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Abstract

This paper proposes a new dynamic model for the study of friction-induced self-excited

vibration of a disc brake system, where the pad’s motions in both radial and

circumferential/tangential directions are included, which is in stark contrast to the previous

studies that normally consider the pad’s motion in the tangential/circumferential direction

only. The non-smooth dynamics of the system including three different states of motion, i.e.,

stick, slip and separation, is investigated. Both the linear stability analysis and the transient

dynamic analysis are performed. The numerical results in the linear stability analysis indicate

that the inclusion of pad’s radial motion in the present brake model significantly expands the

ranges of operating parameters for dynamic instability than the brake model with only

circumferential/tangential motion for the pad. For the transient dynamic analysis, two

different methods, i.e., the time integration method and the shooting method, are employed

for the calculation of steady-state response. The accuracy and efficiency of the shooting

method are subsequently examined. The numerical results show rich bifurcation behaviours

of the steady-state response in the present brake model with the variations of brake pressure

�0 and disc speed�, and �ir (the stiffness of the inclined spring in the radial direction) is a
key parameter for controlling the occurrence of chaotic vibration in the system.

Keywords: friction-induced vibration, non-smooth, linear stability analysis, transient

dynamic analysis, shooting method.
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1. Introduction

Brake noise is a major issue in the automobile industry today, which may cause discomfort

to passengers and be perceived as a quality problem, thereby pushing up the warranty cost

and impacting the brand reputation [1-3]. Because of its impact and scientific intricacy, brake

noise has long been a research hotspot for engineers and researchers.

The vibration caused by the pad-disc frictional contact in the braking process has been

acknowledged as the main reason for automobile brake noise [4], namely, brake noise is in

essence a problem of friction-induced vibration. Four main mechanisms have been put

forward to explain the occurrence of friction-induced vibration in mechanical systems; they

are: the negative friction slope [5], the stick-slip motion [6], the sprag-slip instability [7] and

the mode-coupling instability [8]. Apart from the four principal mechanisms above, there are

other mechanisms proposed for the friction-induced vibration in specific systems. The

destabilizing effects of the friction force as a follower force or a moving load in the disc

brake systems were analysed [9-11]. Kinkaid et al. [12] found the change of direction of the

friction force could excite vibration in a planar frictional system.

A number of studies have been devoted to the dynamic behaviours, e.g., bifurcations,

chaos, non-stationary effect, etc, of the friction-induced vibration in the brake system, so as to

reveal the properties of brake noise. Wu et al. [13] studied the self-excited vibration in the

stern bearing of the underwater vehicle and its stick-slip phenomenon. Von Wagner et al. [14]

proposed a 2-DoF brake model involving a wobbling disc and analysed its stability behaviour.

Kang et al. [15,16] used the finite element models of the pad-disc system for investigation of

the dynamic instability in disc brakes. Li et al. [17] found the non-stationary dynamic

characteristic of the brake system. Liu and Ouyang [18] investigated the bifurcation

behaviours of FIV of a 5-DoF dynamic model with multiple types of nonlinearities. Wei et al.

[19,20] established 2-DoF and 3-DoF dynamic models of a brake system and observed the

bifurcation and chaotic behaviours of system responses. Some works focused on the accurate

models of the complex friction phenomena and their effects on the system dynamics [21-23].

The existing studies on the friction-induced vibration in brake systems usually assume a

constant direction of relative motion and friction force, i.e., the circumferential direction, and

thus only the vibration in the circumferential direction is investigated when in-plane vibration

of a brake system is concerned. Nevertheless, because of factors such as manufacturing errors,

external disturbances, flexible connections, etc, relative vibration of a brake component may
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happen in any direction in the three-dimensional space and therefore causes the direction of

friction force to vary with time, which then further complicates the dynamics of a brake

system. In view of the above, it is essential to consider the oscillations of brake components

in the directions apart from the circumferential direction, e.g., the radial and the vertical

(transverse) directions, and the direction of the friction force to be unknown a priori and to be

determined with the dynamics of the brake system. There have been investigations of the

vibration of mechanical systems under the friction force with a state-dependent direction.

