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In order to minimize wind turbine failures, fault diagnosis of wind turbines is becoming 

increasingly important, deep learning methods excel at multivariate monitoring and 

data modeling, but they are often limited to Euclidean space and struggle to capture the 

complex coupling between wind turbine sensors. To address this problem, we convert 

SCADA data into graph data, where sensors act as nodes and their topological 

connections act as edges, to represent these complex relationships more efficiently.

Specifically, a wind turbine anomaly identification method based on deep graph 

convolutional neural network using similarity graph generation strategy (SGG-DGCN) 

is proposed. Firstly, a plurality of similarity graphs containing similarity information 

between nodes are generated by different distance metrics. Then, the generated 

similarity graphs are fused using the proposed similarity graph generation strategy. 

Finally, the fused similarity graphs are fed into the DGCN model for anomaly 

identification. To verify the effectiveness of the proposed SGG-DGCN model, we 

conducted a large number of experiments. The experimental results show that the 

proposed SGG-DGCN model has the highest accuracy compared with other models. In 

addition, the results of ablation experiment also demonstrate that the proposed SGG 

strategy can effectively improve the accuracy of WT anomaly identification.

nomaly identification 

 

Introduction 
In recent years, the global ecological 

environment has been deteriorating and the 

supply of fossil fuels is also gradually 

insufficient, so renewable energy has become 

a key research area for domestic and foreign 

researchers [1],[2]. Currently, wind energy as 

a renewable energy has the advantages of 

zero pollution and zero emission. However, 

in the actual utilization of wind energy, due 

to the remote location of wind farm 

installation, harsh working environment and 

changing working conditions and other 

factors, wind farm operation and 

maintenance (O&M) costs are often high. 
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High O&M costs are increasingly becoming 

a major obstacle to the sustainable 

development of the wind power industry [3]. 

Therefore, how to develop effective fault 

diagnosis techniques for wind turbines, 

reduce the maintenance cost of wind turbines 

and improve the reliability of wind turbines 

has become a hot and difficult issue for 

research in the field of wind turbines in recent 

years. Currently, the main methods 

commonly used in the field of wind turbine 

fault diagnosis include vibration analysis and 

oil fluid analysis, as well as intelligent 

diagnostic methods based on supervisory 

control and data acquisition (SCADA) data 

[4]. However, the practical application of the 

first two methods requires the installation of 

sensors, which adds additional costs to the 

implementation of the methods. In contrast, 

SCADA data contains rich information about 

the operating status and is widely used in the 

field of wind turbine fault diagnosis. 

A novel wind turbine condition monitoring 

method based on temporal and spatial feature 

fusion of SCADA data with convolutional 

neural network (CNN) and DGCN recurrent 

unit (GRU) was proposed by Kong Z et al. [5]. 

Chen H et al. [6] proposed a method based on 

Long Short-Term Memory (LSTM) and 

Autoencoder (AE) neural networks for 

evaluating continuous condition monitoring 

data from wind turbines using SCADA 

parameters. Zhang Chen et al. [7] proposed a 

wind turbine anomaly detection and 

diagnosis method using Long Short-Term 

Memory-based Stacked Denoising Self-

Encoder (LSTM-SDAE) and Extreme 

Gradient Boost (XGBoost) to realize the 

wind turbine anomaly detection. Wen and Xu 

[8] proposed a hybrid fault diagnosis method 

based on Relief, principal component 

analysis and deep neural networks, by using 

part of the SCADA system data as input 

parameters. It is evident from the above 

literature that the use of SCADA data is often 

 

 

  

Currently, graph neural networks (GNNs) 

pay more attention to the connection 

relationship of data [9]. The concept of GNNs 

was first proposed by Scarselli et al. Its goal 

is to establish a specific network connection 

for the data stored in graph domain. Some 

traditional neural networks such as CNNs do 

not have translation invariance in non-

Euclidean structures (the same size 

convolution kernels can not be used for 

convolution). Accordingly, graph 

convolutional networks (GCNs) began to 

process such data, which makes it possible to 

perform convolution operations on irregular 

graph structures [10]

accompanied by the design and use of 

algorithms for deep learning methods. Deep 

learning algorithms in the process of data 

analysis and mining mainly focus on the 

input of vector type and can effectively deal 

with numerical features. However, deep 

learning-based models have limitations for 

handling complex data in non-Euclidean 

space with multiple subsystems. In wind 

turbine operation, faults may cause multiple 

sensor parameters to change simultaneously, 

such as temperature, oil temperature, inlet 

pressure, etc., when a gearbox bearing fails. 

