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Abstract: This paper proposes a new dynamic model for the study of friction-induced self-excited vibration of a
disc brake system, where the pad’s motions in both radial and circumferential/tangential directions are included,
which is in stark contrast to the previous studies that normally consider the pad’s motion in the tangential/
circumferential direction only. The non-smooth dynamics of the system including three different states of motion,
i.e., stick, slip and separation, is investigated. Both the linear stability analysis and the transient dynamic analysis
are performed. The numerical results in the linear stability analysis indicate that the inclusion of pad’s radial
motion in the present brake model significantly expands the ranges of operating parameters for dynamic instability
than the brake model with only circumferential/tangential motion for the pad. For the transient dynamic analysis,
two different methods, i.e., the time integration method and the shooting method, are employed for the calculation
of steady-state response. The accuracy and efficiency of the shooting method are subsequently examined. The
numerical results show rich bifurcation behaviours of the steady-state response in the present brake model with the
variations of brake pressure N0 and disc speed Ω, and that kir (the stiffness of the inclined spring in the radial
direction) is a key parameter for controlling the occurrence of chaotic vibration in the system.

Keywords: friction-induced vibration; linear stability analysis; non-smooth; shooting method; transient dynamic
analysis

I. INTRODUCTION
Brake noise is a major issue in the automobile industry
today, which may cause discomfort to passengers and be
perceived as a quality problem, thereby pushing up the
warranty cost and impacting the brand reputation [1–3].
Because of its impact and scientific intricacy, brake noise
has long been a research hotspot for engineers and
researchers.

The vibration caused by the pad-disc frictional contact
in the braking process has been acknowledged as the main
reason for automobile brake noise [4], namely, brake noise
is in essence a problem of friction-induced vibration. Four
main mechanisms have been put forward to explain the
occurrence of friction-induced vibration in mechanical
systems; they are: the negative friction slope [5], the
stick-slip motion [6], the sprag-slip instability [7] and the
mode-coupling instability [8]. Apart from the four principal
mechanisms above, there are other mechanisms proposed
for the friction-induced vibration in specific systems. The
destabilizing effects of the friction force as a follower force
or a moving load in the disc brake systems were analysed
[9–11]. Kinkaid et al. [12] found the change of direction of
the friction force could excite vibration in a planar frictional
system.

A number of studies have been devoted to the dynamic
behaviours, e.g., bifurcations, chaos, non-stationary effect,
etc, of the friction-induced vibration in the brake system, so
as to reveal the properties of brake noise. Wu et al. [13]
studied the self-excited vibration in the stern bearing of the
underwater vehicle and its stick-slip phenomenon. Von
Wagner et al. [14] proposed a 2-DoF brake model involving
a wobbling disc and analysed its stability behaviour. Kang
et al. [15,16] used the finite element models of the pad-disc
system for investigation of the dynamic instability in disc
brakes. Li et al. [17] found the non-stationary dynamic
characteristic of the brake system. Liu and Ouyang [18]
investigated the bifurcation behaviours of FIV of a 5-DoF
dynamic model with multiple types of nonlinearities. Wei
et al. [19,20] established 2-DoF and 3-DoF dynamic models
of a brake system and observed the bifurcation and chaotic
behaviours of system responses. Some works focused on
the accurate models of the complex friction phenomena and
their effects on the system dynamics [21–23].

The existing studies on the friction-induced vibration
in brake systems usually assume a constant direction of
relative motion and friction force, i.e., the circumferential
direction, and thus only the vibration in the circumferential
direction is investigated when in-plane vibration of a brake
system is concerned. Nevertheless, because of factors such
as manufacturing errors, external disturbances, flexible
connections, etc, relative vibration of a brake component
may happen in any direction in the three-dimensional space
and therefore causes the direction of friction force to vary
with time, which then further complicates the dynamics of a
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brake system. In view of the above, it is essential to consider
the oscillations of brake components in the directions apart
from the circumferential direction, e.g., the radial and the
vertical (transverse) directions, and the direction of the
friction force to be unknown a priori and to be determined
with the dynamics of the brake system. There have been
investigations of the vibration of mechanical systems under
the friction force with a state-dependent direction. Antali
and Stepan [24] examined the three-dimensional dynamics
of a rigid body in sliding or rolling contact with a rigid
plane. Ma andWang [25] dealt with planar multiple-contact
problems subjected to unilateral and bilateral kinetic con-
straints. Sinou et al. [26,27] studied the self-excited vibra-
tion of a non-smooth dynamical system with planar
frictional contact. Menq et al. [28] put forward an approxi-
mate method for analysing the dynamic responses of struc-
tures having a two-dimensional frictional constraint. With
the aim of enhancing the study of friction-induced-vibration
problems in automobile brakes, we propose a novel
dynamic model of a brake system including three-dimen-
sional (circumferential, radial and vertical) oscillations of
the brake pad and planar motion of the brake disc in
this paper.