Antali and Stepan [24] examined the three-dimensional dynamics of a rigid body in sliding or

rolling contact with a rigid plane. Ma and Wang [25] dealt with planar multiple-contact

problems subjected to unilateral and bilateral kinetic constraints. Sinou et al. [26,27] studied

the self-excited vibration of a non-smooth dynamical system with planar frictional contact.

Menq et al. [28] put forward an approximate method for analysing the dynamic responses of

structures having a two-dimensional frictional constraint. With the aim of enhancing the

study of friction-induced-vibration problems in automobile brakes, we propose a novel

dynamic model of a brake system including three-dimensional (circumferential, radial and

vertical) oscillations of the brake pad and planar motion of the brake disc in this paper.

There are two main categories of methods for the analysis of friction-induced vibration in

brake systems, i.e., the complex eigenvalue analysis (CEA) and the transient dynamic

analysis (TDA). The linear complex eigenvalue approach is often employed for the stability

analysis of the steady sliding state [29-34]. It can be used for the initial estimations of

unstable modes which possibly lead to limit cycle vibration. The transient dynamic analysis is

used to observe the dynamic behaviour of the system during the whole dynamic process,

which enables acquiring the system behaviours in the steady state. The transient dynamic

analysis can be performed by numerical integrations in the time domain from given initial

conditions [35-35]8. However, these numerical integrations are usually computationally

expensive due to the non-smooth behaviours (i.e., the switches of states of motion including

slip, stick and separation in the whole dynamic process) in the friction-induced-vibration

problems. Alternative methods have been developed for efficient calculations of steady-state

limit cycles of the nonlinear self-excited vibration in frictional systems, e.g., the constrained

harmonic balance method [39], the orthogonal collocation method [40], the shooting method

[41]. In this paper, both CEA and TDA will be performed on the dynamic system in question.

In terms of TDA, both the method of numerical integration and the shooting method will be

employed, and the accuracy and efficiency of these two methods will be examined.
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2. The dynamical model

The new dynamical model for a disc brake system consists of two parts, i.e., a rigid disc of

mass� and rotational inertia � that models the brake disc, and a slider with mass � that

models the brake pad that is at the radial distance of �0 from the centre of the disc. The disc

is constrained at the centroid by translational springs and dampers (�dx, �dx along the � axis

and �dy, �dy along the � axis), and a rotational spring and damper (�dψ, �dψ), which model

the flexible connections between the disc shaft and the disc. During vibration, the pad’s

motion in the radial and normal direction may become significant and therefore greatly

affects the dynamics of the brake system. Therefore, the constraints that the brake pad is

subjected to are modelled by the springs and dampers in both circumferential (�pθ, �pθ) and

radial (�pr, �pr) directions. In either of the circumferential direction and the radial direction,

there is an inclined spring ( �iθ and �ir , respectively) at 45∘ relative to the horizontal

direction on the pad. Besides, there is a damper �� on the pad in the vertical direction. The

contact between the pad and the disc is assumed to be unilateral, and a linear spring �� is

used to model the contact stiffness. The three-view drawing of the brake system model is

shown in Fig. 1.

(a) (b) (c)

Fig. 1 The new brake system model: (a) top view, (b) circumferential view, (c) radial view.

Because of the translational motion of the disc and the pad’s motion in the radial

direction, the direction of the friction force usually will not be in the circumferential

direction, rather, it varies with the system dynamics. The kinematics of the frictional contact

of the pad and the disc during vibration is illustrated in Fig. 2, where axes �� and �� are

fixed in space, �1 is the centre of the disc, �0 and � represent the initial position and the
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instantaneous position of the pad, respectively, �n represents the unit vector of the velocity of
the disc at the contact point. The dynamic equations of the system are formulated as

��� + �dx�� + �dx� =−�f ∙ ��
��� + �dy�� + �dy� = −�f ∙ ��
��� + �dψ�� + �dψ� =−��f ∙ �n

��� + �pr�� + �pr� +
1
2
�ir� −

1
2
�ir� = �f ∙ ��

�0 + � ��� + �pθ�� + �pθ�+
1
2
�iθ� − 1

2
�iθ� = �f ∙ ��

��� + �z�� −
1
2
�ir� −

1
2
�iθ�0� +

1
2
�ir + �iθ � +�0 =�

(1)

where �, � and � represent the planar translational motion and the rotational motion of the

disc due to elastic constraints, and � , � , � represent the planar motion and the vertical

motion of the pad in the cylindrical coordinate system.�0 is the normal preload between the

pad and the disc, �n can be expressed as

�n =− sin��� + cos��� =−
�0+� sin �0+� −�

� �� +
�0+� cos �0+� −�

� �� (2)

� is the distance between the centre of the disc O1 and the contact point P, which is

� = �0 + � cos �0 + � − � 2 + �0 + � sin �0 + � −� 2 (3)

� �
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�

� �

� �

� �

�

� �
+
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�

� �

� �
� �

Fig. 2 The planar kinematics of the pad and the disc.