These complex interactions involve multiple 

types of information relationships. Therefore, 

it is necessary to investigate more effective 

methods for modeling SCADA data in non-

Euclidean space to explore the complex 

relationships of the data. Graph neural 

networks (GNNs) are widely used in various 

fields due to the unique advantages of graphs 

in terms of data structure and relational 

representation.

. 

The similarity between the samples generates 

the adjacency matrix to be used by the GCN 

to achieve anomaly identification. Generally, 

the similarity between nodes is calculated as 

elements of the adjacency matrix by using a 

distance metric. Different distance 
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The main insights and contributions of this 

calculation methods note different 

information. Based on the distance between 

nodes the adjacency matrices can be 

constructed using metrics such as for 

example the k-nearest neighbor method [11], 

cosine similarity [12] or the Mahalanobis 

distance [13]. Different distance calculation 

methods note different information. KNN 

measures the numerical differences in the 

input data by using Euclidean distances. 

Cosine similarity is used to measure the 

directional differences in the input data.

Mahalanobis distance is used to measure the 

relative differences in the input data. 

Manhattan distance is used to measure spatial 

distance differences between input data.

Since different datasets may have different 

feature distributions and complexities, a 

single distance metric may not be able to fully 

capture all aspects of the data. Therefore, this 

paper proposes a similarity graph generation 

strategy, which generates the adjacency 

matrix by using four distance metrics and 

then fuses the matrices, integrating the 

advantages of each method. 

paper are summarized as follows: 

  

 

(1) A wind turbine anomaly recognition 

model based on DGCN is proposed. The 

model effectively captures the complex 

features of wind turbine data by dynamically 

adjusting the graph structure, which 

significantly improves the accuracy of 

anomaly detection.

 

 

 

 

 

 

This paper is organized as follows. Section 2 

introduces the theoretical background. 

Section 3 introduces the proposed matrices 

fusion strategy. Section 4 proposes the 

framework of the proposed model. Section 5 

gives the verification of the superiority of the 

proposed model. Section 6 shows the 

(3) The proposed SGG-DGCN method can 

deeply explore the correlation between the 

data to realize the identification of anomalous 

wind turbines. The proposed SGG-DGCN 

can provide support for operators to detect 

potential faults and safety hazards of wind 

turbine in time so as to reduce the risk of 

(2) A similarity graph generation strategy for 

constructing sample similarity graphs is 

proposed. Similarity graphs are generated by 

fusing multiple adjacency matrices generated 

by four common distance metrics. The 

constructed similarity graph fully represents 

the similarity between samples from multiple 

perspectives.

accidents in wind farms.

conclusion of this paper. 

Graph convolutional networks 

(GCN) 
In recent years, researchers have introduced 

graph convolutional neural networks to 

extend CNNs to non-Euclidean data, such as 

graph data. The graph convolution operation 

works by aggregating the node feature 

information of nodes and their neighboring 

nodes in the graph to obtain implicit 

representations or labels of the nodes. In the 

convolution operation, the relationships 

between the nodes are mined for feature 

representation, new node features are formed 

and nodes are updated. Eventually, the new 

node features are used to predict the labels of 

the nodes. When solving node-level tasks, the 

main focus is on learning better local 

representations for each node. In this case, 

pooling operations for graph-level tasks are 

not necessary, so we only need to concentrate 

on building the convolutional operations on 

the graph.  

In this study, we use GCN to capture the 

spatial correlation of wind power data flow. 

