
Physics-Informed Deep Neural Network for Bearing
Prognosis with Multisensory Signals

Xuefeng Chen,1 Meng Ma,1 Zhibin Zhao,1 Zhi Zhai,1 and Zhu Mao2

1School of Mechanical Engineering, Xi’an Jiatong University, Xi’an Shaanxi 710049, China
2Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

(Received 01 November 2021; Revised 14 March 2022; Accepted 23 March 2022; Published online 17 August 2022)

Abstract: Prognosis of bearing is critical to improve the safety, reliability, and availability of machinery systems,
which provides the health condition assessment and determines how long the machine would work before failure
occurs by predicting the remaining useful life (RUL). In order to overcome the drawback of pure data-driven
methods and predict RUL accurately, a novel physics-informed deep neural network, named degradation
consistency recurrent neural network, is proposed for RUL prediction by integrating the natural degradation
knowledge of mechanical components. The degradation is monotonic over the whole life of bearings, which is
characterized by temperature signals. To incorporate the knowledge of monotonic degradation, a positive
increment recurrence relationship is introduced to keep the monotonicity. Thus, the proposed model is relatively
well understood and capable to keep the learning process consistent with physical degradation. The effectiveness
and merit of the RUL prediction using the proposed method are demonstrated through vibration signals collected
from a set of run-to-failure tests.

Keywords: deep learning; physics-informed neural network (PiNN); Prognostics and HealthManagement (PHM);
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I. INTRODUCTION
Prognostics and Health Management (PHM) of machine
systems plays an important role in performing the digital
transition of industry by combining the digital, physical,
and human dimensions together. It is a computation-based
paradigm that leverages physical knowledge, monitoring
data, and human experience to achieve the goal of fault
detection, degradation assessment, evolution prediction,
and remaining useful life (RUL) prediction [1]. Up to
now, a lot of efforts have been made to develop the
PHM techniques, such as development of hardware
(i.e., Internet of Things), smart sensors, and software
including data analytics. PHM mainly contains three as-
pects: fault diagnosis, evolution prognosis, and decisions
for management. Nowadays, a large amount of research
work focuses on fault diagnosis and prognosis, which are
the prerequisites of health management [2].

The initial fault detection of mechanical components
has been addressed for many years and made great success
in many fields [3]. If an initial fault is detected, it is more
challenging to accurately predict how long the machine
system will work before failure occurs, namely RUL pre-
diction. The RUL prediction methods are categorized into
three classes, namely model-based methods, data-driven
methods, and hybrid methods [4]. Model-based approaches
usually take advantage of physical knowledge to model the
degradation process for RUL prediction. Li et al. proposed
an improved exponential model for RUL prediction of
rolling element bearings, where an adaptive predicting
time was developed based on the three-sigma interval.
The simulation and four tests of bearing degradation pro-
cesses were employed to demonstrate its effectiveness [5].

Singleton et al. used both time and time-frequency domain
features to track the degradation process of bearing and
predicted the RUL under different operating conditions
through extended Kalman filter [6]. The model-based ap-
proaches require degradation models, which means one has
to master the physical knowledge of bearings’ evolution.
An alternative solution is to predict the RUL from historical
data without physical models.

Data-driven methods are more widely investigated
compared to model-based methods, because data-driven
approaches only rely on the historical data without fully
understanding the degradation models [7]. With accumu-
lation of monitoring data, machine learning models
including deep learning architectures are built to predict
the RUL without physical models. For examples, Sun
et al. proposed a deep transfer learning (DTL) network
based on sparse autoencoder for RUL prediction. The
RUL prediction of cutting tool using DTL model have
higher accuracy compared with other methods [8]. Ma
et al. proposed a convolutional neural network for RUL
prediction, where time-frequency features were adopted
to capture long-term dependencies through convolution
operation [9].