The friction force between the pad and the disc is assumed to follow the Coulomb’s law [42],

i.e.,
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�f =−�k�
�r
�r

�r ≠ 0

�f ≤ �k� �r = 0
(4)

where � =− �z� , �k is the coefficient of friction, �r is the relative velocity between the

pad and the disc at the contact point, i.e.,

�r = �p −�c
d (5)

where �p and �c
d represent the velocity of the pad and the velocity of the disc at the contact

point, respectively, which can be obtained as

�p = ���� + �0 + � ���� (6)

�c
d = ���� +���� + � +�� ��n (7)

and ��, �� can be expressed by �� and �� as

��
��

= cos �0 + � sin �0 + �
−sin �0 + � cos �0 + �

��
��

(8)

By substituting Eqs. (2) and (6)-(8) into Eq. (5), it is derived that,

�r = ���� + ���� (9)

where

�� = �0 + � � +�� − �� sin �0 + � + ��cos �0 + � − �� − � +�� �,

�� = �0 + � −�−�� + �� cos �0 + � + ��sin �0 + � − �� + � +�� �.

By substituting Eq. (9) into Eq. (4)1, the friction force between the pad and the disc when

�r ≠ 0 (i.e., the state of slip) is acquired. When �r = 0 (i.e., the state of stick), however,

the friction force serves as a reactive force to sustain the relative static state, and thus �f will

be determined by the dynamic equations of the system, i.e., Eq. (1). When � > 0 , the pad

will separate from the disc, hence � =0, and �f = � . The contact forces are illustrated in
Fig. 3.

To summarize, the system may experience three distinct states of motion (slip, stick and

separation) in the process of vibration, which are governed by three different sets of

equations of motion.
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(a) (b)

Fig. 3 The contact forces: (a) normal force, (b) friction force.

3.Stability analysis

In this section, the Lyapunov stability of the equilibrium point of the system

corresponding to a steady sliding state is analysed, which can be used as the estimation of the

dynamic stability of the system, i.e., whether the self-excited vibration will happen or not in

the steady state.

Firstly, the equilibrium point of the system is found as the solution of the nonlinear

algebraic equations, which are acquired by setting the terms of acceleration and velocity in

Eq. (1) as zero. Secondly, a linear dynamic system is constructed by linearizing the original

dynamic equations of the system, i.e., Eq. (1), around each equilibrium point, namely,

�L��
� +�L��

� +�L�� = � (10)

where � = �,�,�,�,�,� T , �� = �−�e , in which �e is an equilibrium point which

represents the state of steady sliding and has a unique solution for a system. �L =

diag �,�,�,�,��0,� , while the entries in �L and�L are complicated because of the

friction force and thus provided in the Appendix. According to the theory of second-order

linear homogeneous ordinary differential equations, the solution of Eq. (10) can be written as

�� =�e푠� (11)

where � and 푠 are the eigenvector and eigenvalue, respectively. By substituting Eq. (11)

into Eq. (10), a quadratic eigenvalue equation is obtained,

푠2�L + 푠�L +�L � = � (12)

In terms of real matrices�L, �L and�L of order n, there are generally n pairs of conjugate

complex eigenvalues that are solved from Eq. (12), i.e.,

푠1,2
� = �� ±��i, � = 1,2, . . . , 6 (13)

�

�

�r

�f
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where i = −1 is the imaginary unit, �� and �� are the real part and imaginary part of the

jth pair of eigenvalues, respectively, which indicate the growth rate and frequency of the jth

mode in the response of the linearized system, therefore the stability of the equilibrium point

of the frictional system that corresponds to steady sliding state can be evaluated by the signs

of the real parts of eigenvalues. The positive real parts of at least one of the eigenvalues

indicate an unstable equilibrium point and growing friction-induced self-excited vibration in

the system when it is disturbed near that equilibrium point.

