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Abstract: Bearing fault diagnosis is vital to safeguard the heath of rotating
machinery. It can help to avoid economic losses and safe accidents in time. Effective
feature extraction is the premise of diagnosing bearing faults. However, effective
features characterizing the health status of bearings are difficult to extract from the
raw bearing vibration signals. Furthermore, inefficient feature extraction results in
substantial time wastage, making it hard to apply in real time monitoring. A novel
feature extraction method for diagnosing bearing faults using multi-scale improved
envelope spectrum entropy (MIESE) is proposed in this work. First, bearing vibration
signals are analyzed across multiple scales, and improved envelope spectrum entropy
(IESE) is extracted from these signals at each scale to form an original feature set.
Subsequently, joint approximate diagonalization eigen (JADE) is applied to fuse
above feature set for effectively eliminating redundancy and generated a refined
feature set. Finally, the newly generated feature set is input into support vector
machines (SVM) to effectively diagnose bearing health status. Two cases studies are
employed to demonstrate the reliability of the proposed method. The results illustrate
the proposed method can improve the stability of extracted features and increase the
computational efficiency.
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1. Introduction
Rolling machinery is vital to modern

manufacturing industry. The health status of
bearing is critical for the safe operation of
rotating machinery due to its key role in



rotating machinery [1, 2]. However, bearings
typically operate in environments with high
speeds, heavy loads and high temperatures,
which makes them prone to damage. Thus,
accurate and timely monitoring of bearing
faults is essential to ensure the safety and
reliability of rotating machinery [3-5].

Effective feature extraction is the
prerequisite to ensure the accuracy and real-
time performance of bearing fault diagnosis.
Over the past few decades, various methods
have been proposed and utilized for extracting
features in bearing fault diagnosis. These
methods can be categorized into time domain
analysis, frequency domain analysis, time-
frequency domain analysis, etc. To reduce
noise interference in bearing vibration signal,
several signal decomposition approaches have
been applied in feature extraction for bearing
fault. These include empirical mode
decomposition (EMD) [6], EMD-based
improve decomposition approaches [7-9],
singular spectrum decomposition (SSD)[10],
and variational mode decomposition (VMD)
[11], etc. Besides, with advancements in
artificial intelligence (AI) and computer
hardware, numerous deep learning-based
models have been leveraged to extract
features from bearings, and achieved satisfied
results [12-15].

Entropy, a measure of disorder within a
system, was proposed by Clausius. On this
basis, some other entropies have been
proposed, such as information entropy
(IE)[16], approximate entropy (ApEn)[17],
energy entropy (EE)[18], fuzzy entropy
(FE)[19], permutation entropy (PE)[20],
dispersion entropy (DE)[21], etc. Entropy-
based methods has also been widely applied
in mechanical fault diagnosis. To address the
nonlinear characteristics of bearing fault
signals, Zhu et.al [22] proposed an improved
FE to extract degradation indexes, they then
established a model for bearing degradation
assessment. Considering that the features of

bearing fault signals correlate closely with the
fault types, Li et.al [23] combined DE and
improved complete ensemble EMD with
adaptive noise (ICEEMDAN) to extract the
features. They subsequently established a
fault identification model for bearings based
on support vector machines (SVM). Zhou
et.al [24] introduced wavelet packet energy
entropy (WPEE) to capture essential bearing
features and constructed a model for assessing
bearing degradation based on radial basis
function neural network (RBFNN).

It is worth stating that valuable features of a
signal are typically distributed across multiple
frequency bands, indicating that single-band
analysis has its limitations due to the entropy
of the signal being spread out[25]. To
overcome this defect, several entropy-based
hierarchical analysis approaches have been
proposed and applied to extract bearing
features. For instance, Xue et.al [25]
introduced hierarchical DE (HDE) in bearing
fault diagnosis and combined it with JADE to
extract health status features for fault
diagnosis. To reduce the interference in the
transmission path of inter-shaft bearing
signals, Tian et.al [26] combined hierarchical
permutation entropy (HPE) with locally linear
embedding (LLE) for fault feature extraction.
Moreover, recognizing that signal features are
usually embedded across multiple time scales,
feature extraction based on multiscale entropy
has been widely applied, including multiscale
entropy (MSE)[27], multiscale FE (MFE)[28],
multiscale DE (MDE)[29], and multiscale PE
(MPE)[30]. However, tradition entropy
methods based on multiscale or hierarchical
analysis typically involve a cumbersome
selection process for numerous input
parameters. To reduce the number of input
parameters, a new entropy named hierarchical
improve envelope spectrum entropy (HIESE)
was proposed and tested in our previous
work[31], requiring only the selection of a
single hierarchical node as an input parameter.
However, although HIESE is more efficient