There are two main categories of methods for the
analysis of friction-induced vibration in brake systems, i.e.,
the complex eigenvalue analysis (CEA) and the transient
dynamic analysis (TDA). The linear complex eigenvalue
approach is often employed for the stability analysis of the
steady sliding state [29–34]. It can be used for the initial
estimations of unstable modes which possibly lead to limit
cycle vibration. The transient dynamic analysis is used to
observe the dynamic behaviour of the system during the
whole dynamic process, which enables acquiring the sys-
tem behaviours in the steady state. The transient dynamic
analysis can be performed by numerical integrations in the
time domain from given initial conditions [35–38]. How-
ever, these numerical integrations are usually computation-
ally expensive due to the non-smooth behaviours (i.e., the
switches of states of motion including slip, stick and
separation in the whole dynamic process) in the friction-
induced-vibration problems. Alternative methods have
been developed for efficient calculations of steady-state
limit cycles of the nonlinear self-excited vibration in fric-
tional systems, e.g., the constrained harmonic balance
method [39], the orthogonal collocation method [40], the
shooting method [41]. In this paper, both CEA and TDA
will be performed on the dynamic system in question. In
terms of TDA, both the method of numerical integration and
the shooting method will be employed, and the accuracy
and efficiency of these two methods will be examined.

II. THE DYNAMICAL MODEL
The new dynamical model for a disc brake system consists
of two parts, i.e., a rigid disc of mass M and rotational
inertia I that models the brake disc, and a slider with massm
that models the brake pad that is at the radial distance of r0
from the centre of the disc. The disc is constrained at the
centroid by translational springs and dampers (kdx, cdx
along the x axis and kdy, cdy along the y axis), and a
rotational spring and damper (kdψ, cdψ), which model the
flexible connections between the disc shaft and the disc.
During vibration, the pad’s motion in the radial and normal
direction may become significant and therefore greatly
affects the dynamics of the brake system. Therefore, the
constraints that the brake pad is subjected to are modelled
by the springs and dampers in both circumferential (kpθ, cpθ)
and radial (kpr, cpr) directions. In either of the circumferen-
tial direction and the radial direction, there is an inclined
spring (kiθ and kir, respectively) at 45° relative to the
horizontal direction on the pad. Besides, there is a damper
cz on the pad in the vertical direction. The contact between
the pad and the disc is assumed to be unilateral, and a linear
spring kz is used to model the contact stiffness. The three-
view drawing of the brake system model is shown in Fig. 1.

Because of the translational motion of the disc and
the pad’s motion in the radial direction, the direction of the
friction force usually will not be in the circumferential
direction, rather, it varies with the system dynamics. The
kinematics of the frictional contact of the pad and the disc
during vibration is illustrated in Fig. 2, where axes ex and ey
are fixed in space, O1 is the centre of the disc, P0 and P
represent the initial position and the instantaneous position
of the pad, respectively, en represents the unit vector of the
velocity of the disc at the contact point. The dynamic
equations of the system are formulated as
8>>>>>>>>><
>>>>>>>>>:

Mx
:: þ cdxẋþ kdxx = −Ff · ex

My
:: þ cdyẏþ kdyy = −Ff · ey

Iψ
:: þ cdψψ̇ þ kdψψ = −RFf · en

mr
:: þ cpr ṙ þ kprr þ 1

2 kirr −
1
2 kirz = −Ff · er

ðr0 þ rÞðmθ
::

þ cpθθ̇ þ kpθθ þ 1
2 kiθθÞ − 1

2 kiθz = −Ff · eθ
mz

:: þ czż − 1
2 kirr −

1
2 kiθr0θ þ 1

2 ðkir þ kiθÞzþ N0 = N

(1)

where x, y and ψ represent the planar translational motion
and the rotational motion of the disc due to elastic con-
straints, and r, θ, z represent the planar motion and the
vertical motion of the pad in the cylindrical coordinate

(a) (b) (c)

, 

brake disc

brake pad

Fig. 1. The new brake system model: (a) top view, (b) circumferential view, (c) radial view.
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system. N0 is the normal preload between the pad and the
disc, en can be expressed as

en = −sinφex + cosφey

= −
ðr0 + rÞsinðθ0 + θÞ − y

R
ex

+
ðr0 + rÞcosðθ0 + θÞ − x

R
ey (2)

R is the distance between the centre of the disc O1 and the
contact point P, which is

R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðr0 + rÞcosðθ0 + θÞ− x�2 + ½ðr0 + rÞsinðθ0 + θÞ− y�2

q
(3)