The Hopf bifurcation will happen in the system, i.e., the equilibrium point becomes

unstable and limit-cycle vibration arises from the stable equilibrium point with the variations

of parameters. To show the necessity of the inclusion of pad’s motion radially, the results for

the system with only pad’s motion in the circumferential direction are also given. Suppose

that the structural parameters in the system are assigned the values listed in Table 1, the

bifurcations of the eigenvalues with the variation of �k at �0 = 50N,� = 5rad/s for the

present model and are presented. It is observed that two modes will be destabilized

successively with the increase of �k in the present model, while only one unstable mode

occurs in the system where the pad can only vibrate in the circumferential direction. Besides,

the present model loses its stability at �k = 0.2 , which is significantly smaller than the

needed coefficient of kinetic friction (�k = 0.31) to cause instability in the system with

pad’s motion only in the circumferential direction.
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Fig. 4 The bifurcations of eigenvalues of the present model (a)(b) and when only the motion

in the circumferential direction is considered (c)(d).

The ranges of operating parameters � and �0 corresponding to stable and unstable

equilibrium points are shown in Fig. 5, in which the curves represent the boundaries between

the ranges of parameter combinations leading to stable and unstable equilibrium points. As a

comparison, the results when only the motion in the circumferential direction of the pad is

considered, i.e., the constraint in the radial direction is assumed to be rigid, are also given. It

is observed that the range of operating parameters leading to instability expands with the

increase of �k . Besides, the comparisons between the results of the present model and the

system with only circumferential motion also indicate that the motion in the radial direction is

a contributor to the dynamic instability. In Fig. 6, the stability analysis for different values of

stiffnesses in the radial direction (�pr and �ir ) are given, which demonstrates that �ir has a

more significant effect on the dynamic instability of the system than �pr.

Table 1 The values of structural parameters in the system

� � � �dx �dy �dψ �pr �ir

10kg 1kg 0.05kg·m2 104N/m 104N/m 104N·m/rad 100N/m 100N/m

�pθ �iθ �dx �dy �dψ �pr �ir �pθ

100N/ m·rad 100N/ m·rad 0.1N·s/m 0.1N·s/m 0.1N·s·m/rad 10−3N·s/m 10−3N·s/m 10−3N·s/ m·rad

�iθ �0 �k
10−3N·s/ m·rad 0.05m 0.2
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Fig. 5 The stability analysis of the present model and when only the motion in the

circumferential direction is considered.
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Fig. 6 The stability analysis for different values of stiffnesses in the radial direction.

4. Steady-state responses

4.1 The shooting method

The dynamic equations of the system, i.e., Eq. (1), can be written in the state-space form,

�� = �(�) (14)

where� = �,�,�,�,�,�,�� ,�� ,�� ,��,�� ,�� T, and
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�(�) = � �
−�−1� −�−1�

�+
�

�con(�)
(15)

where �con(�) = −�f ∙ ��,−�f ∙ ��, −��f ∙ �n,�f ∙ ��,�f ∙ ��,�−�0
T,� =

diag �,�,�,�,��0,� ,� = diag �dx,�dy,�dψ,�pr,�pθ�0,�z , and

� =

�dx 0 0 0 0 0
0 �dy 0 0 0 0

0 0 �dψ 0 0 0

0 0 0 �pr +
1
2
�ir 0 − 1

2
�ir

0 0 0 0 �pθ +
1
2
�iθ − 1

2
�iθ

0 0 0 − 1
2
�ir − 1

2
�iθ�0

1
2
�ir + �iθ

.