The role of GCN is the same as that of CNN, 

but the object of GCN is the graph data 
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consisting of nodes and edges. The structure 

of GCNs based on frequency domain 

convolution is shown in Fig. 1. 

 

Fig. 1. The structure schematic diagram of 

GCN. 

Assume that the graph data constructed from 

wind data has n nodes. Each node has a T-

dimensional sequence of wind data which 

forms a matrix n TX . The edges between 

nodes form a topological relationship 

adjacency matrix n nA . X and A will be 

used as inputs to the graph convolution model. 

GCN is a multilayer neural network, the 

propagation between layers is GCN is a 

multilayer neural network and the 

propagation between layers is as follows: 

 
1 1

( +1) ( ) ( )2 2( )l l l
−

=H D AD H W   (1) 

Where， +=A A I , I is the array of units. D 

is the degree matrix, ii ijj
=D A . ( )l

H  is 

the feature of each layer, H=X at the input 

layer. ( )l
W  is the weight matrix.   is the 

non-linear activation function Sigmoid. With 

two layers of GCN and sigmoid and ReLU, 

the overall propagation formula is as follows: 

 0 1( , ) [ ReLU( ) ]f =X A A AXW W   (2) 

Where, 
1 1

2 2
−

=A D AD
, 0 T hW is the 

weight matrix from the input layer to the 

hidden layer, h is the number of cells in the 

hidden layer. 1 h tW  is the weight matrix 

from the hidden layer to the output layer. 

( , ) n tf X A  is the output. Different from 

CNN, where the GCN convolution kernel 

acts in the nodes in the topology graph of the 

traffic network, the GCN also obtains a deep 

abstracted representation through the 

stacking of multiple graph convolution layers. 

Similarity graph generation 

strategy 
Graph data adjacency matrix generation 

methods typically use a single distance metric. 

However, different distance calculations pay 

attention to different information. A single 

distance metric may not fully capture the 

similarity information between samples. To 

address this shortcoming, this paper proposes 

a similarity graph generation (SGG) strategy 

to construct wind power data graph by fusing 

adjacency matrices constructed from multiple 

distance metrics. The proposed similarity 

graph generation strategy can capture the 

inter-sample similarity information more 

comprehensively. The wind power data co-

similarity graph is represented as a graph 
( , )G V E= .The vertex V corresponds to the 

samples and the edge E is weighted according 

to the similarity of the samples. The 

flowchart of the SGG strategy is shown in Fig. 

2. 
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Fig. 2. The structural diagram of the similarity graph generation. 

 

  

 

Multiple adjacency matrices are generated by 

KNN, cosine similarity, Mahalanobis 

distance and Manhattan distance. As shown 

in Eqs. (3-6).

Ω
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=

A D h h h h
i

man i j i j

n

ij
( , )

1

Man
   

Where, h stands for node. 

(6)

Suppose we have 

adjacency matrices, denoted as 

A A A A[ , , , ]KNN COS Mah Man . We use the Frobenius 

paradigm to calculate the distance between 

matrices. The distance between matrices can 

be defined by Eq. (7). 

 = −d A A
Fij i j   (7) 

Where, d ij  denotes the distance between 

matrices. The distance is converted to 

similarity, where the closer the distance 

between the matrices represents a higher 

degree of similarity. The conversion of 

similarity distance can be defined by Eq. (8). 

 
+

=
d

S
ij

ij
1

1
  (8) 

Where, Sij  denotes the inter matrix similarity. 

The weight matrix can be defined by Eq. (9). 

 

 
 
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 

S S S S

S S S S
W
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  (9) 

Some elements of the matrix may have much 

larger values than others and will affect the 

final result. We normalize each element in the 

weight matrix W. The normalized weight 

matrix W can be defined by Eq. (10). 

 
−

=
−

W W
W

W W
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max min
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  (10) 

An all-zero matrix F is created as the fused 

adjacency matrix and each adjacency matrix 

is traversed using a loop, which multiplies it 
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with the weights in the corresponding 

normalized weights W and adds the result to 

the fused matrix F. The fusion matrix F can 

be defined by Eq. (11). 

