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Abstract: The monitoring signals of bearings from single-source sensor often contain limited information for
characterizing various working condition, which may lead to instability and uncertainty of the class-imbalanced
intelligent fault diagnosis. On the other hand, the vectorization of multi-source sensor signals may not only
generate high-dimensional vectors, leading to increasing computational complexity and overfitting problems, but
also lose the structural information and the coupling information. This paper proposes a new method for class-
imbalanced fault diagnosis of bearing using support tensor machine (STM) driven by heterogeneous data fusion.
The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band
components to extract various time-domain and frequency-domain statistical parameters. A third-order hetero-
geneous feature tensor is designed based on multisensors, frequency band components, and statistical parameters.
STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous
feature tensor for bearing fault diagnosis. A series of comparative experiments verify the advantages of the
proposed method.
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I. INTRODUCTION
With the development and progress of intelligent
manufacturing, the requirements for the long-term safe
operation of machinery equipment are becoming higher
and higher. Rolling bearings are widely used in modern
machinery equipment; however, due to their harsh working
environment, they are prone to fatigue damage, which
reduces the reliability of the equipment and may lead to
accidents [1–3]. Therefore, an increasing number of scho-
lars at home and abroad have conducted researches on
rolling bearing fault diagnosis.

As a hot research topic of machine learning, deep
learning methods have developed rapidly in recent years
and have also been applied to the fault diagnosis of indus-
trial equipment, such as deep belief network [4,5], recurrent
neural network [6,7], and convolutional neural network
(CNN) [8,9]. When these methods are applied to the fault
diagnosis of rotating machinery, a large number of labeled
training samples are often required [10]. However, in
practical engineering applications, it is difficult to obtain
enough fault samples of rotating machinery under different
working conditions, that is, there exists class-imbalanced
phenomenon between the fault samples and the normal
samples [11]. In recent years, researchers have conducted a
large amount of research on the issue of class-imbalanced
fault diagnosis and have proposed numerous methods.
Dablain et al. [12] developed a new data-level solution
based on deep synthesized minority over-sampling tech-
nique that can process the original samples and generate
high-quality assisted samples to balance the training set. Li
et al. [13] proposed an auxiliary classier Wasserstein

generative adversarial network with gradient penalty, which
could stably generate high-quality samples of minority
classes using the imbalanced training set. Cost-sensitive
learning, as algorithm-level solution, can provide new
perspective to address the class-imbalanced fault diagnosis
problem [14]. He et al. [15] constructed a spatio-temporal
graph neural network as the base model to achieve wind
turbine fault detection, and the focus loss was used as the
loss function in the training stage, which avoided the lack of
attention to small samples in the traditional cross-entropy
loss. Han et al. [16] designed a new cost matrix by adjusting
the coefficient of the focal loss and then used the enhanced
CNN to explore the representative features of fault samples.
Ruan et al. [17] optimized one CNN and one GANwith two
networks to provide a more balanced data set and to make
corrections in the loss function of the neural network
generator. The experimental results show that the bearing
fault samples generated by optimized GAN contain more
fault information than those generated by ordinary GAN.
After data enhancement of unbalanced training set, the
accuracy of CNN in fault classification can be significantly
improved.

To a certain extent, the above research to some extent
solves the problem that traditional deep learning models
tend to shift their decision boundaries towards large sample
data when the number of faulty samples is less than that of
healthy samples during training. However, traditional deep
learning models always require long training time and a
large number of parameters, such as network topology,
initial weights, biases, and other hyperparameters. More-
over, it is difficult to observe the learning process of neural
network and their output results are hard to interpret.
Support tensor machine (STM), an alternative of neuralCorresponding author: Haidong Shao (e-mail: hdshao@hnu.edu.cn).
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network, holds the potential to solve all the above limita-
tions that existed in the deep neural networks [18]. Wang
et al. [19] proposed a new method for fault detection and
multiple classification in rotating machinery based on
kernel support tensor machine and multilinear principal
component analysis. The performance and feasibility
were evaluated by cases of bearing and gear. Yang et al.
[20] proposed a bearing health monitoring framework
based on multi-scale permutation entropy and pinball
loss-based fuzzy STM. This framework could address
the issue of losing important fault information when con-
structing tensor data through time-frequency image crop-
ping and also hold anti-noise capability and low
classification error. However, the above-mentioned re-
searches based on STM are mostly based on single-source
sensor signals, whichmay lead to instability and uncertainty
of the intelligent diagnosis decision-making [21]. As rotat-
ingmachinery equipment tends to be system integration, the
coupling degree between various components is becoming
higher and higher, leading to the monitoring signal from a
single-source sensor not containing comprehensive infor-
mation to effectively characterize the operation status [22].