than hierarchical entropy (HE)[32], HDE,
MPE and MFE, it still spends too much time
in features extraction due to the hierarchical
decomposition process is still complex. In
addition, the data length of HIESE method is
chosen as exponential power of 2, restricts its
applicability. Therefore, it is necessary to
develop a feature index that has higher
computational efficiency, not dependence on
sample length, and has little input parameters
should be selected. To mitigate these
challenges, multiscale analysis is introduced
to replace hierarchical decomposition. Then, a
novel entropy, i.e., multiscale improved
envelope spectrum entropy (MIESE) is
proposed in this work, which only has one
input parameter, and no too much restriction
about the sample length.

Notably, some time-scale signals lack
effective information regarding the health
status of bearings, leading to the generation of
redundant original features during
extraction[33]. It is crucial to reduce
redundant within the original feature set. In
our earlier research, joint approximate
diagonalization eigen (JADE) is selected as
feature fusion method due to its effectiveness
in eliminating redundancy[25]. Consequently,
JADE was utilized to fuse the original feature
set and create a refined set that eliminates
redundancy in this study. To explain the
choice of JADE as fusion approach, several
prominent feature fusion methods, including
principal component analysis (PCA)[34],
kernel PCA (KPCA)[35], linear discriminant
analysis (LDA) [36] are introduced for
comparison.

To evaluate the performance of the refined
feature set, some evaluate approaches should
be introduced. Feature clustering stands out as
a primary method for evaluating the spatial
distribution of feature sets. Therefore,
clustering is selected as evaluation approach.
In addition, to quantitatively measure the
features distribution, between-class and

within-class scatters (ISS) is adopted [37].
Larger ISS means better performance of
feature distribution.

Lastly, in order to determine the health
status of the bearing via the extracted refined
feature set, a fault identification model should
be developed. In our previous work, the
performance of support vector machine (SVM)
is tested, results illustrated that the SVM has
strong generalization ability, suitability for
small sample learning and no local minimum
[38]. Therefore, SVM is also selected in this
work. Meanwhile, commonly used classifiers
such as probabilistic neural networks
(PNN)[39], back probabilistic neural network
(BPNN) [40], and radial basis function neural
networks (RBFNN) [41]are employed to
analyze the stability of extracted feature set.

The contributions of this study can be
summarized as:

(1) Propose a novel entropy, namely MIESE,
which requires the selection of only one
input parameter: the scale factor.

(2) Based on MIESE, design a novel
framework for bearing features extraction
that boasts high computational efficiency
and overcomes the limitations of
traditional methods in real-time
monitoring.

(3) A refined feature is gotten by fusing
original features using JADE, thus
eliminating the redundancy generated
during feature extraction.

The rest of this paper is structured as
follows. The proposed entropy MIESE is
presented in Section Ⅱ followed by the
feature fusion method JADE. Section III
outlines the framework of the methodology
proposed, which is then validated with two
cases in Section IV. Lastly, conclusion is
drawn in Section Ⅴ.



2. Methodology

2.1 Improved ESE
Envelope spectrum entropy (ESE) is a

novel entropy proposed by introducing
entropy into the envelope spectrum, aimed at
measuring the complexity of a time series.
ESE demonstrates good performance in
calculation efficiency and requires no input
parameters to be set.

Assuming that x(t) is a time series and e(t)
is its envelope signal, described as:

2 2( ) [ ( )] [ ( )]e t x t H t  (1)

where x(t) is the time series, H(t) denotes its
corresponding Hilbert transform.