 = 
=

F W A
i

normalized ii

1

4

)(   (11) 

The fusion matrix F is transformed into a 

binary matrix using median thresholding.  

Assign weights to each edge based on the 

fused matrices, the weights can be 

determined based on the values of the 

elements in the adjacency matrices. Node 

features and labels also need to be added to 

the graph. The graph data constructed from 

the fused adjacency matrices will be used as 

input to the deep graph convolutional 

networks for graph feature extraction. We 

considered the advantages of each distance 

metric to fuse the adjacency matrices. This 

improves the expressiveness and robustness 

of the graph data. 

Framework 
In this paper, we propose a similarity graph 

generation (SGG) strategy for data graph 

construction of deep graph convolutional 

networks (DGCN) to realize wind turbine 

anomaly identification. The detailed steps 

and the overall framework of the proposed 

method are shown in  Fig. 3 and summarized 

as follows. 

Step 1: Data acquisition and pre-processing. 

The wind turbine status monitoring data is 

collected by SCADA system. The sample 

data is formed after preprocessing. 

Step 2: Similarity graph generation. Multiple 

adjacency matrices are generated by KNN, 

cosine similarity, Mahalanobis distance and 

Manhattan distance. The proposed SGG 

strategy fuses the generated adjacency 

matrices to generate the sample similarity 

graph. 

 

 

 

Fig. 3. Overall architecture of SGG-

Step 3: Node similarity feature extraction. 

Based on the constructed sample similarity 

graph, deep graph convolutional networks

(DGCN) are used for feature extraction of 

similar nodes. Based on the extracted features, 

similar samples are identification.
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Experiments and analysis 

 

 

   

 

Data description
In wind turbine, anomalies are primarily 

distinguished by three characteristics. The 

first type of anomaly is the “abandoned wind 

data”, where wind speeds exceeds the 

turbine's cut-in speed. This anomaly is 

characterized by a horizontal line on the 

power curve, indicating that the wind energy 

is not being utilized. The second type of 

anomaly is “overgeneration state data”, 

which is characterized by a dense band of 

output power exceeding the rated power. It 

can occur during periods of operation that 

exceed the design capacity of the turbine, 

which may shorten the life of the turbine. The 

third type of anomaly is “outliers”, which are 

isolated data points that deviate from the 

power curve due to sensor malfunctions or 

errors in data transmission. These anomalies 

are critical to identify and address for 

ensuring the optimal performance and 

longevity of wind turbines.

The data originated from the Penmanshiel 

wind farm [14]. The total data consisted of 14 

turbines and was collected from 1 January 

2021 to 1 July 2021, with samples taken 

every ten minutes. The wind speed, power 

and generator speed time series distributions 

are shown in  Fig. 4. The correlation between 

wind speed, power and generator speed is 

shown in Fig. 5. The 14 turbines have a total 

of 364,910 data samples. All abnormal 

samples are selected as experimental samples. 

Considering that the number of normal 

samples far exceeds that of abnormal samples, 

it will lead to a poor classification effect on 

abnormal samples. 

The WT SCADA systems are monitored by 

hundreds of sensors which include speed, 

  

   

 

accuracy of anomaly identification, key 

variables need to be selected. In this paper, 

Pearson's correlation coefficient is used to 

screen the variables. Parameters with strong 

correlation are retained. Parameters with 

weak or no correlation are eliminated. The 

calculation equation of Pearson correlation 

power and temperature. To improve the 

coefficient is shown in (12).

   

  
− −

=
−

N X X N Y Y
r

N XY X Y

( ) ( )2 2 2 2
 

    

   

  

(12)

  

 

Fig. 4. Wind speed and power time-series 

distribution

where, N denotes the variable sample size. X 

and Y are sensor variables. By using the 

Pearson correlation coefficient analysis, 34 

parameters are selected. The proportions of 

the training and test sets are 80% and 20%, 

respectively. Each experiment is processed 

10 times on average to reduce the effect of 

randomness.

. 

 

 

 

To eliminate differences in magnitude 

between the data and reduce bias in the data, 

we normalize the data. Data normalization 

can be defined by Eq. (13)

Fig. 5. Monitor the correlation between 

parameters.

