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Abstract: In order to minimize wind turbine failures, fault diagnosis of wind turbines is becoming increasingly
important, deep learning methods excel at multivariate monitoring and data modeling, but they are often limited to
Euclidean space and struggle to capture the complex coupling between wind turbine sensors. To address
this problem, we convert SCADA data into graph data, where sensors act as nodes and their topological
connections act as edges, to represent these complex relationships more efficiently. Specifically, a wind turbine
anomaly identification method based on deep graph convolutional neural network using similarity graph
generation strategy (SGG-DGCN) is proposed. Firstly, a plurality of similarity graphs containing similarity
information between nodes are generated by different distance metrics. Then, the generated similarity graphs are
fused using the proposed similarity graph generation strategy. Finally, the fused similarity graphs are fed into the
DGCN model for anomaly identification. To verify the effectiveness of the proposed SGG-DGCN model,
we conducted a large number of experiments. The experimental results show that the proposed SGG-DGCN
model has the highest accuracy compared with other models. In addition, the results of ablation experiment
also demonstrate that the proposed SGG strategy can effectively improve the accuracy of WT anomaly
identification.
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I. INTRODUCTION
In recent years, the global ecological environment has been
deteriorating and the supply of fossil fuels is also gradually
insufficient, so renewable energy has become a key research
area for domestic and foreign researchers [1,2]. Currently,
wind energy as a renewable energy has the advantages of
zero pollution and zero emission. However, in the actual
utilization of wind energy, due to the remote location of
wind farm installation, harsh working environment and
changing working conditions and other factors, wind
farm operation and maintenance (O&M) costs are often
high. High O&M costs are increasingly becoming a major
obstacle to the sustainable development of the wind power
industry [3]. Therefore, how to develop effective fault
diagnosis techniques for wind turbines, reduce the mainte-
nance cost of wind turbines and improve the reliability of
wind turbines has become a hot and difficult issue for
research in the field of wind turbines in recent years.
Currently, the main methods commonly used in the field
of wind turbine fault diagnosis include vibration analysis
and oil fluid analysis, as well as intelligent diagnostic
methods based on supervisory control and data acquisition
(SCADA) data [4]. However, the practical application of
the first two methods requires the installation of sensors,
which adds additional costs to the implementation of the
methods. In contrast, SCADA data contains rich informa-
tion about the operating status and is widely used in the field
of wind turbine fault diagnosis.

A novel wind turbine condition monitoring method
based on temporal and spatial feature fusion of SCADA
data with convolutional neural network (CNN) and DGCN
recurrent unit (GRU) was proposed by Kong Z et al. [5].
Chen H et al. [6] proposed a method based on Long Short-
Term Memory (LSTM) and Autoencoder (AE) neural net-
works for evaluating continuous condition monitoring data
from wind turbines using SCADA parameters. Zhang Chen
et al. [7] proposed a wind turbine anomaly detection and
diagnosis method using Long Short-Term Memory-based
Stacked Denoising Self-Encoder (LSTM-SDAE) and
Extreme Gradient Boost (XGBoost) to realize the wind
turbine anomaly detection. Wen and Xu [8] proposed a
hybrid fault diagnosis method based on Relief, principal
component analysis and deep neural networks, by using
part of the SCADA system data as input parameters. It is
evident from the above literature that the use of SCADA
data is often accompanied by the design and use of
algorithms for deep learning methods. Deep learning algo-
rithms in the process of data analysis and mining mainly
focus on the input of vector type and can effectively deal
with numerical features. However, deep learning-based
models have limitations for handling complex data in non-
Euclidean space with multiple subsystems. In wind turbine
operation, faults may cause multiple sensor parameters to
change simultaneously, such as temperature, oil tempera-
ture, inlet pressure, etc., when a gearbox bearing fails.
These complex interactions involve multiple types of
information relationships. Therefore, it is necessary to
investigate more effective methods for modeling SCADA
data in non-Euclidean space to explore the complex rela-
tionships of the data. Graph neural networks (GNNs) are
widely used in various fields due to the unique advantagesCorresponding author: Di Zhou (e-mail: zhoudi@wzu.edu.cn).
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of graphs in terms of data structure and relational
representation.