This paper studies a new method for class-imbalanced
fault diagnosis using STM driven by heterogeneous data
fusion. The collected sound and vibration signals of bear-
ings are successively decomposed into multiple frequency
band components to extract various time-domain and
frequency-domain statistical parameters. A third-order
heterogeneous feature tensor is designed based on multi-
sensors, frequency band components, and statistical param-
eters. STM is constructed to preserve the structural
information of the third-order heterogeneous feature tensor
for bearing fault diagnosis.

The rest of this article is set as follows: Section II
introduces the related works and basic principles of STM.
The proposed method is described in detail in Section III.
Section V is the experimental validation and analysis of the
results. Finally, Section VI sums up the whole paper and
points out the future plans.

II. RELATED WORKS
A. DATA FUSION STRATEGY

At present, data fusion strategies can be divided into data-
level fusion, feature-level fusion, and decision-level fusion.
For data-level fusion, Xia et al. [23] superimposed the raw
time-domain signals from multiple acceleration sensors to
form a matrix as the input of the CNN for automatic feature
learning and pattern classification. The experiment results
verified the superiority of the proposed method over single
sensor signals for fault diagnosis experiments of rolling
bearings and gearboxes. Akilu et al. [24] used cross-power
spectral density to fuse the vibration signals from different
bearing seats to monitor the operating conditions. Although
the data-level fusion method tends to retain as much origi-
nal information as possible during fusion, the large amount
of data leads to high computational complexity, resulting in
poor real-time performance of the diagnostic system.Mean-
while, the performance of these data-level fusion methods
may not be ideal if simply concatenating signals when they
have unidentified formats and sampling rates. In addition,
plain concatenation of multi-sensor signals may lead to
fuzzy decision boundaries and is difficult to distinguish.

Feature-level fusion refers to firstly extract the respec-
tive feature vectors of the multi-source signals and then fuse
features to reduce dimensions in a comprehensive manner.
Compared with the data-level fusion, feature-level fusion is
easier to realize and at the same time can reduce data
interference. Feature-level fusion of multi-source signals
is also widely used in fault diagnosis. Gangsar et al. [25]
extracted the multiple statistical features from the vibration
signals and current signals of asynchronous motors in
different health states and then fused all the statistical
features to generate new feature vectors as inputs to the
support vector machine (SVM) for state recognition. Shao
et al. [26] used vibration and voltage signals to construct
CNN models based on feature-level fusion for identifying
different faults of motors. Jiao et al. [27] constructed two
parallel coupled dense convolutional networks for auto-
matic feature extraction of vibration signals and speed
signals, and then the two types of features are fused for
fault classification of planetary gearbox. Qian et al. [28] first
extracted 40 feature parameters of the vibration signal and
three-phase current signals collected from motor and then
fused the extracted features into back propagation neural
network for distinguishing different fault modes. One of the
main challenges of feature-level fusion studies based on
multi-source signals is that the performance of the classifier
tends to decline as the dimensionality of fused feature
vectors increases. In order to overcome this drawback
and further improve feature-level fusion effect, researchers
have developed various feature dimensionality reduction
algorithms.

Decision-level fusion is performed by fusing the results
obtained from different diagnosis models trained with multi-
source signals. The two main frameworks for decision-level
fusion are probability-based fusion and Dempster-Shafer
theory. Wang et al. [21] proposed a compressor valve fault
warning strategy based onmulti-source information fusion of
vibration, pressure, temperature, and other multi-parameter
signals. The experimental results show that the proposed
model and warning strategy can effectively realize compres-
sor valve fault warning. Fu et al. [29] fused the diagnostic
results of induction motors based on vibration signals and
current signals at the decision-level fusion of neural networks
through dynamic routing algorithm to accomplish the clas-
sification of different faults. Wang et al. [30] first indepen-
dently monitored the multi-source sensor signals of rotating
machinery using an extended autoregressive model and then
fused the results based on the contribution of different sensor
signals to achieve state detection of rotating machinery.
However, training a series of individual decision models
is time-consuming and cumbersome. In addition, in multi-
source signal-driven decision-level fusion-driven, the abnor-
mal diagnostic decisions of a few models may seriously
interfere with the remaining majority of models, thereby
affecting the final fused results.