. 
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where, x represents the normalized data. x is 

the original data. xmax  and xmin  represent the 

maximum and minimum values of the 

original data, respectively. 

  

on the desktop PC (4.6 GHz Intel i7-

Experimental conditions
In this paper, all experiments are conducted 

11800H 

processor, 32 GB RAM memory). The 

environment configuration of the experiment 

platform is shown in Table 1. 

Table 1. Experiment platform and 

environment configuration 

Experiment 

environment 
Configuration 

Operating system 
Windows 11 system 

64-bit 

CPU i7-11800H 

GPU 
NVIDIA GeForce 

RTX3080 10G 

RAM 32GB 

Development 

environment 
Python 3.10 

 

  

 

   

 

 

 

Table 2. Parameter settings of SGG-DGCN 

Configuration of SGG-DGCN

As shown in Table 2, the parameters of SGG-

DGCN are set. The batch size is set to 42. The 

dropout is utilized to prevent the overfitting 

issue. The dropout rate is set to 0.1 and the 

learning rate is set to 0.01. The DGCN model 

consists of two convolutional layers with an 

input dimension of [36,130]. The number of 

attention heads for the two convolutional 

layers is 15 and 1, respectively. The cross-

entropy loss function is used as the loss 

function. Adam is used as the optimization 

algorithm and trained for 300 epochs.

model 

Description Value 

Convolution layer1 

Convolution layer2 

loss function 

optimizer 

learning rate 

36*15 

130*1 

Cross-entropy 

Adam 

0.01 

batch size 

Activation function 

42 

ReLU 

epoch 

dropout rate 

200 

0.1 

 

 

  

 

(1) CNN. The 1D convolutional layer is 64*3. 

The maximum pooling layer is used with the 

pooling window size set as 2. The fully 

connected layer has 64 neurons. The sigmoid 

is used as the activation function for the 

binary classification task. The batch size for 

the training process is set as 42. The number 

of training iterations is set to 200. Binary 

cross entropy is used as the loss function for 

the model. Adam is used as the optimization 

Configuration of benchmark models

To validate the effectiveness and superiority 

of SGG-DGCN, four commonly used 

benchmark models, including CNN, GCN, 

SGCN and DGCN are selected to compare 

with SGG-DGCN. The experimental details 

of these benchmarks are as follows:

algorithm and learning rate is set as 0.01. 

(2) GCN. The GCN has two Conv layers. The 

network is trained over 200 epochs. NLL 

Loss is used as the loss function. Adam is 

used as the optimization algorithm and 

learning rate is set as 0.01. 

(3) SGCN and DGCN. Sparse graph 

convolutional networks improve GCN 

performance through sparsity and low-rank 

graph structure properties. The parameter 

setting of SGCN and DGCN is the same with 

GCN. 
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(4) KNN-DGCN, COS-DGCN, Mah-DGCN 

and Man-DGCN. The parameter setting of 

KNN-DGCN, COS-DGCN, Mah-DGCN and 

Man-DGCN is the same with SGG-DGCN. 

Evaluation index  
Four evaluation indexes are adopted to 

evaluate the performance of the identification 

model in this paper. They are Accuracy, 

Precision, Recall and F1-score respectively.  

The formula for the accuracy rate is shown in 

Eq. (14). 

 
+ + +

=
+

TP FP FN TN
Accuracy

TP TN
  (14) 

The formula for the precision is shown in Eq. 

(15). 

 
TP+FP

Precision=
TP

  (15) 

The formula for the recall is shown in Eq. 

(16). 

 
TP+FN

Recall=
TP

  (16) 

The formula for the F1-score is shown in Eq. 

(17).  

 
Precision+Recall

F1-score=
2*Precision*Recall

 (17) 

where, TP denotes the number of samples 

that are actually positive and labeled as 

positive. FP denotes the number of samples 

that are actually negative but labeled as 

positive. FN denotes the number of samples 

that are actually positive but labeled as 

negative. TN denotes the number of samples 

that are actually negative and labeled as 

negative. 