Since deep learning has made breakthroughs in many
applications such as image recognition, speech recogni-
tion, and language translation [10], it is widely investi-
gated in prognosis of mechanical components, such as
bearings [11] and gears [12]. However, it is hardly to
apply deep learning methods to real mechanical systems.
A primary factor is the block-box nature of deep learning
framework which is complex to understand the learned
features. Even though the deep learning models may
achieve somewhat more accurate prediction, they do
not provide the ability to understand the underlying
processes. Moreover, an interpretable model including
physical knowledge will stand a better chance ofCorresponding author: Xuefeng Chen (e-mail: henxf@mail.xjtu.edu.cn).
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safeguarding against the building of spurious models
from the historical data that may cause nongeneralizable
performance. This is especially critical when dealing with
predictions of complex systems that the failure would
cause significant accidents. As a first step for moving
beyond the black-box models of deep learning, the physi-
cal knowledge is integrated with deep learning models to
improve the interpretability of the models. Motivated by
embedding physical knowledge into deep neural models,
in this study, a degradation-knowledge-based deep learn-
ing models are proposed for RUL prediction. Instead of
using purely data-driven methods, we principally embed
well-known physical principles into the recurrent neural
networks. As stated in [13], the degradation process of
mechanical systems is monotonic, which means that
components cannot heal without repairing. Thus, an ideal
degradation indicator should be monotonic over time. In
this study, temperature signals collected during bearing
run-to-failure tests are used to describe the degradation
process because it has better monotonic characteristic
compared to vibration signals. To ensure that the learned
features of deep models are consistent with the physical
knowledge, i.e., the monotonic characteristic of degrada-
tion process, a degradation consistency deep neural net-
work is proposed which preserves the monotonicity of
degradation. The proposed degradation consistent recur-
rent neural network (DcRNN) is informed by the physical
knowledge in the training stage, which will make it more
interpretable. The main contributions of this work are
summarized as follows:

(1) A novel physics-informed deep neural network,
named DcRNN, is proposed for RUL prediction by
integrating the natural degradation knowledge of
mechanical components, which makes the model
more interpretable and generalizable.

(2) To incorporate this knowledge of monotonic degra-
dation, which is generated by temperature signals
over the whole life of bearings, is introduced to
keep the monotonicity of the degradation process.

(3) RUL prediction is performed utilizing the proposed
DcRNNmodel on a set of run-to-failure bearing tests.
By comparing with other methods, the results dem-
onstrate the priority of the proposed model.

The rest of this article is organized as follows. Section
II presents the literature review about physics-informed
deep neural network. Section III introduces the proposed
degradation consistent deep neural network. Experimental
tests of bearing’s run-to-failure tests are presented in Sec-
tion IV. The RUL prediction and results discussion are
presented in Sections V and VI, respectively. Finally,
Section VII concludes the study.

II. LITERATURE REVIEW
With the breakthroughs of deep learning models in many
fields, there is growing interest in the scientific community to
take advantage of the benefits of deep models for prognosis
of mechanical components [14], and this is because one can
directly build the mapping functions with datasets of the
whole degradation trajectories, but it neglects the knowledge
information. To overcome the drawback of purely data-
driven methods, knowledge-guided data science is investi-
gated which aims to leverage the wealth of physical infor-
mation to increase the generalization of the data-driven
models [15]. Karpatne et al. proposed a physics-guided
neural network (PGNN) to combine scientific knowledge
of physics-based models with neural network for lake tem-
perature modeling. By leveraging the scientific knowledge to
guide the modeling of neural network, it demonstrates that
PGNN has better generalizability and scientific consistency
[16]. Raissi et al. introduced a physics-informed neural
network (PiNN) to solve supervised learning problems while
keeping any given principles that are governed by nonlinear
partial differential equations [17]. The effectiveness is illus-
trated through some cases in the fields of fluids, quantum
mechanics, etc. Furthermore, the models incorporating phys-
ical knowledge may produce scientifically interpretable
models. There are various ways of embedding the physical
knowledge in deep neural networks. Daw et al. developed a
physics-guided framework of neural network to integrate the
models with uncertainty quantification. The results show that
the Monte Carlo estimates match the distribution of actual
measurements correctly [18]. Karniadakis et al. summarized
some prevailing trends in embedding physics into machine
learning for forward and inverse problems, such as discov-
ering hidden physics [19].

In the area of bearing’s RUL prediction, data-driven
methods commonly neglect the degradation knowledge.
During the whole life of bearings, the degradation process
is monotonic, which is usually ignored when predicting
RULwith vibration signals. Thus, it is necessary to consider
the degradation properties when constructing the deep
learning models. In this study, the degradation process is
embedded into a deep neural network, which is expected to
produce more interpretable models.

III. THE PROPOSED DcRNN for RUL
PREDICTION

In this study, a novel method, named degradation consis-
tency RNN, is proposed for prognosis of mechanical com-
ponents. The framework of the RUL prediction procedure
with DcRNN is shown in Fig. 1.