More importantly, the above-mentioned research cases
based on data-level fusion, feature-level fusion, and
decision-level fusion are all based on vector space. The
vectorization of tensor data may not only generate high-
dimensional vectors, leading to increasing computational
complexity and overfitting problems, but also lose the
structural information of the original tensor data and the
coupling information between different monitoring signals,
thereby affecting the final intelligent fault diagnosis
accuracy.
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III. THE PROPOSED METHOD
A. THIRD-ORDER HETEROGENEOUS
FEATURE TENSOR DESIGN

Feature extraction is treated as a significant step in intelli-
gent fault diagnosis, usually including time-domain, fre-
quency-domain, and time-frequency-domain techniques. In
this paper, in order to simultaneously utilize the available
information of multisensors, frequency band components,
and statistical parameters, a third-order heterogeneous fea-
ture tensor is designed, and the specific process is described
as follows.

Firstly, heterogeneous monitoring signals (vibration
signals and sound signals) are collected to obtain relatively
comprehensive information. To further acquire rich multi-
scale representations, ensemble empirical mode decompo-
sition is applied to successively decompose the vibration
signals and sound signals into multiple frequency band
components.

Secondly, various statistical parameters are calculated
from each frequency band component of the vibration
signals and sound signals, including 10 time-domain and
7 frequency-domain parameters [31].

Finally, a third-order heterogeneous feature tensor is
designed, which will not destroy the structural information
of multi-source signals. In other words, each sample input
into STM can be expressed as a third-order feature tensor,
and each order refers to the total number of sensors,
frequency band components, and statistical parameters,
respectively.

B. STM-BASED INTELLIGENT DIAGNOSIS
MODEL CONSTRUCTION

For a tensor sample set fXi, yigli=1, where l is the number of
samples and N is the order of Xi ∈ RI1×I2× : : : : : :×IN , yi ∈
f1, − 1g is the label of the corresponding tensor sample.
For the binary classification problem of tensor space,
the proposed STM can transform the classification problem
into the following convex quadratic optimization
problem.

min
W,b,ξ

1
2
kWk2F þ Cð1 − θÞ

Xl+
i=1

ξi þ Cð1 + θÞ
Xl−
i=1

ξi

s:t: yið< W,X > þbÞ ≥ 1 − ξi

ξi ≥ 0, i = 1,2, : : : ,l

(1)

θ =

( lþ=l lþ > l−
0 lþ = l−

−l−=l lþ < l−

(2)

where W is the weight tensor of the classification hyper-
plane, b is the bias, ξi is the relaxation variable, C is the
penalty factor, l+ is positive sample, l− is negative sample,
and <· , ·> is inner product operation. The dynamic param-
eters θ can be obtained according to the calculation, and it is
obvious that when the number of positive and negative
tensor samples is equal, that is, the proposed method
degenerates into the basic STM.

For solving the optimization problem, the following
Lagrange function is constructed:

LðW,b,ξi,αi;βiÞ=
1
2
kWk2FþCð1−θÞ

Xlþ
i=1

ξiþCð1þθÞ
Xl−
i=1

ξi

−
Xlþl−
i=1

βiðyið<W,Xi>þbÞ−1þξiÞ

−
Xlþl−
i=1

ξiαi (3)

where αi and βi are Lagrange multipliers.
According to the Kuhn-Tucker condition, the first will

take the partial derivative of W, b, and ξi, respectively:

∂L
∂W

= W −
Xlþþl−

i=1

βiyiXi (4)

∂L
∂b

= −
Xl++l−
i=1

βiyi (5)

∂L
∂ξi

= Cð1 − θÞ − αi − βi, i = 1,2, : : : ,l+ (6)

∂L
∂ξi

= Cð1 + θÞ − αi − βi, i = 1,2, : : : ,l− (7)

Then, set equations (4)–(7) to zero successively, that is:

W =
Xlþþl−

i=1

βiyiX (8)

Xl++l−
i=1

βiyi = 0 (9)

Cð1 − θÞ = αi + βi, i = 1,2, : : : ,l+ (10)

Cð1 + θÞ = αi + βi, i = 1,2, : : : ,l− (11)

By substituting equations (8)–(11) into optimization
problem (3), the corresponding duality problem can be
expressed as:

min
βi

1
2

Xl

i=1

Xl

j=1

βiβjyiyj < Xi,Xj > −
Xn
i=1

βi

s.t.
Xl

i=1

βiyi = 0

0 ≤ βi ≤ Cð1 − θÞ, i = 1,2, : : : ,lþ

0 ≤ βi ≤ Cð1þ θÞ, i = 1,2, : : : ,l−

(12)

First, for any quantity such as Xi ∈ RI1×I2× : : : : : :×IN , the
tensor X can first be projected onto Hilbert by the following
formula Space.