Results and discussion  

 

 

 

 

 

  

Similar information

The similarity information derived using a 

single method and fusing the four methods is 

shown in Fig. 6. Each non-diagonal element 

represents the weight of the connection 

between two nodes. The change in color in 

the figure indicates the magnitude of the 

connection weights. The red color represents 

high weight. The blue color represents low 

weight. As can be concluded from Fig. 6, 

each distance method captures different 

aspects of the data information. By fusing 

these four methods, the advantages of each 

method are fused.

 

Comparative analysis of models 

The testing data is input into the trained 

benchmark models and the trained SGG

Fig. 6. Similarity information derived from 

the single method and fusing the four 

methods.

-

Fuse Adjacency Matrix

Cos Adjacency MatrixKNN Adjacency Matrix

Mah Adjacency Matrix Man Adjacency Matrix
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DGCN for comparison. Each trial is repeated 

ten times to reduce the randomness of the 

experimental results. The identification 

accuracies of the ten trials are shown in Fig. 

7. The confusion matrix for each model is 

shown in Fig. 8. Besides that, the mean 

accuracy and standard deviation of utilized 

models are illustrated in Table 3. Other 

assessment indicators are shown in Table 4. 

 

Fig. 7. Accuracies of different models in ten trials.

 

Fig. 8. Three-dimensional confusion matrices in the testing data. 
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Table 3. Accuracy and standard deviation of different models 

Model 

Accuracy 
CNN GCN SGCN DGCN 

SGG-

DGCN 

Mean 91.06% 92.10% 92.55% 94.10% 97.44% 

Std 2.58 2.56 2.28 1.43 0.83 

Table 4. Evaluation indexes of five models 

Method Precision  Recall  F1-score 

CNN 90.39% 91.87% 91.12% 

GCN 90.67% 93.88% 92.25% 

SGCN 91.59% 93.71% 92.68% 

DGCN 93.79% 94.44% 94.02% 

SGG-

DGCN 
97.74% 97.12% 97.43% 

 

 

Fig. 9. Evaluation indexes for different 

models on the testing data. 

We compare the proposed SGG-DGCN with 

four benchmark models such as CNN, GCN, 

SGCN, DGCN and SGG-DGCN to analyze 

the performance of the model. The results in 

Fig. 7 show that compared to the other four 

benchmark models, the SGG-DGCN model 

has the highest identification accuracy in ten 

trials. As shown in Fig. 8, the confusion 

matrix visualizes the recognition results, 

where the columns and rows represent the 

true and predicted states of the samples, 

respectively. The analysis shows that the 

SGG-DGCN method recognizes more than 

97% of the anomalous categories. 

As can be seen in Fig. 9, the SGG-DGCN has 

greatly improved the recall and F1-score 

compared to the other four models. The SGG-

DGCN model has the best identification 

performance. 

To more quantitatively evaluate the 

performance of the benchmark models, other 

indexes of the benchmark models are 

calculated. In terms of accuracy, the average 

identification accuracy of CNN, GCN, 

SGCN, DGCN and SGG-DGCN are 91.06%, 

92.10%, 92.55%, 94.10% and 97.44%, 

respectively. Compared with CNN, GCN, 

SGCN and DGCN, the average identification 

accuracy of SGG-DGCN is improved by 

6.38%, 5.34%, 4.89% and 3.34%, 

respectively. The standard deviation of CNN, 

GCN, SGCN, DGCN and SGG-DGCN are 

2.58, 2.56, 2.28, 1.43 and 0.83, respectively. 

Compared with CNN, GCN, SGCN and 

DGCN, the SGG-DGCN has the smallest 

standard deviation. Above results 

demonstrate that the SGG-DGCN model has 

the best identification accuracy and 

robustness compared with the other four 

benchmark models.  