Physical knowledge

Vibration Signals

RUL predictionPhysics-consistency RNN
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Fig. 1. DcRNN paradigm aims to infuse degradation knowledge for RUL prediction.
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A. THE BASIC RNN ARCHITECTURE

Recurrent neural networks have been widely used for time
series data prediction, speech recognition, language trans-
lation, and many other applications by incorporating the
sequential information of time series signals [20]. RNNs
model the sequential context among the signals by trans-
forming a vector of hidden state ht from the last step to
current time step t:

ht = f ðxt,ht−1Þ (1)

where t ∈ ½0,1, : : : ,T �means the time discretization, h is the
hidden states, which represents the latent features learned
from sequential data, and f ðÞ is the activated function. The
hidden states are repeatedly used as inputs to update the
next time states. However, it is difficult to train such a
standard RNN model due to the accumulation of computed
errors in backpropagation algorithm that results in gradient
exploding or vanishing problem. To deal with this problem,
long short-term memory (LSTM) network was developed
and has been used in many application areas successfully.
The architecture of LSTM is constructed through purpose-
built memory cells, which show advantages in extracting
and exploiting long sequential context. A LSTM is im-
plemented by the following functions:

it = σðWixxt + Wihht−1 + Wicct−1 + biÞ
f t = σðWfxxt + Wf iht−1 + Wfcct−1 + bf Þ

ct = f t°ct−1 + it° tanhðWcxxt + Wchht−1 + bcÞ
ot = σðWoxxt + Wohht−1 + Wcoct + boÞ

ht = ot° tanhðctÞ

(2)

where σð·Þ is an active function, W terms represent weight
matrices of a LSTM model (e.g., Wih is the input-hidden
weight matrix), and b terms are bias vectors. it, f t, and ot are
the input gate, forget gate, and output gate, respectively.

B. DEGRADATION CONSISTENCY RNN

To improve the generalizability and scientific interpretabil-
ity of machine learning models, the physical knowledge
should be considered, which will ensure the models that are
consistent with known principles. In this study, not only
predicted loss in the target space y but also the violations of
physical knowledge in the model outputs bp are leveraged.
Both of them are used to compute the final loss function:

L = arg min fLdataðy,byÞ + λLphysicsðp,bpÞg (3)

where λ is a trade-off hyperparameter and controls the
weight between physical consistency and empirical loss.
In this way, the weights of deep neural model will be
searched in the restrictions which keep consistency with
physical knowledge.

In this study, the degradation information of bearings is
considered when building the deep neural model, which
tries to keep the learning process of model consistent with
the physical degradation process. Since the degradation is
monotonic, it is assumed to be increased over time, and the
degradation trajectory over time is expressed as:

dt = dt−1 + Δdt (4)

where Δdt > 0 is the degradation increment over time due
to working under loads. This means that the degradation
process is irreversible; thus, the learned features of deep
neural network should be consistent with the irreversible
evolution of bearing’s health condition.

The degradation consistency RNN is constructed based
on the basic LSTM architecture by embedding the degra-
dation knowledge. The monotonic characteristic is modeled
in the proposed DcRNN through building the relationship
of monotonic trend. To ensure that the deep learning model
is consistent with physical knowledge, the monotonic is
preserved by introducing degradation change. Instead of
using vibration signals for RUL prediction in an end-to-end
way, the learned features are informed by degradation
monotonicity, which is represented as the physical inter-
mediate variables that increase over time. However, it is
hard to obtain the monotonic index directly because it
cannot be measured through sensors. As an alternative
way, the temperature signals collected in the bearing’s
run-to-failure tests are used as degradation indicator,
because the temperature signals have the better monotonic
characteristic. Vibration signals are commonly used for
RUL prediction because they contain more information
and are sensitive to initial fault.

The basic LSTM architecture explicitly obtains recur-
rence relationships through hidden units, which is not
informed by physics. The proposed DcRNN embedds the
degradation knowledge into the LSTM structure by a
monotonic intermediate variable, as shown in Fig. 2.
This intermediate unit is employed as the physical knowl-
edge that represents the degradation process. The monoto-
nicity is achieved by adding a positive constant to the unit
dt−1. In this way, the degradation process is modeled and
will only increase over time. Forward propagation equa-
tions that describes the DcRNN are shown as follows:

it = σðWixt + Wiht−1 + Widt−1 + biÞ (5)

f t = σðWfxxt + Wfhht−1 + Wfddt−1 + bf Þ (6)

ct = f t°ct−1 + it°
tanhðWcxxt + Wchht−1 + Wcddt−1 + bcÞ (7)

ot = σðWotxt + Wh + Wd + boÞ (8)

ht = ot° tanhðctÞ (9)

Δt = ReLUðWΔ · σðWhht + bhÞ + bΔÞ (10)

Fig. 2. The proposed DcRNN framework.
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dt = dt−1 + △t (11)

yt = σðWy½dt,xt� + byÞ (12)