ϕ∶ X → ϕðXÞ∈RH1×H2× : : : : : :HP (13)

The above equation can also be called the eigentensor
space, where the order of the eigentensor space may not be
the same as the order of the eigentensor space, that is, P≠N.
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At the same time, the dimensions of each module may also
be larger. Thus, the duality problem (12) can be converted
to:

min
βi

1
2

Xl

i=1

Xl

j=1

βiβjyiyj < ϕðXiÞ,ϕðXjÞ > −
Xn
i=1

βi

s.t.
Xl

i=1

βiyi = 0

0 ≤ βi ≤ Cð1 − θÞ, i = 1,2, : : : ,lþ

0 ≤ βi ≤ Cð1þ θÞ, i = 1,2, : : : ,l−

(14)

The inner product of its kernel tensor<ϕðXiÞ, ϕðXjÞ >
can be expressed as κ < Xi,Xj >, which usually selects
Gaussian kernel. Directly solving the inner product
< Xi,Xj > will destroy the intrinsic information of the
original tensor. In order to better calculate the inner product
< Xi,Xj > and retain its intrinsic structure information,
Tucker decomposition is introduced to decompose a tensor
into a form of a core tensor, and each mode is multiplied by
a factor matrix [32].

After solving the above quadratic programming prob-
lem to obtain the optimal solution ðβ�1,β�2, : : : : : : ,β�nÞT , the
weight tensor W* and intercept b* of the optimal hyperplane
can be calculated by the following formulas, respectively.

W� =
Xl

i=1

β�i yiϕðXiÞ (15)

b� = yj
Xl

i=1

β�i yiκ < Xi,Xj > (16)

In fact, how to design the feature mapping function is a
problem to be further studied. The decision function is
expressed as:

f ðXÞ = sgnf
Xl

i=1

β�i yiκ < Xi,X > þb�g (17)

STM is essentially a multilinear SVM, which can be
solved iteratively many times, and the proposed method
only needs to be solved once. In addition, STM constructs a
hyperplane for each mode in the iterative solution process.
For the n-order tensor, STM needs to construct N hyper-
planes, while the proposed method only needs to construct
one hyperplane. For binary tensor training samples, the
computational complexity of STM is Oððl+ + l−Þ2NTQ

N
k=1 IkÞ, where T is the number of cycles, while the

computational complexity of the proposed method is
Oððl+ + l−Þ2R2

Q
N
k=1 IkÞ, where R is the tensor factor. It

is obvious that the proposedmethod is significantly superior
to the STM model in terms of computational complexity.

In summary, the overall diagnostic flow of the pro-
posed method can be shown in Fig. 1.

IV. EXPERIMENTS
A. INTRODUCTION TO EXPERIMENT
PLATFORM AND HETEROGENEOUS
MONITORING DATA

Bearing as a key component in rotating machinery, its
health state directly affects the operation of the entire

equipment. The experimental platform for bearing fault
simulation and heterogeneous data collection is shown in
Fig. 2, mainly consisting of an induction motor, two bearing
housings, a rotor system, a vertical vibration sensor (contact
measurement), a horizontal vibration sensor (contact mea-
surement), and a sound sensor (non-contact measurement).
The data acquisition system is LMS, and the heterogeneous
signals are collected under the rotational speed of 1500 rpm
with sampling frequency of 25.6 kHz.

Three types of fault modes of bearings are created,
including outer ring fault (OF), inner ring fault (IF), and
roller fault (RF). Each fault condition has three different
sizes of damage, that are 0.2, 0.4, and 0.6 mm, respectively.
Therefore, a total of ten health conditions are constructed,
defined as normal condition (Label 1), inner race fault with
0.2 mm (IF1, Label 2), inner race fault with 0.4 mm (IF2,
Label 3), inner race fault with 0.6 mm (IF3, Label 4), roller
fault with 0.2 mm (RF1, Label 5), roller fault with 0.4 mm
(RF2, Label 6), roller fault with 0.6 mm (RF3, Label 7),
outer race fault with 0.2 mm (OF1, Label 8), outer race fault
with 0.4 mm (OF2, Label 9), and outer race fault with
0.6 mm (OF3, Label 10).