Currently, graph neural networks (GNNs) pay more
attention to the connection relationship of data [9]. The
concept of GNNs was first proposed by Scarselli et al. Its
goal is to establish a specific network connection for the
data stored in graph domain. Some traditional neural net-
works such as CNNs do not have translation invariance in
non-Euclidean structures (the same size convolution ker-
nels can not be used for convolution). Accordingly, graph
convolutional networks (GCNs) began to process such data,
which makes it possible to perform convolution operations
on irregular graph structures [10].

The similarity between the samples generates the
adjacency matrix to be used by the GCN to achieve
anomaly identification. Generally, the similarity between
nodes is calculated as elements of the adjacency matrix by
using a distance metric. Different distance calculation
methods note different information. Based on the distance
between nodes the adjacency matrices can be constructed
using metrics such as for example the k-nearest neighbor
method [11], cosine similarity [12] or the Mahalanobis
distance [13]. Different distance calculation methods note
different information. KNN measures the numerical differ-
ences in the input data by using Euclidean distances. Cosine
similarity is used to measure the directional differences in
the input data. Mahalanobis distance is used to measure the
relative differences in the input data. Manhattan distance is
used to measure spatial distance differences between input
data. Since different datasets may have different feature
distributions and complexities, a single distance metric may
not be able to fully capture all aspects of the data. Therefore,
this paper proposes a similarity graph generation strategy,
which generates the adjacency matrix by using four dis-
tance metrics and then fuses the matrices, integrating the
advantages of each method.

The main insights and contributions of this paper are
summarized as follows:

(1) A wind turbine anomaly recognition model based on
DGCN is proposed. The model effectively captures
the complex features of wind turbine data by dynam-
ically adjusting the graph structure, which signifi-
cantly improves the accuracy of anomaly detection.

(2) A similarity graph generation strategy for construct-
ing sample similarity graphs is proposed. Similarity
graphs are generated by fusing multiple adjacency
matrices generated by four common distance metrics.
The constructed similarity graph fully represents
the similarity between samples from multiple
perspectives.

(3) The proposed SGG-DGCN method can deeply
explore the correlation between the data to realize
the identification of anomalous wind turbines. The
proposed SGG-DGCN can provide support for op-
erators to detect potential faults and safety hazards of
wind turbine in time so as to reduce the risk of
accidents in wind farms.

This paper is organized as follows. Section II introduces the
theoretical background. Section III introduces the proposed
matrices fusion strategy. Section IV proposes the frame-
work of the proposed model. Section V gives the verifica-
tion of the superiority of the proposed model. Section VI
shows the conclusion of this paper.

II. GRAPH CONVOLUTIONAL
NETWORKS (GCN)

In recent years, researchers have introduced graph convolu-
tional neural networks to extend CNNs to non-Euclidean
data, such as graph data. The graph convolution operation
works by aggregating the node feature information of nodes
and their neighboring nodes in the graph to obtain implicit
representations or labels of the nodes. In the convolution
operation, the relationships between the nodes are mined for
feature representation, new node features are formed and
nodes are updated. Eventually, the new node features are
used to predict the labels of the nodes. When solving node-
level tasks, the main focus is on learning better local
representations for each node. In this case, pooling opera-
tions for graph-level tasks are not necessary, so we only
need to concentrate on building the convolutional opera-
tions on the graph.

In this study, we use GCN to capture the spatial
correlation of wind power data flow. The role of GCN is
the same as that of CNN, but the object of GCN is the graph
data consisting of nodes and edges. The structure of GCNs
based on frequency domain convolution is shown in Fig. 1.

Assume that the graph data constructed from wind data
has n nodes. Each node has a T-dimensional sequence of
wind data which forms a matrix X ∈ ℝn×T . The edges
between nodes form a topological relationship adjacency
matrixA ∈ ℝn×n.X andAwill be used as inputs to the graph
convolution model. GCN is a multilayer neural network,
the propagation between layers is GCN is a multilayer
neural network and the propagation between layers is as
follows:

Hðl+1Þ = σðD−1
2AD

1
2HðlÞWðlÞÞ (1)

Where, eA = A + I, I is the array of units. D is the degree
matrix, Dii =

P
j
eAij. HðlÞ is the feature of each layer, H=X

at the input layer. WðlÞ is the weight matrix. σ is the non-
linear activation function Sigmoid. With two layers of GCN
and sigmoid and ReLU, the overall propagation formula is
as follows:

f ðX,AÞ = σ½eAReLUðeAXW0ÞW1� (2)