Equations (10)–(12) represent the embedding of phys-
ical knowledge that describes degradation process, which is
used to inform feature learning and preserve monotonic
degradation. This idea is motivated by degradation physics
of a bearing’s evolution. To keep the intermediate unit dt
consistent with physical knowledge, a loss function
between dt and actual degradation is defined. However,
it is difficult to obtain the actual degradation index, tem-
perature signals are used instead to describe the degradation
state. The RUL prediction is achieved by a dense layer of
the concatenation of intermediate variable and vibration
signals. The final loss function with physical consistency is
defined as follows:

L = arg min fLdataðy,byÞ + λLphysicsðd,bdÞg (13)

IV. EXPERIMENT SETUP
Bearings’ run-to-failure tests are carried out on a special
design test beds to observe the natural degradation process.
The test rig is specially designed for bearing run-to-failure
experiments, which includes a power and drive system, a
hydraulic loading system, a lubrication system, a control
system, and an independent data recording system. The
main part of test rig is designed consisting of a support beam
structure, where two test bearings are installed on both ends
of the shaft, as shown in Fig. 3. During the experiments,
both the radial load and axial load were applied to testing
bearings. The parameters of test and steady bearings are
given in Table I.

To monitor the health condition of bearings, both
vibration and temperature signals are collected. If the
temperature amplitude exceeds a certain value, it means
a failure occurs; thus, the experiment should be ended to
avoid an accident that may cause damage to the test rig. The
vibration signals were recorded every 5 minutes with
32,768 data points, while the sampling frequency of tem-
perature signals is 1 Hz. This is because vibration signals
contain frequency characteristics compared with tempera-
ture signals. The rotating speed and radial load were set to
be 2500 r/min and 12 kN, respectively.

Two sets of bearing run-to-failure tests were analyzed
in this study. In the experiments, the failure mode of bearing
in Test I is inner race, outer race, and rolling element faults,
while that in Test II is inner race fault. There are 4071 and
763 datasets for Test I and Test II, respectively. The
vibration and temperature signals over the whole life of
bearings in Test I are presented in Figs. 4 and 5. The bearing
works under the health state for a long time, then an initial
defect occurs leading it to enter into a degradation stage.
With the fault development and damage accumulation, the
bearing’s performance deteriorates over time. Vibration and
temperature signals in Test II are shown in Figs. 6 and 7.

Axial load

Radial load

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Fig. 3. Structure of test rig.

Table I Bearings’ parameters

Bearing
type

Inner
diameter
(mm)

Outer
diameter
(mm)

Roller
diameter
(mm)

Roller
number

61911 55 80 7.1 16

N312 60 130 19.1 16

Fig. 4. Bearing’s vibration signals of Test 2.

Fig. 5. Bearing’s temperature signals of Test 2.

Fig. 6. Bearing’s vibration signals of Test 1.
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A similar degradation process is observed from the figures.
The amplitude of vibration signals decreased at 343.3 h in
Test I and 57.1 h in Test II, but it does not mean that the
bearing’s health condition becomes better. This is because a
bearing’s degradation is an irreversible process without
maintenance. Thus, the degradation should be monotonic
over time. When we predict RUL with vibration signals, the
physical knowledge of monotonic degradation should be
embedded into the neural network to improve the
performance.

V. RUL PREDICTION
The proposed model is employed for RUL prediction with
vibration signals and temperature signals. The designed
deep learning model has two layers with each layer of
128 hidden units. Both the weights and biases are initialized
randomly. To compare the predicted accuracy of different
inputs, time-domain signals, frequency domain features,
and statistical features of time-domain signals are used as
inputs of the DcRNN model. Both time-domain signals and
frequency features are viewed as raw signals, because
frequency features are obtained by fast Fourier transform
(FFT) without information loss. The reason for selecting
frequency features is that the fault frequency characteristics
are reflected in frequency domain. The statistical features,
defined in Table II, are also used as inputs of the model. To
some extent, they are capable of reflecting the degradation
process, as shown in Figs. 8 and 9.

The loss values over epochs of training data in Test I
are shown in Fig. 10. The loss function contains two parts:
data loss and physical loss function. Both the loss values

are converged to a small value after 500 epochs, which
means the physical information is considered during the
training process. To show the physical consistency in the
training process, the physical degradation and the learned
features are illustrated in Fig. 11. The loss values of
training data and physical consistency in Test II are shown
in Figs. 13 and 14, respectively. Compared with physical
degradation states which are represented by temperature
signals, the learned features have the same trend to physi-
cal degradation, which means that the proposed model is
capable of extracting the features that are consistent with
physical knowledge. The predicted results of RUL are
shown in Figs. 12 and 15. To evaluate the performance of

Table II The formula of statistical features

Time-domain features Formula

ST1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

v2i

s

ST2

�
1
n

Xn
i=1

ffiffiffiffiffiffiffi���vi���r �2

ST3 1
n

Xn
i=1

���vi���
ST4 1

n

Xn
i=1

�
vi −

1
n

Xn
i=1

vi

�2

Fig. 7. Bearing’s temperature signals of Test 1.

