little literatures considering generali-
zation ability of knowledge-driven model. Therefore, a
uniform evaluation framework will greatly improve the
development of knowledge-driven transfer learning and
extend its downstream tasks in PHM.
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