The friction force between the pad and the disc is
assumed to follow the Coulomb’s law [42], i.e.,

�
Ff = −μkN

vr
kvrk kvrk ≠ 0

kFfk ≤ μkN kvrk = 0
(4)

where N = −kzz, μk is the coefficient of friction, vr is the
relative velocity between the pad and the disc at the contact
point, i.e.,

vr = vp − vdc (5)

where vp and vdc represent the velocity of the pad and the
velocity of the disc at the contact point, respectively, which
can be obtained as

vp = ṙer + ðr0 + rÞθ̇eθ (6)

vdc = ẋex + ẏey + ðΩ + ψ̇ÞRen (7)

and er, eθ can be expressed by ex and ey as

h er
eθ

i
=
h cosðθ0 + θÞ sinðθ0 + θÞ
−sinðθ0 + θÞ cosðθ0 + θÞ

ih ex
ey

i
(8)

By substituting equations (2) and (6)–(8) into equa-
tion (5), it is derived that,

vr = vxex þ vyey (9)

where

vx = ðr0 + rÞðΩ + ψ̇ − θ̇Þsinðθ0 + θÞ
+ ṙcosðθ0 + θÞ − ẋ − ðΩ + ψ̇Þy,

vy = ðr0 + rÞð−Ω − ψ̇ + θ̇Þcosðθ0 + θÞ
+ ṙsinðθ0 + θÞ − ẏ + ðΩ + ψ̇Þx

By substituting equation (9) into equation (4)1, the friction
force between the pad and the disc when kvrk ≠ 0 (i.e., the
state of slip) is acquired. When kvrk = 0 (i.e., the state of
stick), however, the friction force serves as a reactive force
to sustain the relative static state, and thus Ff will be
determined by the dynamic equations of the system, i.e.,
equation (1). When z > 0, the pad will separate from the
disc, hence N = 0, and Ff = 0. The contact forces are
illustrated in Fig. 3.

To summarize, the system may experience three dis-
tinct states of motion (slip, stick and separation) in the
process of vibration, which are governed by three different
sets of equations of motion.

III. STABILITY ANALYSIS
In this section, the Lyapunov stability of the equilibrium
point of the system corresponding to a steady sliding state is
analysed, which can be used as the estimation of the
dynamic stability of the system, i.e., whether the self-
excited vibration will happen or not in the steady state.

Firstly, the equilibrium point of the system is found as
the solution of the nonlinear algebraic equations, which are
acquired by setting the terms of acceleration and velocity in
equation (1) as zero. Secondly, a linear dynamic system is
constructed by linearizing the original dynamic equations of
the system, i.e., equation (1), around each equilibrium
point, namely,

MLu
:: þ CLu̇þKL�u = 0 (10)

where u = ½x,y,ψ ,r,θ,z�T, u = u − ue, in which ue is an
equilibrium point which represents the state of steady
sliding and has a unique solution for a system. ML =
diagðM,M,I,m,mr0,mÞ, while the entries in CL and KL are
complicated because of the friction force and thus provided
in the Appendix. According to the theory of second-order
linear homogeneous ordinary differential equations, the
solution of equation (10) can be written as

u = φest (11)

where φ and s are the eigenvector and eigenvalue, respec-
tively. By substituting equation (11) into equation (10), a
quadratic eigenvalue equation is obtained,

0

0

n

0
+

0

1

Fig. 2. The planar kinematics of the pad and the disc.

(a) (b)

Fig. 3. The contact forces: (a) normal force, (b) friction force.
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ðs2ML + sCL + KLÞφ = 0 (12)

In terms of real matricesML,CL andKL of order n, there are
generally n pairs of conjugate complex eigenvalues that are
solved from equation (12), i.e.,

sj1,2 = σj � ωji, j = 1,2, : : : ,6 (13)

where i =
ffiffiffiffiffiffi
−1

p
is the imaginary unit, σj and ωj are the real

part and imaginary part of the jth pair of eigenvalues,
respectively, which indicate the growth rate and frequency
of the jth mode in the response of the linearized system,
therefore the stability of the equilibrium point of the
frictional system that corresponds to steady sliding state
can be evaluated by the signs of the real parts of eigenva-
lues. The positive real parts of at least one of the eigenvalues
indicate an unstable equilibrium point and growing friction-
induced self-excited vibration in the system when it is
disturbed near that equilibrium point.