The envelope spectrum is obtained using
fast Fourier transform (FFT) to process the
envelope signal e(t), followed by performing
modulation operation, expressed as:

= ( ( )) .E FFT e t (2)

Then, introduce entropy into E, the ESE
can be calculated as follows:
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where P refers to the ratio of E, N means the
data length, Ei and Pj is the i-th data of E and
j-th data of P, respectively.

It should be noted that ESE consists of
envelope spectrum and entropy, and shares
the same problem as entropy, i.e., it exhibits
poor stability when measuring the complexity
of multiple signals [42]. In bearing fault
diagnosis, this instability affects the
recognition rate as the variety of samples
increases. To address this challenge, an

enhanced version called Improved ESE (IESE)
was introduced in our prior research [31],
formulated as:

ln( / )IESE ESE N  (5)

where N denotes the data length.

2.2 MIESE
The effective health status information in

bearing vibration signals typically spans
multiple scales, implying that IESE is unable
to extract full information from the signal.
Therefore, to fully extract the effective
information, multiscale analysis is usually
introduced to process the signal for extracting
the information across each scale. Inspired by
traditional multiscale approaches, MIESE is
proposed with the following computational
steps:

Step 1: For a time series signal S=[s1, s2, …,
sn], its multiple scale n

mp can be calculated as:
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where m denotes scale number in multiscale
analysis, n represents the dynamical feature
measurements of the time series at each scale.
If n is 1, 1

1p is the original time series. The
time series process for n=2 and n=3 is shown
in Fig.1.
Step 2: The MIESE is derived by calculating
the IESE for each multiscale time series as:

1 2[ , ,..., ]nm m mMIESE IESE IESE IESE (7)

2.3 JADE
Joint approximate diagonalization of

eigenmatrices (JADE) is a blind source
separation approach that can separate
mutually statistically independent signals,
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Fig. 1. Coarse-grained process of time series.

thereby enhancing signal observation in a
low-dimensional space. Assuming that x(t) is
a standard linear signal mode, it can be
expressed as:

( ) ( ) ( ) ( ) ( )m t s t n t Ax t n t    (8)

where the signal m(t) contains noise and
serves as the source signal, while s(t) denotes
the resulting output signal, n(t) and x(t) refer
to the noise and source signal respectively. A
is used to describe the transformation between
s(t) and x(t).

The detail separation of JADE can be
divided into four steps as follows:

Step 1: Calculate whitening matrix W for
sample covariance Rx with the following
formula:

1 1
2 2

1 1( ) ,..., ( )
H

n nW h h   
  
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 

(9)

where vn is the n-th largest eigenvalues, θ is
the noise deviation, hn means the n-th
eigenvectors of Rx, and the signal after
whitening is described as v(t)=Wx(t).

Step 2: Calculate the fourth-order cumulants
of v(t) using the following formula:

{ ( , , , ),1 , , , }z i j k lQ C v v v v i j k l d   (10)

where Qz is the fourth-order cumulants of v(t),
while d stands for the dimension of v, C
represents the calculation of the cumulants
expressed as:
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where , , ,i j k lv v v v is the mean value of
, , ,i j k lv v v v , respectively.

Then, the cumulant with maximal set can
be calculated as follows:

( ) ,1z i i iQ M M i n   (12)

where Qz(Mi) represents the cumulant with
maximal set, Mi denotes the eigen matrix, and
λi is the eigenvalue.
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Fig.2. Description of the method.

Step 3: To make the cumulant diagonalized,

unitary matrix U is employed as follows:

 #
minarg ( ( ) )

,1

z i
i

U off U Q M U

i n



 


(13)

where argmin denotes the plural argument, off
pertains to the square of non-diagonal
elements, U represents the rotation matrix,
and # is the pseudo-inverse.