Where, eA = D−1
2eAD1

2, W0 ∈ ℝT×his the weight matrix from
the input layer to the hidden layer, h is the number of cells in
the hidden layer. W1 ∈ ℝh×t is the weight matrix from the
hidden layer to the output layer. f ðX, AÞ ∈ ℝn×t is the
output. Different from CNN, where the GCN convolution
kernel acts in the nodes in the topology graph of the traffic
network, the GCN also obtains a deep abstracted represen-
tation through the stacking of multiple graph convolution
layers.
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Fig. 1. The structure schematic diagram of GCN.
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III. SIMILARITY GRAPH GENERATION
STRATEGY

Graph data adjacency matrix generation methods typically
use a single distance metric. However, different distance
calculations pay attention to different information. A single
distance metric may not fully capture the similarity infor-
mation between samples. To address this shortcoming, this
paper proposes a similarity graph generation (SGG) strat-
egy to construct wind power data graph by fusing adjacency
matrices constructed from multiple distance metrics. The
proposed similarity graph generation strategy can capture
the inter-sample similarity information more comprehen-
sively. The wind power data co-similarity graph is repre-
sented as a graph G = ðV , EÞ. The vertex V corresponds to
the samples and the edge E is weighted according to the
similarity of the samples. The flowchart of the SGG strategy
is shown in Fig. 2.

Multiple adjacency matrices are generated by KNN,
cosine similarity, Mahalanobis distance and Manhattan
distance. As shown in equations (3–6).

Lij =
�Xd

i=1

���hðLÞi − hðLÞj

���2�1
2

AKNN
ij = KNNðk,Lij,ΩiÞ (3)

ACOS
ij

= cosðhi,hjÞ =
hi · hj
jhijjhjj

(4)

AMah
ij

= DMðhi,hjÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhi − hjÞTε−1ðhi − hjÞ

q
(5)

AMan
ij

= Dmanðhi,hjÞ =
Xn
i=1

jhi − hjj (6)

Where, h stands for node. Suppose we have adjacency
matrices, denoted as ½AKNN,ACOS,AMah,AMan�. We use the
Frobenius paradigm to calculate the distance between
matrices. The distance between matrices can be defined
by equation (7).

dij = kAi − AjkF (7)

Where, dij denotes the distance between matrices. The
distance is converted to similarity, where the closer the
distance between the matrices represents a higher degree of

similarity. The conversion of similarity distance can be
defined by equation (8).

Sij =
1

1 + dij
(8)

Where, Sij denotes the inter matrix similarity. The weight
matrix can be defined by equation (9).

W =

2
664
S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

3
775 (9)

Some elements of the matrix may have much larger
values than others and will affect the final result. We
normalize each element in the weight matrix W. The
normalized weight matrix W can be defined by equa-
tion (10).

Wnormalized =
W −Wmin

Wmax −Wmin
(10)

An all-zero matrix F is created as the fused adjacency
matrix and each adjacency matrix is traversed using a loop,
which multiplies it with the weights in the corresponding
normalized weights W and adds the result to the fused
matrix F. The fusion matrix F can be defined by equa-
tion (11).

F =
X4
i=1

�
Wnormalizedi × Ai

�
(11)

The fusion matrix F is transformed into a binary matrix
using median thresholding.

Assign weights to each edge based on the fused
matrices, the weights can be determined based on the values
of the elements in the adjacency matrices. Node features
and labels also need to be added to the graph. The graph
data constructed from the fused adjacency matrices will be
used as input to the deep graph convolutional networks for
graph feature extraction. We considered the advantages of
each distance metric to fuse the adjacency matrices. This
improves the expressiveness and robustness of the
graph data.

IV. FRAMEWORK
In this paper, we propose a similarity graph generation
(SGG) strategy for data graph construction of deep graph

Fig. 2. The structural diagram of the similarity graph generation.
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convolutional networks (DGCN) to realize wind turbine
anomaly identification. The detailed steps and the overall
framework of the proposed method are shown in Fig. 3 and
summarized as follows.

Step 1: Data acquisition and pre-processing. The wind
turbine status monitoring data is collected by SCADA
system. The sample data is formed after preprocessing.

Step 2: Similarity graph generation. Multiple adja-
cency matrices are generated by KNN, cosine similarity,
Mahalanobis distance and Manhattan distance. The pro-
posed SGG strategy fuses the generated adjacency matrices
to generate the sample similarity graph.