The Hopf bifurcation will happen in the system, i.e.,
the equilibrium point becomes unstable and limit-cycle
vibration arises from the stable equilibrium point with the

variations of parameters. To show the necessity of the
inclusion of pad’s motion radially, the results for the system
with only pad’s motion in the circumferential direction are
also given in Fig. 4. Suppose that the structural parameters
in the system are assigned the values listed in Table I, the
bifurcations of the eigenvalues with the variation of μk at
N0 = 50N,Ω = 5rad=s for the present model and are pre-
sented. It is observed that two modes will be destabilized
successively with the increase of μk in the present model,
while only one unstable mode occurs in the system where
the pad can only vibrate in the circumferential direction.
Besides, the present model loses its stability at μk = 0.2,
which is significantly smaller than the needed coefficient of
kinetic friction ðμk = 0.31Þ to cause instability in the system
with pad’s motion only in the circumferential direction.

The ranges of operating parameters Ω and N0 corre-
sponding to stable and unstable equilibrium points are
shown in Fig. 5, in which the curves represent the bound-
aries between the ranges of parameter combinations leading
to stable and unstable equilibrium points. As a comparison,
the results when only the motion in the circumferential

(a) (b)

(c) (d)

Fig. 4. The bifurcations of eigenvalues of the present model (a)(b) and when only the motion in the circumferential direction is
considered (c)(d).

Table I. The values of structural parameters in the system

M m I kdx kdy kdψ kpr kir
10 kg 1 kg 0.05 kg · m2 104 N=m 104 N=m 104 N · m=rad 100 N=m 100 N=m

kpθ kiθ cdx cdy cdψ cpr cir cpθ
100 N=
ðm · radÞ

100 N=ðm · radÞ 0.1 N · s=m 0.1 N · s=m 0.1 N · s · m=rad 10−3 N · s=m 10−3 N · s=m 10−3 N · s=
ðm · radÞ

ciθ r0 μk
10−3 N · s=
ðm · radÞ

0.05 m 0.2
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direction of the pad is considered, i.e., the constraint in the
radial direction is assumed to be rigid, are also given. It is
observed that the range of operating parameters leading to
instability expands with the increase of μk. Besides, the
comparisons between the results of the present model and
the system with only circumferential motion also indicate
that the motion in the radial direction is a contributor to the
dynamic instability. In Fig. 6, the stability analysis for
different values of stiffnesses in the radial direction (kpr
and kir) are given, which demonstrates that kir has a more
significant effect on the dynamic instability of the system
than kpr.

IV. STEADY-STATE RESPONSES
A. THE SHOOTING METHOD

The dynamic equations of the system, i.e., equation (1), can
be written in the state-space form,

U̇ = gðUÞ (14)

where U = ½x,y,ψ ,r,θ,z,ẋ,ẏ,ψ̇ ,ṙ,θ̇,ż�T, and

gðUÞ =
h 0 I
−M−1K −M−1C

i
Uþ

h 0
FconðUÞ

i
(15)

where FconðUÞ = ½−Ff ·ex, − Ff ·ey, − RFf ·en,Ff ·er,Ff ·eθ,
N − N0�T, M = diagðM,M,I,m,mr0,mÞ, C = diagðcdx,cdy,
cdψ ,cpr,cpθr0,czÞ, and

K =

2
6666664

kdx 0 0 0 0 0
0 kdy 0 0 0 0
0 0 kdψ 0 0 0
0 0 0 kpr þ 1

2 kir 0 − 1
2 kir

0 0 0 0 kpθ þ 1
2 kiθ − 1

2 kiθ
0 0 0 − 1

2 kir − 1
2 kiθr0

1
2 ðkir þ kiθÞ

3
7777775

The shooting method aims to find the periodic solu-
tion of the system with the governing equations,
i.e., equation (14), satisfying the conditions as follows:

Uðt + TÞ = UðtÞ (16)

where T is the smallest period of the periodic solution.
Therefore the periodic solution is found from the following
equations, �

U̇ = gðUÞ
UðTÞ = Uð0Þ = U0

(17)

where U0 is the initial condition. Consequently, the un-
knowns U0 and T are sought in the shooting method to
satisfy the condition of periodicity as,

YðT ,U0Þ = UðT ,U0Þ − U0 = 0 (18)

To find the solution of U0 and T that satisfies the condition
equation (18), an iterative Newton-Raphson algorithm [43]
is employed, from which the following equation holds for
the ith iteration,

Yi +
∂Y
∂U0

����
ðTi,U0

iÞ
ΔU0

i +
∂Y
∂t

����
ðTi,U0

iÞ
ΔTi +H:O:T:= 0 (19)

where ΔU0 i = U0
i+1 − U0

i, ΔTi = Ti+1 − Ti, H.O.T. are
terms with higher order than one. And the partial derivatives
∂Y
∂U0

and ∂Y
∂t can be obtained as,

∂Y
∂U0

����
ðTi,U0

iÞ
=

∂U
∂U0

����
ðTi,U0

iÞ
− I (20)