Step 4: Then, the separate matrix A is as
obtained:

 #ˆA UW (14)

Finally, the separation result of x(t) is
given as:

( ) ( )x t Am t (15)

3. Description of the method
The vibration signal collected by

accelerometers is usually one-dimensional.
However, bearing vibration signal often
contains noise due to the complex operating
condition such as high speed, heavy load and
high temperature. Therefore, it is difficult to
identify the health status of the bearing by
directly analyzing the vibration signal.
Furthermore, fault information of the bearing
does not manifest in a single time scale,
complicating feature extraction. To overcome
these problems, a novel bearing health status



feature extraction method using MIESE is
proposed. The specific process of the
proposed method can be described as Fig. 2,
and which consists of five steps:

Step 1: Data collection.

Bearing vibration signals containing
health status are collected from the designed
experimental device. To balance
computational efficiency and feature validity,
the sample length of 2048 is selected in this
work.

Step 2: Multiscale analysis.

To effectively extract features about the
health status of the bearings, multiscale
analysis is introduced to process the raw
signal. Considering the scale factor is crucial
to the performance of the proposed method,
that are: a large-scale factor results in too
much time cost in feature extraction, whereas
a small one may hinder effective feature
extraction. Therefore, the scale factor is set as
8 in this study.

Step 3: Original feature extraction.

The initial feature set can be derived by
evaluating the IESE value of all scale signals,
the results can be described as

1 2[ , ,..., ].n
m m mMIESE IESE IESE IESE

Step 4: Feature fusion.

It should be noted that not all scale signals
contain effective features, which means
redundancy in the original feature set. To
focus on effective features, the above set is
fused by JADE to generate a refined feature
set, denoted as:

3= n
MIESEF AF (16)

where F3 represents new feature set, A is
separate matrix, n

MIESEF refers to original
feature set, 3 is the dimension of initial
feature set, and n denotes the dimension of
new feature set and is 8 in this study.

Step 5: Establish health status identification
model of the bearings.

To identify the health status of the tested
bearings via the refined feature set extracted
in Step 4, a classifier should be selected to
construct a status identification model. In this
study, SVM is selected for its robust
performance in training with limited data.

4. Experimental verification
Two datasets are analysed to validate the

proposed method described above in this
section. Furthermore, to better illustrate the
superiority of the proposed method, other
methods are introduced for comparison. It is
important to note that only one condition in
each comparative experiment is inconsistent
with the proposed method, categorized as
follows: (1) To test the performance of
MIESE in extracting effective features, some
prevalent entropies are introduced as
comparisons including MFE, MPE, HDE, and
HIESE. (2) Other methods for feature fusion,
such as PCA, KPCA, and LDA, are presented
for a comparison with the feature fusion
method used (3) Lastly, for analysing the
stability of the new feature set extracted,
BPNN, PNN, and RBFNN are employed to
further assess he effectiveness of the proposed
method in feature extraction. Additionally, the
ISS index serves as a tool for assessing spatial
distribution of the set for quantitative analysis.
The performance of each method is evaluated
by comparing recognition rates and
processing times. As a note, the datasets are
analysed using Matlab-R2018a. The
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Fig.3. Test platform of XJTU.

algorithm runs on an Inter(R) Core(TM) i5-
10210 CPU. The reported accuracy and
processing time represent the average of five
analysis runs.

4.1. Case 1
Dataset 1 was collected from bearing

experiment diverse at Xian Jiaotong
University (XJTU) [43, 44]. Fig. 3 shows the
corresponding experimental setup, which
consists of a digital force display, an AC
motor, a hydraulic loading, a motor speed
controller, a support shaft and tested bearings.
To facilitate comparison, nine types of fault
signals were measured, including outer ring
defect, cage ring defect, inner element defect
and mixed detects were measured. The
corresponding operational conditions of the
bearings are detailed in Table 1, with specifics
summarized in Table 2. Each sample has a
length of 2048, and a total of 450 samples are
selected from exhibiting weak faults.