The shooting method aims to find the periodic solution of the system with the governing

equations, i.e., Eq. (14), satisfying the conditions as follows:

� �+� =� � (16)

where � is the smallest period of the periodic solution. Therefore the periodic solution is

found from the following equations,

�� = �(�)
� � =� 0 =�0

(17)

where �0 is the initial condition. Consequently, the unknowns �0 and � are sought in the

shooting method to satisfy the condition of periodicity as,

� �,�0 =� �,�0 −�0 = � (18)

To find the solution of �0 and � that satisfies the condition Eq. (18), an iterative Newton-

Raphson algorithm [43] is employed, from which the following equation holds for the ith

iteration,

�� + ∂�
∂�0

|
��,�0

� ∆�0
�
+ ∂�

∂�
|
��,�0

� ∆��+H.O.T.=0 (19)

where ∆�0
�
=�0

�+1
−�0

�
, ∆�� = ��+1 −�� , H.O.T. are terms with higher order than

one. And the partial derivatives ∂�
∂�0

and ∂�
∂� can be obtained as,
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∂�
∂�0

|
��,�0

� =
∂�
∂�0

|
��,�0

� − � (20)

∂�
∂�
|
��,�0

� =
∂�
∂�
|
��,�0

� = � � ��,�0
�

(21)

The matrix ∂�
∂�0

is obtained by the central difference method [45],

∂�
∂�0

|
��,�0

� : ,� =
� ��,�0

�
+��� −� ��,�0

�
−���

2� (22)

where ∂�
∂�0

|
��,�0

� : ,� denotes the kth column of ∂�
∂�0

, �� is a unit vector in which all the

elements are zero except the kth element being one. Nevertheless, the number of unknowns

is one greater than the number of equations in Eq. (12), so one more equation for the

unknowns is required to obtain the unique solution. The added equation can be chosen as the

orthogonality relation between � and ∆�0, i.e.,

�T � ��,�0
�
∆�0

�
= 0 (23)

Therefore, the increments ∆�0
�
and ∆�� at the ith iteration can be acquired as the solution

of Eqs. (19) and (23). And the iteration continues until the criteria of convergence are met as

follows:

∆�0
�
/ �0

�+1
< �1, ∆��/��+1 < �2 (24)

To initiate the iterative procedure, an estimation of � and�0 , i.e., �0 , �0
0
, is made to be

the frequency of the unstable mode and the unstable mode of the linearized system,

respectively, namely,

�0 = 2�/Im � (25)

�0
0
=�e + �Re � (26)

where � and � are the eigenvalue and the eigenvector of the unstable mode, respectively; p

is a scaling factor, �e = [�e
T
,�T]T represents the equilibrium point. After obtaining �0

and � satisfying the condition of periodicity, the integration can be done from 0 to � with

the initial value of�0 to obtain the limit cycle of� � .
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4.2 The time integration method

To obtain the whole time histories of the dynamic responses of the system, the fourth-

order Runge–Kutta method is employed for the integration of dynamic equations in each

single state while conditions for state transitions are monitored at each time step. Within the

time step in which a state transition happens, the bisection method is used to capture the exact

transition time instant. After the transition point, the state changes and the current set of

equations of motion is replaced by another one.

The friction force during sticking is not an explicit function of state variables; rather, it can

be regarded as an unknown to be determined enforcing the constraint �r =0. Therefore, to

obtain the friction force during sticking, various values of�fx and�fy (the components of �f

in the x and y directions) are tried when integrating the equations of motion in the state of

stick until the values of�fx and�fy enabling �r =0 are found.

4.3 Numerical examples

Suppose the structural parameters of the system are assigned with values as listed in Table

1, the steady-state periodic responses when �0 = 10N , � = 1rad/s (case 1) and �0 =

30N,� = 2rad/s (case 2) are acquired by both the shooting method and the time integration

method. � and � in the shooting method in both cases are chosen as � = 0.01, � = 0.8, and

�1 and �2 have values of 0.01 and 0.001, respectively. It is observed from Figs. 7 and 8 that

the periodic responses obtained from the shooting method are in good agreement with those

from the time integration method, which demonstrates the accuracy of the shooting method.
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Fig. 7 The steady-state periodic responses when�0 = 10N,� = 1rad/s calculated by

the shooting method and the time integration method.
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Fig. 8 The steady-state periodic responses when�0 = 30N,� = 2rad/s calculated by

the shooting method and the time integration method.