Step 3: Node similarity feature extraction. Based on the
constructed sample similarity graph, deep graph convolu-
tional networks (DGCN) are used for feature extraction of
similar nodes. Based on the extracted features, similar
samples are identification.

V. EXPERIMENTS AND ANALYSIS
A. DATA DESCRIPTION

In wind turbine, anomalies are primarily distinguished by
three characteristics. The first type of anomaly is the
“abandoned wind data”, where wind speeds exceeds the
turbine’s cut-in speed. This anomaly is characterized by a
horizontal line on the power curve, indicating that the wind
energy is not being utilized. The second type of anomaly is
“overgeneration state data”, which is characterized by a
dense band of output power exceeding the rated power. It
can occur during periods of operation that exceed the design
capacity of the turbine, which may shorten the life of the
turbine. The third type of anomaly is “outliers”, which are
isolated data points that deviate from the power curve due to
sensor malfunctions or errors in data transmission. These
anomalies are critical to identify and address for ensuring
the optimal performance and longevity of wind turbines.

The data originated from the Penmanshiel wind farm
[14]. The total data consisted of 14 turbines and was
collected from 1 January 2021 to 1 July 2021, with samples
taken every ten minutes. The wind speed, power and
generator speed time series distributions are shown in
Fig. 4. The correlation between wind speed, power and

generator speed is shown in Fig. 5. The 14 turbines have a
total of 364,910 data samples. All abnormal samples are
selected as experimental samples. Considering that the
number of normal samples far exceeds that of abnormal
samples, it will lead to a poor classification effect on
abnormal samples.

The WT SCADA systems are monitored by hundreds
of sensors which include speed, power and temperature. To
improve the accuracy of anomaly identification, key vari-
ables need to be selected. In this paper, Pearson’s correla-
tion coefficient is used to screen the variables. Parameters
with strong correlation are retained. Parameters with weak
or no correlation are eliminated. The calculation equation of
Pearson correlation coefficient is shown in (12).

r =
N
P

XY −
P

X
P

Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

X2 − ðPXÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P

Y2 − ðP YÞ2
p (12)

where, N denotes the variable sample size. X and Y are
sensor variables. By using the Pearson correlation coeffi-
cient analysis, 34 parameters are selected. The proportions
of the training and test sets are 80% and 20%, respectively.
Each experiment is processed 10 times on average to reduce
the effect of randomness.

To eliminate differences in magnitude between the data
and reduce bias in the data, we normalize the data. Data
normalization can be defined by equation (13).

x 0 =
x − xmin

xmax − xmin
(13)

where, x 0 represents the normalized data. x is the original
data. xmax and xmin represent the maximum and minimum
values of the original data, respectively.

Fig. 3. Overall architecture of SGG-DGCN.
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Fig. 4. Wind speed and power time-series distribution.
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B. EXPERIMENTAL CONDITIONS

In this paper, all experiments are conducted on the desktop
PC (4.6 GHz Intel i7-11800H processor, 32 GB RAM
memory). The environment configuration of the experiment
platform is shown in Table I.

1. CONFIGURATION OF SGG-DGCN. As shown in
Table II, the parameters of SGG-DGCN are set. The batch
size is set to 42. The dropout is utilized to prevent the
overfitting issue. The dropout rate is set to 0.1 and the
learning rate is set to 0.01. The DGCN model consists of
two convolutional layers with an input dimension of
[36, 130]. The number of attention heads for the two
convolutional layers is 15 and 1, respectively. The cross-
entropy loss function is used as the loss function. Adam is
used as the optimization algorithm and trained for 300
epochs.

2. CONFIGURATION OF BENCHMARK MODELS. To
validate the effectiveness and superiority of SGG-DGCN,
four commonly used benchmark models, including CNN,
GCN, SGCN and DGCN are selected to compare with
SGG-DGCN. The experimental details of these bench-
marks are as follows:

(1) CNN. The 1D convolutional layer is 64*3. The maxi-
mum pooling layer is used with the pooling window
size set as 2. The fully connected layer has 64 neurons.
The sigmoid is used as the activation function for the
binary classification task. The batch size for the train-
ing process is set as 42. The number of training
iterations is set to 200. Binary cross entropy is used
as the loss function for the model. Adam is used as the
optimization algorithm and learning rate is set as 0.01.

(2) GCN. The GCN has two Conv layers. The network is
trained over 200 epochs. NLL Loss is used as the loss
function. Adam is used as the optimization algorithm
and learning rate is set as 0.01.