Take the damage size of 0.2 mm as example, the
pictures of three faulty bearings are illustrated in Fig. 3.
The original time-domain vertical vibration signals and
sound signals of the nine fault states of bearings are given
in Fig. 4 (1024 point as example), where the horizontal
coordinate indicates the sampling data points, and the
vertical coordinate indicates the amplitude (m/s2).

B. COMPARISON EXPERIMENTS AND
EVALUATION INDICATORS

In this paper, the proposed method is applied to class-
imbalanced fault diagnosis with the help of heterogeneous
information fusion. To verify the diagnostic performance of
the proposed method, SVM, least square support vector
machine (LSSVM), and maximum margin classifier with
flexible convex hulls (MMC_FCH) were selected as com-
parative analysis methods in analyzing the same imbal-
anced datasets. Some samples from each health state were
randomly selected as the training data, and the remaining
samples from each state were used for testing.

Six groups of experiments with different imbalanced
ratios, data fusion ways, and classification scenarios are
designed, and the detailed dataset descriptions are listed in
Table I (10 classification tasks), Table II (7 classification
tasks), and Table III (4 classification tasks). It should be
noticed that Experiments 5 and 6 apply this method not only
to the class unbalanced fault diagnosis based on heteroge-
neous information fusion but also to the class unbalanced
fault diagnosis based on the fusion of vertical and horizontal
vibration signals.

In order to quantitatively evaluate the classification
performance of the proposed method and the comparison
methods, precision (Pr), recall (Re), F-score, and Geometric
Mean (G-mean) are selected as the indicators, with the
corresponding formulas.

Re =
TP

TP + FN
(18)

Pr =
TP

TP + FP
(19)
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F-score =
2 × Pr ×Re
Pr + Re

(20)

G-mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr×Re

p
(21)

where TP is the number of positive samples that are
correctly classified as positive, FN is the number of positive
samples incorrectly classified as negative, and FP is the

number of negative samples incorrectly classified as
positive.

C. COMPARATIVE ANALYSIS OF RESULTS

In Experiments 1–6, each method is repeated 10 times to
ensure the stability and reliability of the results. The average
values of the above four indicators after these 10 trials are
used as the final results for the overall diagnosis, as listed in

Drive motor Bearing seat BrakeAcceleration sensor

GearboxRotor

Tested bearing Sound sensor

Fig. 2. Experimental platform for bearing fault simulation and heterogeneous data collection.

Fig. 1. The overall diagnostic flow of the proposed method.
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IF OF RF

Fig. 3. Three faulty bearings with 0.2 mm damage size.

etutilp
mA

vibration signal sound signal

Fig. 4. Original signal waveforms of nine faulty conditions.
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Tables IV–VII. The input data of SVM-S is a single sound
signal, and the input data of SVM-V is a single vertical
vibration signal. The inputs of other comparison methods
are all in vector form using the concatenation of vibration
signal and sound signal. The hyperparameters of all the
methods are determined using cross-validation methods. In

Experiment 5 and Experiment 6, the input data of SVM-
VxVy is the vector of vertical and horizontal vibration
signals, and the input data of SVM-SV is the vector of
vertical vibration signal and sound signal. The input data of
MMC_FCH-VxVy is the splicing vector of vertical and
horizontal vibration signals, and the input data of
MMC_FCH-SV is the splicing vector of vertical vibration
signal and sound signal. The input data of LSSVM-VxVy is
the spliced vector of vertical and horizontal vibration
signals, and the input data of LSSVM-SV is the spliced
vector of vertical vibration signal and sound signal.

From the classification results shown in Tables IV and
V, it can be seen that in these four experiments, the
proposed method has achieved better classification results
in terms of both precision rate and recall rate compared with
other methods. Specifically, the precision rates of the
proposed method in Experiments 1–4 are 96.0%, 93.0%,
96.0%, and 96.5%, respectively. The recall rates of the
proposed method in Experiments 1–4 are 97.0%, 94.0%,
97.0%, and 96.0%, respectively. In addition, it can be
clearly seen from Tables IV and V that the classification
effects of tensor classifiers are significantly better than
vector classifiers.