In Figs. 9 and 10, the steady state responses for different values of � and � are exhibited,

from which it is observed that the values of � and � have significant and negligible effects

on the convergence of the shooting method to the accurate periodic solutions. Besides, the

time costs of the shooting method to obtain the periodic solution for different values of � and

� in the two cases are given in Table 2, which shows that both � and � affects the speed of

convergence of the shooting method considerably. Therefore, appropriate values of � and �
should be selected to achieve good accuracy and efficiency of the shooting method, which are

� = 0.01 and � = 0.8 in the two given cases. And the computation time to reach the steady-

state periodic response by the time integration method is 9.08s for case 1 and 12.16s for case

2, compared with 1.56s for case 1 and 1.97s for case 2 by the shooting method, which

demonstrates the great advantage of the shooting method over the conventional time

integration method in terms of the computational efficiency.
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Fig. 9 The steady state responses obtained by the shooting method for different values of � (a)

and � (b) when�0 = 10N,� = 1rad/s.
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Fig. 10 The steady state responses obtained by the shooting method for different values of �

(a) and � (b) when�0 = 30N,� = 2rad/s.

Table 2 The computation time of the shooting method for different values of � and �

�
�

0.5 (case1) 0.8 (case1) 1 (case1) 0.5 (case2) 0.8 (case2) 1 (case2)

0.001 29.05s 7.78s 16.03s 35.06s 9.69s 21.25s

0.01 6.67s 1.56s 3.98s 8.02s 1.97s 5.08s

0.1 2.53s 0.49s 1.52s 3.71s 0.79s 1.82s

Next, the characteristics of the steady-state response of the system obtained by the

shooting method are analyzed. In Fig. 11, the bifurcation diagram of the system response

using�0 as the control parameter, which show the peak values of the pad’s displacement in

the circumferential direction, is presented, when � = 1rad/s. It is observed that the system

response experiences multiple bifurcations when�0 varies between 0 and 100N, which can

be roughly divided into six intervals with distinct dynamic behaviours that are [0, 24N] ,

[25N, 43N] , [44N, 61N] , [62N, 80N] , [81N, 90N] and [91N, 100N] . The steady-state

responses at �0 = 15, 35, 55, 75, 85N that fall into the five different intervals of �0 are

subsequently exhibited in Fig. 12 in terms of time histories, phase plots and frequency spectra

of � . It is seen from Fig. 12(a) that the system response is periodic with almost only one

amplitude peak at the frequency of 0.55Hz , indicating the response is nearly harmonic at

�0 = 15N . At �0 = 35N, 55N, 85N , the system responses are also periodic but not
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harmonic, with the fundamental frequency of 0.48Hz , 0.29Hz , 0.24Hz and corresponding

superharmonics, respectively, as shown in Fig. 12(b)(c)(d). As depicted in Fig. 12(e), the

system response is non-periodic, which can be quasi-periodic or chaotic, at�0 = 75N. The

bifurcation diagram of the system response using � as the control parameter is then

illustrated in Fig. 13, which also shows rich bifurcational behaviours of the system response.

0 10 20 30 40 50 60 70 80 90 100
N0 [N]

-0.2

0

0.2

0.4

0.6

0.8

1

p
 [

ra
d

]

Fig. 11 The bifurcation diagram using�0 (� = 1rad/s) as the control parameter.

Fig. 12 Time histories, phase plots and frequency spectra of � at : (a)�0 = 15N, (b)�0 =

35N, (c)�0 = 55N, (d)�0 = 85N, (e)�0 = 75N.
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Fig. 13 The bifurcation diagram using� (�0 = 35N) as the control parameter.

In contrast, the bifurcation diagrams of the system response using �0 and � as the

control parameters when the pad’s motion in the radial direction is neglected are presented in

Fig. 14. It is clearly seen that there is no bifurcation for the system response with the

variation of the control parameters, and the system has periodic vibration all over the ranges

of �0 and �. The remarkable differences between the dynamic response of the two system

(i.e., with and without the radial motion of the pad) also reflects the significance of the new

brake system model in the study of friction-induced vibration in automobile brakes.
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p
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Fig. 14 The bifurcation diagrams using�0 (� = 1rad/s) (a) and� (�0 = 35N) (b) as

the control parameter for the system with the omission of the pad’s motion in the radial

direction.
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Chaotic vibration in the mechanical systems should be avoided because its steady-state

behaviour cannot be predicted [44]. In Figs. 15 and 16, the intervals of�0 (� = 1rad/s) (a)

and� (�0 = 35N) in which the proposed system has non-periodic response are for different

values of �ir and �pr are depicted. Fig. 15 shows that the ranges of operating parameters

corresponding to non-periodic response shrink with the increase of �ir, indicating that �ir is a
key parameter for controlling the occurrence of chaotic vibration in the system. Similarly, it

can be concluded from Fig. 16 that �pr has little significance on the chaotic vibration.