∂Y
∂t

����
ðTi,U0

iÞ
=
∂U
∂t

����
ðTi,U0

iÞ
= gðUðTi,U0

iÞÞ (21)

The matrix ∂U
∂U0

is obtained by the central difference
method [44],

∂U
∂U0

����
ðTi,U0

iÞ
ð∶,kÞ = UðTi,U0

i + δekÞ − UðTi,U0
i − δekÞ

2δ

(22)

where ∂U
∂U0

jðTi,U0
iÞð∶,kÞ denotes the kth column of ∂U

∂U0
, ek is a

unit vector in which all the elements are zero except the kth
element being one. Nevertheless, the number of unknowns
is one greater than the number of equations in equation (12),
so one more equation for the unknowns is required to obtain
the unique solution. The added equation can be chosen as
the orthogonality relation between g and ΔU0, i.e.,

Fig. 5. The stability analysis of the present model and when only
the motion in the circumferential direction is considered.

Fig. 6. The stability analysis for different values of stiffnesses in
the radial direction.
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gTðUðTi,U0
iÞÞΔU0

i = 0 (23)

Therefore, the increments ΔU0
i and ΔTi at the ith iteration

can be acquired as the solution of equations (19) and (23).
And the iteration continues until the criteria of convergence
are met as follows:

kΔ;U0
ik=kU0

i+1k < ε1, ΔTi=Ti+1 < ε2 (24)

To initiate the iterative procedure, an estimation of T and
U0, i.e., T0,U0

0, is made to be the frequency of the unstable
mode and the unstable mode of the linearized system,
respectively, namely,

T0 = 2π=ImðλÞ (25)

U0
0 = Ue + pReðΦÞ (26)

where λ andΦ are the eigenvalue and the eigenvector of the
unstable mode, respectively; p is a scaling factor, Ue =
½ueT, 0T�T represents the equilibrium point. After obtaining
U0 and T satisfying the condition of periodicity, the inte-
gration can be done from 0 to T with the initial value of U0
to obtain the limit cycle of UðtÞ.

B. THE TIME INTEGRATION METHOD

To obtain the whole time histories of the dynamic responses
of the system, the fourth-order Runge–Kutta method is
employed for the integration of dynamic equations in
each single state while conditions for state transitions are
monitored at each time step. Within the time step in which a
state transition happens, the bisection method is used to
capture the exact transition time instant. After the transition
point, the state changes and the current set of equations of
motion is replaced by another one.

The friction force during sticking is not an explicit
function of state variables; rather, it can be regarded as an
unknown to be determined enforcing the constraint
kvrk =0. Therefore, to obtain the friction force during
sticking, various values of Ffx and Ffy (the components
of Ff in the x and y directions) are tried when integrating the
equations of motion in the state of stick until the values of
Ffx and Ffy enabling kvrk = 0 are found.

C. NUMERICAL EXAMPLES

Suppose the structural parameters of the system are as-
signed with values as listed in Table I, the steady-state
periodic responses when N0 = 10N, Ω = 1rad=s (case 1)
and N0 = 30N, Ω = 2rad=s (case 2) are acquired by both
the shooting method and the time integration method. δ and
p in the shooting method in both cases are chosen as
δ = 0.01, p = 0.8, and ε1 and ε2 have values of 0.01 and
0.001, respectively. It is observed from Figs. 7 and 8 that the
periodic responses obtained from the shooting method are
in good agreement with those from the time integration
method, which demonstrates the accuracy of the shooting
method.

In Figs. 9 and 10, the steady state responses for
different values of δ and p are exhibited, from which it
is observed that the values of δ and p have significant and
negligible effects on the convergence of the shooting
method to the accurate periodic solutions. Besides, the
time costs of the shooting method to obtain the periodic
solution for different values of δ and p in the two cases are
given in Table II, which shows that both δ and p affects the
speed of convergence of the shooting method considerably.
Therefore, appropriate values of δ and p should be selected
to achieve good accuracy and efficiency of the shooting
method, which are δ = 0.01 and p = 0.8 in the two given
cases. And the computation time to reach the steady-state
periodic response by the time integration method is 9.08s
for case 1 and 12.16s for case 2, compared with 1.56s for
case 1 and 1.97s for case 2 by the shooting method, which
demonstrates the great advantage of the shooting method
over the conventional time integration method in terms of
the computational efficiency.