It can be seen from the classification results in Table VI
that the method proposed in Experiment 5 has achieved
better performance in class-imbalanced fault diagnosis
tasks than other methods in terms of precision rate, recall
rate, F-score, and G-mean. The precision of the proposed
method is 98.0% in the classification of heterogeneous
tensor and 97.0% in the classification of vertical vibration
signal tensor. The recall rate of the proposed method is
97.0% in the classification of heterogeneous tensors, and

Table I. Detailed dataset description for Experiment 1
and Experiment 2

Experiment 1 Experiment 2

Health
states

Numbers of
training/testing

samples
Health
states

Numbers of
training/testing

samples

NC 90/10 NC 80/10

IF1 20/10 IF1 20/10

IF2 20/10 IF2 20/10

IF3 20/10 IF3 20/10

RF1 30/10 RF1 20/10

RF2 30/10 RF2 20/10

RF3 30/10 RF3 20/10

OF1 15/10 OF1 15/10

OF2 15/10 OF2 15/10

OF3 15/10 OF3 15/10

Table II. Detailed dataset description for Experiment 3
and Experiment 4

Experiment 3 Experiment 4

Health
states

Numbers of
training/testing

samples
Health
states

Numbers of
training/testing

samples

NC 90/10 NC 80/10

IF1 20/10 IF1 20/10

IF2 20/10 IF2 20/10

RF1 30/10 RF1 20/10

RF2 30/10 RF2 20/10

OF1 15/10 OF1 15/10

OF2 15/10 OF2 15/10

Table III. Detailed dataset description for Experiment 5
and Experiment 6

Experiment 5 Experiment 6

Health
states

Numbers of
training/testing

samples
Health
states

Numbers of
training/testing

samples

NC 210/10 NC 200/20

IF1 15/10 IF1 20/20

RF1 15/10 IF2 20/20

OF1 15/10 IF3 20/20

Table IV. Precision rate of different methods in class-imbalanced bearing fault diagnosis

Experiments MMC_FCH SVM LSSVM SVM-S SVM-V Proposed

Experiment 1 73.0% 70.0% 59.0% 62.0% 54.0% 96.0%

Experiment 2 77.0% 64.0% 58.0% 63.0% 62.0% 93.0%

Experiment 3 83.0% 77.0% 71.0% 70.0% 78.0% 96.0%

Experiment 4 74.0% 70.0% 60.0% 61.0% 72.0% 96.5%

Table V. Recall rate of different methods in class-imbalanced bearing fault diagnosis

Experiments MMC_FCH SVM LSSVM SVM-S SVM-V Proposed

Experiment 1 43.0% 56.0% 60.0% 63.0% 68.0% 97.0%

Experiment 2 45.0% 51.0% 45.0% 56.0% 64.0% 94.0%

Experiment 3 61.0% 59.0% 63.0% 64.0% 80.0% 97.0%

Experiment 4 41.0% 61.0% 56.0% 60.0% 73.0% 96.0%

Class-Imbalanced Machinery Fault Diagnosis 17
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96.0% in the classification of vertical vibration signal
tensor. The F-score of the proposed method is 97.5% for
the classification of heterogeneous tensors and 96.5% in the
classification of vertical vibration signal tensor. The
G-mean of this method is 97.5% for the classification of
heterogeneous tensors and 96.5% in the classification of
vertical vibration signal tensor. Similarly, according to the
results in Table VII, the method proposed in Experiment 6
has achieved better results than other methods in terms of
the four indicators.

In order to further explore the detailed diagnostic
results of the proposed method, the statistical graphs of
G-mean and F-score values are given, as shown in Figs. 5
and 6. It can be seen from Figs. 5 and 6 that specifically, the
F-score values of the proposed method in Experiments 1-4
are 97.0%, 94.5%, 97.0%, and 96.0%, respectively, which
is more than SVM-V (69.5%, 63%, 79%, 72.5%), SVM-S
(65.4%, 59.3%, 66.9%, 60.5%), LSSVM (59.5%, 50.7%,

66.8%, 58%), SVM (62.2%, 56.8%, 66.8%, 65.2%), and
MMC_FCH (54.1%, 56.8%, 70.3%, 52.8%). There is also a
highly similar phenomenon in G-mean values.