In terms of precision, the precision of CNN, 

GCN, SGCN, DGCN and SGG-DGCN are 

90.39%, 90.67%, 91.59%, 93.79% and 

97.74%, respectively. Compared with CNN, 

GCN, SGCN and DGCN, the precision of 

Accuracy Precision Recall F1
60

70

80
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100
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SGG-DGCN is improved by 7.35%, 7.07%, 

6.15% and 3.95%, respectively. In terms of 

recall, the recall of CNN, GCN, SGCN, 

DGCN and SGG-DGCN are 91.87%, 93.88%, 

93.71%, 94.44% and 97.12%, respectively. 

Compared with CNN, GCN, SGCN and 

DGCN, the recall of SGG-DGCN is 

improved by 5.25%, 3.24%, 3.41% and 

2.68%, respectively. In terms of F1-score, the 

F1-score of CNN, GCN, SGCN, DGCN and 

SGG-DGCN are 91.12%, 92.25%, 92.68%, 

94.02% and 97.43%, respectively. Compared 

with CNN, GCN, SGCN and DGCN, the F1-

score of SGG-DGCN is improved by 6.31%, 

5.18%, 4.75% and 3.41%.  

From all the above evaluations, it is clear that 

the performance of the DGCN model using 

the distance formula to build the adjacency 

matrices is improved compared to the basic 

DGCN model. To summarize, the proposed 

SGG-DGCN model has the best precision, 

recall and F1-score. The proposed model can 

be well applied to the anomaly detection of 

wind turbines. 

 

  

 

 

Analysis of ablation experiments

In order to further validate the effectiveness 

of the proposed SGG strategy, the four model 

are used to compare with the proposed SGG-

DGCN model. Each trial is repeated ten times 

to reduce the randomness of the experimental 

results. The identification accuracies of the 

ten trials are shown in Fig. 10. The confusion 

matrix for each model is shown in Fig. 11. 

Besides that, the mean accuracy and standard 

deviation of utilized models are illustrated in 

Table 5. Other assessment indicators are 

shown in Table 6.

 

 Fig. 10. Accuracies of different models in ten trials.
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Fig. 11. Three-dimensional confusion matrices in the testing data.

Table 5. Accuracy and standard deviation of different models

 Model

 Accuracy   

KNN-

DGCN

COS-

DGCN  

Mah-

DGCN  

Man-

DGCN  

SGG-

DGCN

      

 

Mean

Std  

96.65%

0.98  

94.23%

1.32  

95.44%

1.04  

94.57%

1.39  

97.44%

0.83

    Table 6. Evaluation indexes of five models

  Method  Precision     Recall    F1-score

    

    

    

 

KNN-DGCN

COS-DGCN

Mah-DGCN

Man-DGCN  

95.88%

93.88%

95.64%

94.11%  

95.89%

94.66%

95.21%

95.10%  

 

95.27%

94.87%

95.42%

94.60%

SGG-DGCN  97.94%  97.12%  97.43%
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Fig. 12. Accuracy distribution of different 

models in ten trials.

 

 

 

 

  

 

 

 

 

Fig. 13. Evaluation indexes for different 

models on the testing data.

 

 

 

 

 

 

 

  

As shown in Table 5, in terms of accuracy, 

the average identification accuracy of KNN-

DGCN, COS-DGCN, Mah-DGCN, Man-

DGCN and SGG-DGCN are 95.65%, 94.23%, 

95.44%, 94.57% and 97.44%, respectively. 

Compared with KNN-DGCN, COS-DGCN, 

Mah-DGCN and Man-DGCN, the average 

identification accuracy of SGG-DGCN is 

improved by 1.79%, 3.21%, 2% and 1.87%, 

respectively. The standard deviation of KNN-

DGCN, COS-DGCN, Mah-DGCN, Man-

DGCN and SGG-DGCN are 0.98, 1.32, 1.04, 

1.39 and 0.83, respectively. Compared with 

KNN-DGCN, COS-DGCN, Mah-DGCN and 

Man-DGCN, the standard deviation of SGG-

DGCN is reduced by 0.15, 0.49, 0.21 and 

The KNN-DGCN, COS-DGCN, Mah-

DGCN and Man-DGCN are used to compare 

with the proposed SGG-DGCN model. The 

results in Fig. 10 show that compared to the  

five models, the SGG-DGCN model has the 

highest identification accuracy in ten trials. 