Next, the characteristics of the steady-state response of
the system obtained by the shooting method are analyzed.
In Fig. 11, the bifurcation diagram of the system response
using N0 as the control parameter, which show the peak
values of the pad’s displacement in the circumferential
direction, is presented, when Ω = 1rad=s. It is observed
that the system response experiences multiple bifurcations
when N0 varies between 0 and 100N, which can be roughly
divided into six intervals with distinct dynamic behaviours
that are ½0, 24N�, ½25N, 43N�, ½44N, 61N�, ½62N, 80N�,
½81N, 90N� and ½91N, 100N�. The steady-state responses
at N0 = 15, 35, 55, 75, 85N that fall into the five different
intervals of N0 are subsequently exhibited in Fig. 12 in
terms of time histories, phase plots and frequency spectra

Fig. 7. The steady-state periodic responses when N0 = 10N, Ω = 1rad=s calculated by the shooting method and the time integration
method.
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of θ. It is seen from Fig. 12(a) that the system response is
periodic with almost only one amplitude peak at the fre-
quency of 0.55Hz, indicating the response is nearly har-
monic at N0 = 15N. At N0 = 35N, 55N, 85N, the system

responses are also periodic but not harmonic, with the
fundamental frequency of 0.48Hz, 0.29Hz, 0.24Hz and
corresponding superharmonics, respectively, as shown in
Fig. 12(b)–(d). As depicted in Fig. 12(e), the system

(a) (b)

Fig. 9. The steady state responses obtained by the shooting method for different values of δ (a) and p (b) when N0 = 10N, Ω = 1rad=s.

(a) (b)

Fig. 10. The steady state responses obtained by the shooting method for different values of δ (a) and p (b) when N0 = 30N,Ω = 2rad=s.

Fig. 8. The steady-state periodic responses when N0 = 30N, Ω = 2rad=s calculated by the shooting method and the time integration
method.
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response is non-periodic, which can be quasi-periodic or
chaotic, at N0 = 75N. The bifurcation diagram of the
system response using Ω as the control parameter is then
illustrated in Fig. 13, which also shows rich bifurcational
behaviours of the system response.

In contrast, the bifurcation diagrams of the system
response using N0 and Ω as the control parameters when
the pad’s motion in the radial direction is neglected are
presented in Fig. 14. It is clearly seen that there is no
bifurcation for the system response with the variation of
the control parameters, and the system has periodic vibra-
tion all over the ranges of N0 and Ω. The remarkable

differences between the dynamic response of the two
system (i.e., with and without the radial motion of the
pad) also reflects the significance of the new brake system
model in the study of friction-induced vibration in auto-
mobile brakes.

Chaotic vibration in the mechanical systems should be
avoided because its steady-state behaviour cannot be
predicted [44]. In Figs. 15 and 16, the intervals of N0
(Ω = 1rad=s) (a) and Ω (N0 = 35N) in which the proposed
system has non-periodic response are for different values of
kir and kpr are depicted. Figure 15 shows that the ranges of

Table II. The computation time of the shooting method for different values of δ and p

δ
p 0.5 (case1) 0.8 (case1) 1 (case1) 0.5 (case2) 0.8 (case2) 1 (case2)

0.001 29.05s 7.78s 16.03s 35.06s 9.69s 21.25s

0.01 6.67s 1.56s 3.98s 8.02s 1.97s 5.08s

0.1 2.53s 0.49s 1.52s 3.71s 0.79s 1.82s

Fig. 11. The bifurcation diagram using N0 (Ω = 1rad=s) as the
control parameter.

Fig. 12. Time histories, phase plots and frequency spectra of θ at: (a) N0 = 15N, (b) N0 = 35N, (c) N0 = 55N, (d) N0 = 85N,
(e) N0 = 75N.

Fig. 13. The bifurcation diagram using Ω (N0 = 35N) as the
control parameter.
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operating parameters corresponding to non-periodic

response shrink with the increase of kir, indicating that

kir is a key parameter for controlling the occurrence of

chaotic vibration in the system. Similarly, it can be con-

cluded from Fig. 16 that kpr has little significance on the

chaotic vibration.

(a) (b)

Fig. 14. The bifurcation diagrams using N0 (Ω = 1rad=s) (a) and Ω (N0 = 35N) (b) as the control parameter for the system with the
omission of the pad’s motion in the radial direction.

(a) (b)

Fig. 15. The ranges of N0 (Ω = 1rad=s) (a) and Ω (N0 = 35N) corresponding to non-periodic response kir .

(a) (b)

Fig. 16. The ranges of N0 (Ω = 1rad=s) (a) and Ω (N0 = 35N) corresponding to non-periodic response for different values of kpr.