(3) SGCN and DGCN. Sparse graph convolutional net-
works improve GCN performance through sparsity
and low-rank graph structure properties. The param-
eter setting of SGCN and DGCN is the same
with GCN.

(4) KNN-DGCN, COS-DGCN, Mah-DGCN and Man-
DGCN. The parameter setting of KNN-DGCN, COS-
DGCN, Mah-DGCN and Man-DGCN is the same
with SGG-DGCN.

C. EVALUATION INDEX

Four evaluation indexes are adopted to evaluate the perfor-
mance of the identification model in this paper. They are
Accuracy, Precision, Recall and F1-score respectively.

The formula for the accuracy rate is shown in equa-
tion (14).

Accuracy =
TP + TN

TP + FP + FN + TN
(14)

The formula for the precision is shown in equation (15).

Precision =
TP

TP + FP
(15)

The formula for the recall is shown in equation (16).

Recall =
TP

TP + FN
(16)
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Fig. 5. Monitor the correlation between parameters.

Table I. Experiment platform and environment
configuration

Experiment environment Configuration

Operating system Windows 11 system 64-bit

CPU i7-11800H

GPU NVIDIA GeForce
RTX3080 10G

RAM 32GB

Development environment Python 3.10

Table II. Parameter settings of SGG-DGCN model

Description Value

Convolution layer1 36*15

Convolution layer2 130*1

loss function Cross-entropy

optimizer Adam

learning rate 0.01

batch size 42

Activation function ReLU

epoch 200

dropout rate 0.1
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The formula for the F1-score is shown in equation (17).

F1-score =
2 � Precision � Recall
Precision + Recall

(17)

where, TP denotes the number of samples that are actually
positive and labeled as positive. FP denotes the number of
samples that are actually negative but labeled as positive.
FN denotes the number of samples that are actually positive
but labeled as negative. TN denotes the number of samples
that are actually negative and labeled as negative.

VI. RESULTS AND DISCUSSION
A. SIMILAR INFORMATION

The similarity information derived using a single method
and fusing the four methods is shown in Fig. 6. Each non-
diagonal element represents the weight of the connection
between two nodes. The change in color in the figure
indicates the magnitude of the connection weights. The
red color represents high weight. The blue color represents
low weight. As can be concluded from Fig. 6, each distance
method captures different aspects of the data information.
By fusing these four methods, the advantages of each
method are fused.

B. COMPARATIVE ANALYSIS OF MODELS

The testing data is input into the trained benchmark models
and the trained SGG-DGCN for comparison. Each trial is
repeated ten times to reduce the randomness of the experi-
mental results. The identification accuracies of the ten trials
are shown in Fig. 7. The confusion matrix for each model is
shown in Fig. 8. Besides that, the mean accuracy and
standard deviation of utilized models are illustrated in
Table III. Other assessment indicators are shown in
Table IV.

We compare the proposed SGG-DGCN with four
benchmark models such as CNN, GCN, SGCN, DGCN
and SGG-DGCN to analyze the performance of the model.
The results in Fig. 7 show that compared to the other four
benchmark models, the SGG-DGCN model has the highest
identification accuracy in ten trials. As shown in Fig. 8, the
confusion matrix visualizes the recognition results, where
the columns and rows represent the true and predicted states
of the samples, respectively. The analysis shows that the
SGG-DGCN method recognizes more than 97% of the
anomalous categories.

As can be seen in Fig. 9, the SGG-DGCN has greatly
improved the recall and F1-score compared to the other four
models. The SGG-DGCN model has the best identification
performance.

To more quantitatively evaluate the performance of
the benchmark models, other indexes of the benchmark
models are calculated. In terms of accuracy, the average
identification accuracy of CNN, GCN, SGCN, DGCN and

Man Adjacency MatrixMah Adjacency Matrix

KNN Adjacency Matrix Cos Adjacency Matrix

Fuse Adjacency Matrix

Fig. 6. Similarity information derived from the single method
and fusing the four methods.
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Fig. 7. Accuracies of different models in ten trials.
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SGG-DGCN are 91.06%, 92.10%, 92.55%, 94.10% and
97.44%, respectively. Compared with CNN, GCN, SGCN
and DGCN, the average identification accuracy of SGG-
DGCN is improved by 6.38%, 5.34%, 4.89% and 3.34%,
respectively. The standard deviation of CNN, GCN, SGCN,
DGCN and SGG-DGCN are 2.58, 2.56, 2.28, 1.43 and
0.83, respectively. Compared with CNN, GCN, SGCN and
DGCN, the SGG-DGCN has the smallest standard devia-
tion. Above results demonstrate that the SGG-DGCN
model has the best identification accuracy and robustness
compared with the other four benchmark models.