The confusion matrix for each model is 

shown in Fig. 11. The analysis shows that the 

SGG-DGCN method recognizes more than 

97% of the anomaly categories and has the 

highest recognition accuracy in each category 

compared to other models. The Fig. 12 shows 

that the proposed model with SGG strategy 

has the smallest fluctuation range of accuracy 

value compared with the other four models. 

In Fig. 13, the results show that the evaluation 

indexes of the proposed model with SSG

strategy are higher than all models. 

0.56, respectively. 

 

 

In terms of precision, the precision of KNN-

DGCN, COS-DGCN, Mah-DGCN, Man-

DGCN and SGG-DGCN are 95.88%, 93.88%, 

95.64%, 94.11% and 97.44% respectively. 

Compared with KNN-DGCN, COS-DGCN, 

Mah-DGCN and Man-DGCN, the precision 

of SGG-DGCN is improved by 1.56%, 

3.56%, 1.8% and 3.33%, respectively. 

 

  

The recall of KNN-DGCN, COS-DGCN, 

Mah-DGCN, Man-DGCN and SGG-DGCN 

are 95.89%, 94.66%, 95.21%, 95.10% and 

97.12%, respectively. Compared with KNN-

DGCN, COS-DGCN, Mah-DGCN and Man-

DGCN, the recall of SGG-DGCN is 

improved by 3.78%, 1.58%, 3.53%, 3.74% 

and 0.64%, respectively. 

 

Apart from this, the F1-score of KNN-DGCN, 

COS-DGCN, Mah-DGCN, Man-DGCN and 

SGG-DGCN are 94.58%, 95.89%, 94.72%, 

94.62%, 96.84% and 97.20%, respectively. 

Compared with KNN-DGCN, COS-DGCN, 

Mah-DGCN and Man-DGCN, the SGG-

DGCN is improved by 1.23%, 2.46%, 1.91% 

and 2.02%, respectively. 
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Conclusion  
In this paper, a similarity graph generation 

(SGG) strategy is proposed. Combining SGG 

strategy and DGCN for anomaly 

identification of wind turbines. By adopting 

the SGG strategy, the feature extraction 

ability of the proposed SGG-DGCN model is 

greatly improved to realize the high anomaly 

identification accuracy of wind turbines. A 

lot of experiments are conducted to validate 

the effectiveness of SGG-DGCN. The 

The identification performance of the DGCN 

model is further improved by using the 

proposed SGG strategy with the highest 

values in all evaluation metrics compared to 

a single distance metric. For wind turbine 

anomaly identification, the DGCN model 

with the proposed SGG strategy has the best 

identification accuracy and stability.

experimental results indicate that compared 

with other benchmark methods, the proposed 

SGG-DGCN method has the highest 

identification accuracy and stability. The 

accuracy of our proposed method can reach 

up to 97.2%. Compared with CNN, GCN, 

SGCN and DGCN, the average identification 

accuracy of SGG-DGCN is improved by 

6.38%, 5.34%, 4.89% and 3.34%, 

respectively. The SGG-DGCN model has the 

highest anomaly identification accuracy. In 

addition, ablation experiments to validate the 

effectiveness of the proposed SGG strategy 

are also conducted. Ablation experiments 

demonstrate that by utilizing the proposed 

SGG strategy, the average identification 

accuracy of SGG-DGCN can be effectively 

improved by 1.79%, 3.21%, 2% and 1.87% 

compared with KNN-DGCN, COS-DGCN, 

Mah-DGCN and Man-DGCN, respectively. 

The proposed SGG strategy can effectively 

improve the accuracy and reliability of 

anomaly identification and realize the stable 

anomaly identification of wind turbines. It 

 

 

 

provides a guarantee for the safe and reliable 

operation of wind turbines. The study's 

constraints lie in its focus solely on sample 

similarity, neglecting a deeper analysis of 

individual data patterns. Additionally, the 

method's efficiency could be enhanced, 

warranting further investigation into 

optimizing its lightweight design.
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