First, multiscale analysis is performed on
all samples. The original feature set is

obtained by calculating the IESE value across
all time scale signals, which has a dimension
of 450×8. Then, these features are fused by
JADE to eliminate redundant information
from their extraction process, producing a
refined feature set sized at 450×3. For
comparison, MFE, MPE, HDE and HIESE are
also used to derive their respective refined
feature sets. Fig. 4 illustrates the clustering of
these new feature sets. It can be seen that the
clustering of HIESE and MIESE outperforms
the others, which can be explained by the fact
that, for most features, those from the same
samples are gathered to one point, while those
from different samples are clustered. However,
as seen in Fig. 4(d), B1-4, B2-1, B3-1 and B3-
3 of HIESE are too close together, whereas
this phenomenon does not exist for the
clustering of MIESE. Therefore, the refined
features generated by MIESE show better
space distribution.

It is necessary to introduce evaluation
indices to quantitatively compare the



Table 1. Working conditions of tested bearing
Condition 1 2 3
Rotation speed 2100 2250 2400
Radial force 12 11 10

Table 2. Descriptions of tested dataset
Condition Bearing dataset Fault location

1
B1_2 Outer
B1_4 Cage
B1_5 Inner and outer

2
B2_1 Inner
B2_2 Outer
B2_3 Cage

3
B3_1 Outer
B3_2 Inner, outer, roller and cage
B3_3 Inner

(a) (c)

(d) (e)

(b)

Fig.4. Comparison of clustering effects: (a) MFE, (b) MPE, (c) HDE, (d) HIESE, (e) MIESE.

clustering performance of the different
methods. Effective feature clustering involves
aggregating similar features while dispersing
dissimilar ones. Therefore, ISS, which
combines inter-class and intra-class, serves as

a quantitative evaluation index. Fig. 5 is the
ISS value of each entropy-based methods, from
which it can be seen that most ISS values of
MIESE are larger than those of other methods.
Consequently, the proposed method



Fig.5. ISS values of compared methods.

Table 3. Performance comparison of methods for feature extraction
Method MFE MPE HDE HIESE MIESE
Accuracy (%) 71.75 96.83 84.76 100 100
Cost-time (s) 200.17 335.53 133.92 32.92 6.50

(a) (b)

(c) (d)

Fig.6. Comparison of clustering effects: (a)PCA, (b) KPCA, (c) LDA, (d) JADE.



Table 4. Performance comparison of methods for feature fusion
Method PCA KPCA LDA JADE
Accuracy (%) 53.65 59.05 86.35 100
Cost-time (s) 6.43 7.15 7.04 6.50

Table 5. Performance comparison of classifiers
Method SVM PNN RBFNN BPNN
Accuracy (%) 100 97.46 100 97.30
Cost-time (s) 0.004 0.043 0.186 0.187

demonstrates strong performance in feature
extraction.

To determine bearing health via the
extracted refined set, a bearing health status
identification model is established. SVM is
selected to establish the model due to its
strong performance in small sample
classification and stability. 30% of the refined
set is randomly selected as training samples,
with the remaining 70% designated as testing
samples. The accuracy and cost time of each
entropy-based methods are listed in Table 3. It
is easy to see that the recognition rate of
HIESE-based and MIESE-based methods are
highest. However, the MIESE-based requires
approximately one-ninth of the time
compared to the HIESE-based method. This
suggests that the proposed method
outperforms comparative methods by being
less time-consuming while achieving a higher
fault recognition rate, making it suitable in
real-time bearing health status monitoring.

Further, PCA, KPCA and LDA are selected
to highlight the superiority of JADE in feature
fusion. The clustering results of each fusion
methods are shown in Fig. 6, revealing that
PCA, KPCA, and LDA struggle to effectively
separate features from different categories. In
stark contrast, JADE demonstrates
outstanding clustering performance. Then,
SVM is used to test the refined sets extracted
by each method, and the results are presented
in Table 4. The findings indicate that the
proposed method achieves a test accuracy of

100%, surpassing that of the comparison
methods. This suggests that JADE is able to
enhance the features of MIESE than that of
other methods.

Finally, PNN, RBFNN and BPNN are
introduced to build fault diagnosis model of
the bearing, aimed to verify the feature
stability of the proposed method. The hidden
layer of BPNN is 10 neurons, and its spread is
1. Other input parameters are maintained at
default values [25]. The results are described
in Table 5. It can be noticed that the test
accuracy of SVM and RBFNN are 100%, and
both PNN and BPNN also have good test
accuracy. These results indicate that the
feature set extracted using proposed method
has good stability and its performance is
minimally influenced by classifier selection.
In this work, SVM is selected as the classifier
due to it has good theoretical foundation,
robustness and more suitable for small sample
training.