A non-smooth vibration model of a disc brake 305

JDMD Vol. 3, No. 4, 2024



V. CONCLUSIONS
This paper presents a study of the friction-induced vibration
in a new brake system model in which the pad’s motions in
both radial and circumferential/tangential directions are
considered. In the system, the direction of relative motion
and friction force is state-dependent rather than always
along the circumferential direction. The linear stability
analysis and the transient dynamic analysis of the system
are performed. For the transient dynamic analysis, two
different methods, i.e., the time integration method and
the shooting method, are used to calculate steady-state
periodic responses of the system. The accuracy and effi-
ciency of the shooting method are examined against the
direct time integration. The numerical study in the stability
analysis indicates that the integration of the pad’s motion in
the radial direction contributes to the dynamic instability in
the brake system, an kir (the stiffness of the inclined spring
in the radial direction) has more significant effect on the
dynamic instability of the system than kpr (the stiffness of
the horizontal spring in the radial direction). The numerical
results in the transient dynamic analysis demonstrate that
there exist rich bifurcation behaviours of the steady-state
response in the present brake model with the variations of
brake pressure N0 and disc speed Ω, and kir is a key
parameter for controlling the occurrence of chaotic vibra-
tion in the system.

It should be noted that the proposed model in this paper
is still a simplified theoretical model of the brake system,
and therefore has certain gap from a real brake system. In
the future, the finite element model and the test rig of a real
automobile brake will be built and investigated to verify and
refine the theoretical model.
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APPENDIX

From derivation, the damping matrix CL is symmetric, while the stiffness matrix KL is non-symmetric, and the entries of
CL and KL are obtained as follows:

for CL,

CLð1,1Þ = cdx −
μkkzzev

2
ye

ðv2xe + v2yeÞ3=2
; (A.1)

CLð1,2Þ =
μkkzzevxevye
ðv2xe + v2yeÞ3=2

; (A.2)

CLð1,3Þ =
μkkzze½v2yeððr0 + reÞsinðθ0 + θeÞ − yeÞ − vxevyeðxe − ðr0 + reÞcosðθ0 + θeÞÞ�

ðv2xe + v2yeÞ3=2
; (A.3)

CLð1,4Þ =
μkkzze½v2yecosðθ0 + θeÞ − vxevyesinðθ0 + θeÞ�

ðv2xe + v2yeÞ3=2
; (A.4)

CLð1,5Þ =
μkkzzeðr0 + reÞ½v2yesinðθ0 + θeÞ + vxevyecosðθ0 + θeÞ�

ðv2xe + v2yeÞ3=2
; (A.5)

CLð2,2Þ = cdy −
μkkzzev

2
xe

ðv2xe + v2yeÞ3=2
; (A.6)

CLð2,3Þ =
μkkzze½v2xeðxe − ðr0 + reÞcosðθ0 + θeÞÞ − vxevyeððr0 + reÞsinðθ0 + θeÞ − yeÞ�

ðv2xe + v2yeÞ3=2
; (A.7)

CLð2,4Þ =
μkkzze½v2xesinðθ0 + θeÞ − vxevyecosðθ0 + θeÞ�

ðv2xe + v2yeÞ3=2
; (A.8)

CLð2,5Þ =
μkkzzeðr0 + reÞ½v2xecosðθ0 + θeÞ + vxevyesinðθ0 + θeÞ�

ðv2xe + v2yeÞ3=2
; (A.9)

CLð3,3Þ = cdψ ; (A.10)

CLð3,4Þ =
μkkzze½v2xesinðθ0 + θeÞ − v2yecosðθ0 + θeÞ�

ðv2xe + v2yeÞ1=2
; (A.11)

CLð4,4Þ = cpr +
μkkzze½v2xesin2ðθ0 + θeÞ + v2yecos2ðθ0 + θeÞ − 2vxevyesinðθ0 + θeÞcosðθ0 + θeÞ�

ðv2xe + v2yeÞ3=2
; (A.12)

CLð5,5Þ = r0cpθ +
μkkzze½v2xecos2ðθ0 + θeÞ + v2yesin2ðθ0 + θeÞ + 2vxevyesinðθ0 + θeÞcosðθ0 + θeÞ�

ðv2xe + v2yeÞ3=2
; (A.13)

CLð6,6Þ = cz; (A.14)

CLð1,6Þ = CLð2,6Þ = CLð3,5Þ = CLð3,6Þ = CLð4,5Þ = CLð4,6Þ = CLð5,6Þ = 0; (A.15)
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CLði,jÞ = CLðj,iÞ ð2 ≤ i ≤ 6, 1 ≤ j ≤ 5, i > jÞ; (A.16)

for KL,

KLð1,1Þ = kdx −
μkkzzeΩvxevye
ðv2xe + v2yeÞ3=2

; (A.17)

KLð1,2Þ = −
μkkzzeΩv2ye
ðv2xe + v2yeÞ3=2

; (A.18)

KLð1,4Þ =
μkkzzeΩvyeðvyesinðθ0 + θeÞ + vxecosðθ0 + θeÞÞ

ðv2xe + v2yeÞ3=2
; (A.19)