50 60 70 80 90 100
N0 [N]

(a)

100

200

300

400

500

600

700

800

900

1000

k ir

0 2 4 6 8 10
 [rad/s]
(b)

100

200

300

400

500

600

700

800

900

1000

k ir

Fig. 15 The ranges of�0 (� = 1rad/s) (a) and� (�0 = 35N) corresponding to non-

periodic response �ir.
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Fig. 16 The ranges of�0 (� = 1rad/s) (a) and� (�0 = 35N) corresponding to non-

periodic response for different values of �pr.
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5. Conclusions

This paper presents a study of the friction-induced vibration in a new brake system model

in which the pad’s motions in both radial and circumferential/tangential directions are

considered. In the system, the direction of relative motion and friction force is state-

dependent rather than always along the circumferential direction. The linear stability analysis

and the transient dynamic analysis of the system are performed. For the transient dynamic

analysis, two different methods, i.e., the time integration method and the shooting method,

are used to calculate steady-state periodic responses of the system. The accuracy and

efficiency of the shooting method are examined against the direct time integration. The

numerical study in the stability analysis indicates that the integration of the pad’s motion in

the radial direction contributes to the dynamic instability in the brake system, an �ir (the

stiffness of the inclined spring in the radial direction) has more significant effect on the

dynamic instability of the system than kpr (the stiffness of the horizontal spring in the radial

direction). The numerical results in the transient dynamic analysis demonstrate that there

exist rich bifurcation behaviours of the steady-state response in the present brake model with

the variations of brake pressure �0 and disc speed � , and �ir is a key parameter for

controlling the occurrence of chaotic vibration in the system.

It should be noted that the proposed model in this paper is still a simplified theoretical

model of the brake system, and therefore has certain gap from a real brake system. In the

future, the finite element model and the test rig of a real automobile brake will be built and

investigated to verify and refine the theoretical model.

Appendix

From derivation, the damping matrix �L is symmetric, while the stiffness matrix�L is

non-symmetric, and the entries of�L and�L are obtained as follows:

for�L,

�L(1,1) = �dx −
�k�z�����

2

���
2 +���

2 3/2,

(A.1)

�L(1,2) =
�k�z��������
���
2 +���

2 3/2 ,

(A.2)
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�L(1,3) =
�k�z�� ���

2 �0+�� sin �0+�� −�� −������ ��− �0+�� cos �0+��
���
2 +���

2 3/2 ,

(A.3)

�L(1,4) =
�k�z�� ���

2 cos �0+�� −������sin �0+��
���
2 +���

2 3/2 ,

(A.4)

�L(1,5) =
�k�z�� �0+�� ���

2 sin �0+�� +������cos �0+��
���
2 +���

2 3/2 ,

(A.5)

�L(2,2) = �dy −
�k�z�����

2

���
2 +���

2 3/2 ,

(A.6)

�L(2,3) =
�k�z�� ���

2 ��− �0+�� cos �0+�� −������ �0+�� sin �0+�� −��
���
2 +���

2 3/2 ,

(A.7)

�L(2,4) =
�k�z�� ���

2 sin �0+�� −������cos �0+��
���
2 +���

2 3/2 ,

(A.8)

�L(2,5) =
�k�z�� �0+�� ���

2 cos �0+�� +������sin �0+��
���
2 +���

2 3/2 ,

(A.9)

�L(3,3) = �dψ ,

(A.10)

�L(3,4) =
�k�z�� ���

2 sin �0+�� −���
2 cos �0+��

���
2 +���

2 1/2 ,

(A.11)

�L(4,4) = �pr +
�k�z�� ���

2 sin2 �0+�� +���
2 cos2 �0+�� −2������sin �0+�� cos �0+��

���
2 +���

2 3/2 ,

(A.12)
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�L(5,5) = �0�pθ +
�k�z�� ���

2 cos2 �0+�� +���
2 sin2 �0+�� +2������sin �0+�� cos �0+��

���
2 +���

2 3/2 ,

(A.13)