In terms of precision, the precision of CNN, GCN,
SGCN, DGCN and SGG-DGCN are 90.39%, 90.67%,

91.59%, 93.79% and 97.74%, respectively. Compared
with CNN, GCN, SGCN and DGCN, the precision of
SGG-DGCN is improved by 7.35%, 7.07%, 6.15% and
3.95%, respectively. In terms of recall, the recall of CNN,
GCN, SGCN, DGCN and SGG-DGCN are 91.87%,
93.88%, 93.71%, 94.44% and 97.12%, respectively. Com-
pared with CNN, GCN, SGCN and DGCN, the recall of
SGG-DGCN is improved by 5.25%, 3.24%, 3.41% and
2.68%, respectively. In terms of F1-score, the F1-score of
CNN, GCN, SGCN, DGCN and SGG-DGCN are 91.12%,
92.25%, 92.68%, 94.02% and 97.43%, respectively.
Compared with CNN, GCN, SGCN and DGCN, the F1-
score of SGG-DGCN is improved by 6.31%, 5.18%, 4.75%
and 3.41%.

From all the above evaluations, it is clear that the
performance of the DGCN model using the distance for-
mula to build the adjacency matrices is improved compared
to the basic DGCN model. To summarize, the proposed
SGG-DGCN model has the best precision, recall and
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Fig. 8. Three-dimensional confusion matrices in the testing data.

Table III. Accuracy and standard deviation of different
models

Model

Accuracy CNN GCN SGCN DGCN
SGG-
DGCN

Mean 91.06% 92.10% 92.55% 94.10% 97.44%

Std 2.58 2.56 2.28 1.43 0.83

Table IV. Evaluation indexes of five models

Method Precision Recall F1-score

CNN 90.39% 91.87% 91.12%

GCN 90.67% 93.88% 92.25%

SGCN 91.59% 93.71% 92.68%

DGCN 93.79% 94.44% 94.02%

SGG-DGCN 97.74% 97.12% 97.43%

Accuracy Precision Recall F160

70

80

90

100
SGCN DGCN SGG-DGCNCNN GCN

Fig. 9. Evaluation indexes for different models on the testing
data.
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F1-score. The proposed model can be well applied to the
anomaly detection of wind turbines.

C. ANALYSIS OF ABLATION EXPERIMENTS

In order to further validate the effectiveness of the proposed
SGG strategy, the four model are used to compare with the
proposed SGG-DGCN model. Each trial is repeated ten
times to reduce the randomness of the experimental results.
The identification accuracies of the ten trials are shown in
Fig. 10. The confusion matrix for each model is shown in
Fig. 11. Besides that, the mean accuracy and standard
deviation of utilized models are illustrated in Table V.
Other assessment indicators are shown in Table VI.

The KNN-DGCN, COS-DGCN, Mah-DGCN and
Man-DGCN are used to compare with the proposed SGG-

DGCNmodel. The results in Fig. 10 show that compared to
the five models, the SGG-DGCN model has the highest
identification accuracy in ten trials. The confusion matrix
for each model is shown in Fig. 11. The analysis shows that
the SGG-DGCN method recognizes more than 97% of
the anomaly categories and has the highest recognition
accuracy in each category compared to other models.
The Fig. 12 shows that the proposed model with SGG
strategy has the smallest fluctuation range of accuracy value
compared with the other four models. In Fig. 13, the results
show that the evaluation indexes of the proposed model
with SSG strategy are higher than all models.

As shown in Table V, in terms of accuracy, the average
identification accuracy of KNN-DGCN, COS-DGCN,
Mah-DGCN, Man-DGCN and SGG-DGCN are 95.65%,
94.23%, 95.44%, 94.57% and 97.44%, respectively.
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Fig. 10. Accuracies of different models in ten trials.
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Compared with KNN-DGCN, COS-DGCN, Mah-DGCN
and Man-DGCN, the average identification accuracy of
SGG-DGCN is improved by 1.79%, 3.21%, 2% and
1.87%, respectively. The standard deviation of KNN-
DGCN, COS-DGCN, Mah-DGCN, Man-DGCN and
SGG-DGCN are 0.98, 1.32, 1.04, 1.39 and 0.83, respec-
tively. Compared with KNN-DGCN, COS-DGCN, Mah-
DGCN and Man-DGCN, the standard deviation of SGG-
DGCN is reduced by 0.15, 0.49, 0.21 and 0.56, respectively.