KLð1,5Þ =
μkkzzeΩvyeðr0 + reÞðvyecosðθ0 + θeÞ − vxesinðθ0 + θeÞÞ

ðv2xe + v2yeÞ3=2
; (A.20)

KLð1,6Þ =
μkkzvxe

ðv2xe + v2yeÞ1=2
; (A.21)

KLð2,1Þ =
μkkzzeΩv2xe
ðv2xe + v2yeÞ3=2

; (A.22)

KLð2,2Þ = kdy +
μkkzzeΩvxevye
ðv2xe + v2yeÞ3=2

; (A.23)

KLð2,4Þ = −
μkkzzeΩvxeðvyesinðθ0 + θeÞ + vxecosðθ0 + θeÞÞ

ðv2xe + v2yeÞ3=2
; (A.24)

KLð2,5Þ =
μkkzzeΩðr0 + reÞvxeðvxesinðθ0 + θeÞ − vyecosðθ0 + θeÞÞ

ðv2xe + v2yeÞ3=2
; (A.25)

KLð2,6Þ =
μkkzvye

ðv2xe + v2yeÞ1=2
; (A.26)

KLð3,1Þ = −
μkkzzeð2vye + ΩxeÞ

ðv2xe + v2yeÞ1=2
; (A.27)

KLð3,2Þ =
μkkzzeð2vxe − ΩyeÞ

ðv2xe + v2yeÞ1=2
; (A.28)

KLð3,3Þ = kdψ ; (A.29)

KLð3,4Þ =
μkkzzeð2vyecosðθ0 + θeÞ − 2vxesinðθ0 + θeÞ − Ωðr0 + reÞÞ

ðv2xe + v2yeÞ1=2
; (A.30)

KLð3,5Þ = −
2μkkzzeðr0 + reÞðvxecosðθ0 + θeÞ + vyesinðθ0 + θeÞÞ

ðv2xe + v2yeÞ1=2
; (A.31)
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KLð3,6Þ =
μkkzðv2xe + v2yeÞ1=2

Ω
; (A.32)

KLð4,1Þ =
μkkzzeΩvxeðvxesinðθ0 + θeÞ − vyecosðθ0 + θeÞÞ

ðv2xe + v2yeÞ3=2
; (A.33)

KLð4,2Þ =
μkkzzeΩvyeðvxesinðθ0 + θeÞ − vyecosðθ0 + θeÞÞ

ðv2xe + v2yeÞ3=2
; (A.34)

KLð4,4Þ = kpr +
1
2
kir +

μkkzzeðvxecosðθ0 + θeÞ + vyesinðθ0 + θeÞÞ
ðv2xe + v2yeÞ3=2

; (A.35)

KLð4,5Þ =
μkkzzeΩðr0 + reÞðvyecosðθ0 + θeÞ − vxesinðθ0 + θeÞÞ

ðv2xe + v2yeÞ1=2
; (A.36)

KLð4,6Þ = −
1
2
kir +

μkkzðvxecosðθ0 + θeÞ + vyesinðθ0 + θeÞÞ
ðv2xe + v2yeÞ1=2

; (A.37)

KLð5,1Þ =
μkkzzeΩv2xesin2ðθ0 + θeÞ

ðv2xe + v2yeÞ3=2
; (A.38)

KLð5,2Þ =
μkkzzeΩv2yecos2ðθ0 + θeÞ

ðv2xe + v2yeÞ3=2
; (A.39)

KLð5,4Þ =
μkkzzeð2vxecosðθ0 + θeÞ + 2vyesinðθ0 + θeÞ − Ωðr0 + reÞÞ

ðv2xe + v2yeÞ3=2
; (A.40)

KLð5,5Þ = r0ðkpr +
1
2
kirÞ −

2μkkzzeΩðr0 + reÞðvxecosðθ0 + θeÞ + vyesinðθ0 + θeÞÞ
ðv2xe + v2yeÞ1=2

; (A.41)

KLð5,6Þ = −
1
2
kiθ +

μkkzð−vxesinðθ0 + θeÞ + vyecosðθ0 + θeÞÞ
Ω

; (A.42)

KLð6,4Þ = −
1
2
kir −

1
2
kiθθe; (A.43)

KLð6,5Þ = −
1
2
kiθre; (A.44)

KLð6,6Þ =
1
2
ðkir + kiθÞ + kz; (A.45)

KLð1,3Þ = KLð2,3Þ = KLð4,3Þ = KLð5,3Þ = KLð6,1Þ = KLð6,2Þ = KLð6,3Þ = 0; (A.46)

where vxe = Ωðr0 + reÞsinðθ0 + θeÞ −Ωye; vye = −Ωðr0 + reÞcosðθ0 + θeÞ + Ωxe.
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