These results further confirm that the diagnostic per-
formance of the proposed method driven by heterogeneous
data fusion is significantly better than the vector classifiers
in class-imbalanced machinery fault diagnosis. However,
the vectorization of multi-source signal features using
simple concatenation may not be conducive to improving
diagnostic accuracy due to the fact that high-dimensional
vectors usually lead to high complexity and overfitting
problems. Besides, it seems that single vibration signal is
better than single sound signal for fault diagnosis using
SVM and other vector classifiers.

Furthermore, to investigate the diagnostic effect of
each model on each type of fault, the G-mean radar chart
and F-score radar chart of each type are specially given, as
shown in Figs. 7 and 8, respectively. It can be seen that

Table VI. Classification results of each model in
Experiment 5

Methods Precision Recall F-score G-mean

SVM-V 93.50% 93.25% 93.38% 93.33%

SVM-S 77.00% 59.00% 66.80% 67.40%

SVM-VxVy 73.50% 68.50% 70.90% 71.00%

SVM-SV 75.50% 70.50% 72.90% 72.95%

MMC_FCH-VxVy 92.67% 92.33% 92.50% 92.50%

MMC_FCH-SV 87.00% 86.00% 86.50% 86.50%

LSSVM-VxVy 84.00% 83.50% 83.50% 83.50%

LSSVM-SV 82.50% 76.75% 79.50% 79.58%

Proposed-VxVy 97.00% 96.00% 96.50% 96.50%

Proposed-SV 98.00% 97.00% 97.50% 97.50%

Table VII. Classification results of each model in
Experiment 6

Methods Precision Recall F-score G-mean

SVM-V 90.75% 88.50% 89.63% 89.63%

SVM-S 86.00% 80.00% 82.90% 82.90%

SVM-VxVy 67.50% 63.50% 65.45% 65.50%

SVM-SV 73.00% 67.50% 70.10% 70.20%

MMC_FCH-VxVy 91.00% 90.00% 90.50% 90.50%

MMC_FCH-SV 88.33% 86.00% 87.17% 87.17%

LSSVM-VxVy 87.00% 86.00% 86.50% 86.50%

LSSVM-SV 79.75% 75.75% 77.70% 77.73%

Proposed-VxVy 97.00% 96.25% 96.63% 96.63%

Proposed-SV 99.00% 98.80% 99.00% 98.80%
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Fig. 5. F-score values of each method in four class-imbalanced fault diagnosis experiments.
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Fig. 6. G-mean values of each method in four class-imbalanced fault diagnosis experiments.
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SVM shows relatively unsatisfactory fault classification
effect for each category using sound signals. With the
help of vibration signals, SVM is less effective than other

fault types in classifying outer ring fault with 0.4 mm.
Similar to SVM, the other vector classifiers are also not
ideal. Besides, it can be found that the proposed method can
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Fig. 7. F-score values of each condition using different methods in four class-imbalanced fault diagnosis.
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Fig. 8. G-mean values of each condition using different methods in four class-imbalanced fault diagnosis.
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achieve the best results in the diagnosis of various fault
categories in the four experiments. Figure 9 shows the
confusion matrixes of the proposed method in four class-
imbalanced fault diagnosis, which clearly records all the
misclassification information in detail. In Fig. 9, the hori-
zontal and vertical axes refer to the prediction labels and
true labels (test labels), respectively. The accuracy for each
individual state can be found from diagonal elements, and
the elements at other places of confusion matrixes refer to
the misclassification rates.

V. CONCLUSIONS
Aiming to fully preserve the structural information of
heterogeneous signals to improve diagnostic accuracy
and stability in class-imbalanced fault diagnosis tasks,
this paper proposes a new method based on STM and
heterogeneous data fusion. In this method, firstly, the
collected sound and vibration signals of bearings are
successively decomposed into multiple frequency band
components to extract various time-domain and fre-
quency-domain statistical parameters. Then, according to
multisensors, frequency band components, and statistical
parameters, a third-order heterogeneous feature tensor is
designed. Finally, an intelligent diagnosis model based on
STM is constructed to preserve the structural information of
the third-order heterogeneous feature tensor for bearing
fault diagnosis.

A series of comparative experiments with different
imbalanced ratios, data fusion ways, and classification sce-
narios are designed to verify the advantages of the proposed
method. The results confirm that the proposed method has
achieved better performance in class-imbalanced fault

diagnosis tasks than other methods in terms of precision
rate, recall rate, F-score, and G-mean. Heterogeneous
data fusion-driven class-imbalanced fault diagnosis of
machinery has broad research space, and we will continue
to study.
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