�L(6,6) = �z ,

(A.14)

�L(1,6) = �L(2,6) = �L(3,5) = �L(3,6) = �L(4,5) = �L(4,6) = �L(5,6) = 0 ,

(A.15)

�L(�, �) = �L(�, �) 2 ≤ � ≤ 6,1 ≤ � ≤ 5, � > � ;

(A.16)

for�L,

�L(1,1) = �dx −
�k�z���������
���
2 +���

2 3/2 ,

(A.17)

�L(1,2) =−
�k�z������

2

���
2 +���

2 3/2 ,

(A.18)

�L(1,4) =
�k�z������ ���sin �0+�� +���cos �0+��

���
2 +���

2 3/2 ,

(A.19)

�L(1,5) =
�k�z������ �0+�� ���cos �0+�� −���sin �0+��

���
2 +���

2 3/2 ,

(A.20)

�L(1,6) =
�k�z���

���
2 +���

2 1/2 ,

(A.21)

�L(2,1) =
�k�z������

2

���
2 +���

2 3/2 ,

(A.22)
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�L(2,2) = �dy +
�k�z���������
���
2 +���

2 3/2 ,

(A.23)

�L(2,4) =−
�k�z������ ���sin �0+�� +���cos �0+��

���
2 +���

2 3/2 ,

(A.24)

�L(2,5) =
�k�z��� �0+�� ��� ���sin �0+�� −���cos �0+��

���
2 +���

2 3/2 ,

(A.25)

�L(2,6) =
�k�z���

���
2 +���

2 1/2 ,

(A.26)

�L(3,1) =−
�k�z�� 2���+���

���
2 +���

2 1/2 ,

(A.27)

�L(3,2) =
�k�z�� 2���−���

���
2 +���

2 1/2 ,

(A.28)

�L(3,3) = �dψ ,

(A.29)

�L(3,4) =
�k�z�� 2���cos �0+�� −2���sin �0+�� −� �0+��

���
2 +���

2 1/2 ,

(A.30)

�L(3,5) =−
2�k�z�� �0+�� ���cos �0+�� +���sin �0+��

���
2 +���

2 1/2 ,

(A.31)

�L(3,6) =
�k�z ���

2 +���
2 1/2

� ,

(A.32)
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�L(4,1) =
�k�z������ ���sin �0+�� −���cos �0+��

���
2 +���

2 3/2 ,

(A.33)

�L(4,2) =
�k�z������ ���sin �0+�� −���cos �0+��

���
2 +���

2 3/2 ,

(A.34)

�L(4,4) = �pr +
1
2
�ir +

�k�z�� ���cos �0+�� +���sin �0+��
���
2 +���

2 3/2 ,

(A.35)

�L(4,5) =
�k�z��� �0+�� ���cos �0+�� −���sin �0+��

���
2 +���

2 1/2 ,

(A.36)

�L(4,6) =−
1
2
�ir +

�k�z ���cos �0+�� +���sin �0+��
���
2 +���

2 1/2 ,

(A.37)

�L(5,1) =
�k�z������

2 sin2 �0+��
���
2 +���

2 3/2 ,

(A.38)

�L(5,2) =
�k�z������

2 cos2 �0+��
���
2 +���

2 3/2 ,

(A.39)

�L(5,4) =
�k�z�� 2���cos �0+�� +2���sin �0+�� −� �0+��

���
2 +���

2 3/2 ,

(A.40)

�L(5,5) = �0 �pr +
1
2
�ir −

2�k�z��� �0+�� ���cos �0+�� +���sin �0+��
���
2 +���

2 1/2 ,

(A.41)

�L(5,6) =−
1
2
�iθ +

�k�z −���sin �0+�� +���cos �0+��
�

,

(A.42)
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�L(6,4) =−
1
2
�ir −

1
2
�iθ�� ,

(A.43)

�L(6,5) =−
1
2
�iθ�� ,

(A.44)

�L(6,6) =
1
2
�ir + �iθ + �z ,

(A.45)

�L(1,3) =�L(2,3) =�L(4,3) =�L(5,3) =�L(6,1) =�L(6,2) =�L(6,3) = 0 .

(A.46)

where ��� =� �0 + �� sin �0 + �� −��� , ��� =−� �0 + �� cos �0 + �� +

���.
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