Fig. 8. Statistical features of Test 1.

Fig. 9. Statistical features of Test 2.

Fig. 10. Loss values of training data in Test 1.
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the proposed DcRNN for RUL prediction quantitively,
mean absolute percentage error (MAPE), and root mean
squared error (RMSE), two commonly used metrics for
prediction are shown as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

�
pi − p

⌢
i

�
2

s
(14)

MAPE =
1
n

Xn
i=1

���� pi − p
⌢

i

pi

���� (15)

where p and p
⌢

are predicted and actual values, respec-
tively, and n is the number of samples.

The predicted errors are shown in Table III. It is seen
that when the frequency features are used as inputs, the
predicted errors are the smallest compared with other
inputs. If the time-domain signals are used as inputs,
the predicted performance is the worst. Because the fault
characteristic frequency is able to be reflected in frequency
domain, while for time-domain signals, it is hard to
recognize the characteristic frequency. The predicted re-
sults with statistical features are better compared with raw
vibration signals; thus, the manual designed features are
useful when used for RUL prediction. It is concluded that
transforming time-domain signals into frequency domain
will contribute to improve the performance of RUL pre-
diction. As stated in [21], vibration signals are indirect
measurements that reflect the degradation process, so
when the raw signals are used for RUL prediction, the
predicted performance is not as good as that of frequency
features.

VI. COMPARISON AND DISCUSSION
To demonstrate the advantages of the proposed model that
embeds physical knowledge, the conventional LSTM is
adopted for RUL prediction with vibration signals. The
conventional LSTM includes two layers, and there are
128 hidden units in each layer. The input features, training
and testing datasets are set the same with those of the

Table III RUL prediction with the proposed method

Input features

Predicted
errors of Test 1

Predicted
errors of
Test-2

RMSE MAPE RMSE MAPE

Time-domain signals 75.0 82.6 40.1 49.3

Statistical features 63.2 67.6 37.8 48.1

Frequency features 27.7 32.1 24.1 27.7

Fig. 11. Physical consistency of Test 1.

Fig. 12. RUL prediction of Test 1.

Fig. 13. Loss values of training data in Test 2.

Fig. 14. Physical consistency of Test 2.

Fig. 15. RUL prediction of Test 2.
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proposed LSTM architecture. The RUL predicted results are
shown in Table IV.

When raw vibration signals in time domain are used for
RUL prediction without any feature extraction, the pre-
dicted results are worse than that of statistical features. If the
inputs of the model are frequency features, the predicted
accuracy is the best, which is similar to the results of the
proposed method. This demonstrates that bearing RUL
prediction with frequency features will have better perfor-
mance. The reason is that the frequency features may reflect
the fault characteristic frequency compared with time-
domain features, though both frequency features and
time-domain signals are seen as raw signals for RUL
prediction.

By comparing with the proposed method, it is shown
that results of proposed DcRNN have higher predicted
accuracy, which demonstrates the benefits of the proposed
method that incorporates the physical knowledge. In the
training process, the learned features are forced to be
consistent with degradation process, which will help to
improve the predicted results.

VII. CONCLUSION
In this work, a novel physics-informed deep neural net-
work, named DcRNN, is proposed for RUL prediction of
bearings. The traditional deep learning models for RUL
prediction are purely data-driven methods and ignore the
physical information. The proposed DcRNN is able to
learn features that are consistent with scientific principles,
which moves toward constructing interpretable and gen-
eralizable deep neural models. To be more specific, the
latent variables are consistent with degradation state,
which is monotonic, temperature signals are used to
represent the degradation process. Then the latent features
and vibration signals are used for RUL prediction. Bearing
run-to-failure tests are carried out to obtain the historical
data of the whole life. RUL prediction is performed with
vibration and temperature signals using the proposed
method. The results show that deep neural models which
embed physical knowledge have the potential for accurate
RUL prediction. As the future work, the models that
include more physical knowledge should be constructed,
such as the degradation knowledge of dynamic models.
With more physical knowledge incorporating, the deep
neural networks will be more generalizable and have better
performance in prediction.
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