In terms of precision, the precision of KNN-DGCN,
COS-DGCN, Mah-DGCN, Man-DGCN and SGG-DGCN
are 95.88%, 93.88%, 95.64%, 94.11% and 97.44%
respectively. Compared with KNN-DGCN, COS-DGCN,
Mah-DGCN and Man-DGCN, the precision of SGG-
DGCN is improved by 1.56%, 3.56%, 1.8% and 3.33%,
respectively.

The recall of KNN-DGCN, COS-DGCN,Mah-DGCN,
Man-DGCN and SGG-DGCN are 95.89%, 94.66%,
95.21%, 95.10% and 97.12%, respectively. Compared
with KNN-DGCN, COS-DGCN, Mah-DGCN and Man-
DGCN, the recall of SGG-DGCN is improved by 3.78%,
1.58%, 3.53%, 3.74% and 0.64%, respectively.

Apart from this, the F1-score of KNN-DGCN, COS-
DGCN, Mah-DGCN, Man-DGCN and SGG-DGCN are
94.58%, 95.89%, 94.72%, 94.62%, 96.84% and 97.20%,
respectively. Compared with KNN-DGCN, COS-DGCN,
Mah-DGCNandMan-DGCN, the SGG-DGCN is improved
by 1.23%, 2.46%, 1.91% and 2.02%, respectively.

The identification performance of the DGCN model is
further improved by using the proposed SGG strategy with
the highest values in all evaluation metrics compared to a
single distance metric. For wind turbine anomaly identifi-
cation, the DGCN model with the proposed SGG strategy
has the best identification accuracy and stability.

VII. CONCLUSION
In this paper, a similarity graph generation (SGG) strategy
is proposed. Combining SGG strategy and DGCN for
anomaly identification of wind turbines. By adopting the
SGG strategy, the feature extraction ability of the proposed
SGG-DGCN model is greatly improved to realize the high
anomaly identification accuracy of wind turbines. A lot of
experiments are conducted to validate the effectiveness of
SGG-DGCN. The experimental results indicate that com-
pared with other benchmark methods, the proposed
SGG-DGCNmethod has the highest identification accuracy
and stability. The accuracy of our proposed method can
reach up to 97.2%. Compared with CNN, GCN, SGCN and
DGCN, the average identification accuracy of SGG-DGCN
is improved by 6.38%, 5.34%, 4.89% and 3.34%, respec-
tively. The SGG-DGCN model has the highest anomaly
identification accuracy. In addition, ablation experiments to
validate the effectiveness of the proposed SGG strategy
are also conducted. Ablation experiments demonstrate
that by utilizing the proposed SGG strategy, the average
identification accuracy of SGG-DGCN can be effectively
improved by 1.79%, 3.21%, 2% and 1.87% compared
with KNN-DGCN, COS-DGCN, Mah-DGCN and
Man-DGCN, respectively. The proposed SGG strategy
can effectively improve the accuracy and reliability of
anomaly identification and realize the stable anomaly iden-
tification of wind turbines. It provides a guarantee for the
safe and reliable operation of wind turbines. The study’s
constraints lie in its focus solely on sample similarity,

Table V. Accuracy and standard deviation of different models

Model

Accuracy KNN-DGCN COS-DGCN Mah-DGCN Man-DGCN SGG-DGCN

Mean 96.65% 94.23% 95.44% 94.57% 97.44%

Std 0.98 1.32 1.04 1.39 0.83

Table VI. Evaluation indexes of five models

Method Precision Recall F1-score

KNN-DGCN 95.88% 95.89% 95.27%

COS-DGCN 93.88% 94.66% 94.87%

Mah-DGCN 95.64% 95.21% 95.42%

Man-DGCN 94.11% 95.10% 94.60%

SGG-DGCN 97.94% 97.12% 97.43%
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Fig. 12. Accuracy distribution of different models in ten trials.
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Fig. 13. Evaluation indexes for different models on the testing
data.
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neglecting a deeper analysis of individual data patterns.
Additionally, the method’s efficiency could be enhanced,
warranting further investigation into optimizing its light-
weight design.
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