4.2 Case 2
For further testing the proposed method,

the signals with different fault types and
operation conditions collected from bearing
fatigue experiment device designed by
ourselves are used for analyzing. The device
is shown in Fig. 7, which consists of the
tested bearings, load, sensors, drive system,
test piece, simulation module, lubrication
system and spindle system. The sampling
frequency is 10240 Hz, with a radial load of
0.9 kN applied to the tested SKF-6011



1.Drive system 
2.Spindle system 
3.Test piece 
4.Simulation module 
5.Load 
6.Tested bearing box
7.Sensors
8.Lubrication system

(a) (b)

(c)
678

54321

Fig.7. Experimental details: (a) Test platform; (b) Sensors positions; (c) Description of device
structure.

(a) (b) (c)

(d) (e)

Fig.8. Photos of fault bearings: (a) Outer minor fault, (b) Outer severe fault, (c) Cage fault and
contact with inner, (d) Cage fault and contact with outer, (e) Only cage fault.

bearings. Fig. 8 illustrates five bearings tested
in the fatigue experiment, exhibiting minor
outer defects, severe outer defects, cage
defects with inner contact, cage defects with
outer contact, and cage defects. Each bearing
operates at two speeds: 3000 r/min and 8000
r/min, resulting in a total of 10 fault signals

used to validate the proposed method,
summarized in Table 6.

As previously mentioned, the signals are
first processed using MIESE to generate an
original feature set (500×8). Subsequently,
JADE is employed to fuse this initial feature
set into a refined feature set (500×3), aiming



Table 6 Descriptions of tested dataset
Fault description Rotating speed Bearing dataset

Outer minor fault 3000 r/min OM3
8000 r/min OM8

Outer severe fault 3000 r/min OS3
8000 r/min OS8

Cage fault and contact with inner 3000 r/min CI3
8000 r/min CI8

Cage fault and contact with outer 3000 r/min CO3
8000 r/min CO8

Only cage fault 3000 r/min C3
8000 r/min C8

(a) (b) (c)

(d) (e)

Fig.9. Comparison of clustering effects: (a) MFE, (b) MPE, (c) HDE, (d) HIESE, (e) MIESE.

to eliminate redundancy and reduce feature
dimensions. Similar to Case 1, MFE, MPE,
HDE, and HIESE are utilized for comparison
to demonstrate the superior capability of
MIESE in extracting bearing fault features.
Fig. 9 shows the feature clustering results,
highlighting that both HIESE and MIESE
excel in clustering similar features together,
indicated by the convergence of identical
features into single clusters. However, upon
comparing HIESE and MIESE results, it can

be found that the overlapping of HIESE is
more obvious, such as CO3K and C3K. In
addition, some of the features extracted by
HIESE are close, such as CI3K and C8K.
Whereas from the clustering results of MIESE,
it can be seen that only CS8K and CI8K are
close, while the other features can be
separated.

ISS is still used as a contrast index to
evaluate the spatial distribution performance



Fig.10. ISS values of compared methods.

Table 7. Performance comparison of methods for feature fusion.
Method MFE MPE HDE HIESE MIESE
Accuracy (%) 92.29 100 99.14 100 100
Cost-time (s) 224.19 378.68 149.43 37.24 7.43

of each method. In Fig. 10, the ISS values of
each method demonstrate that both HIESE
and MIESE notably exceed those of MFE,
MPE, and HDE. Furthermore, the ISS values
of MIESE are bigger than that of HIESE,
except for OM8K and OS8K. Hence, the
features extracted by proposed method have
better spatial distribution.

The SVM is chosen as the classifier for
detecting the health status of the bearing.
Table 7 displays the accuracy and processing
time of the four methods. It is evident from
the findings that the accuracy of MPE, HIESE,
and MIESE is notably superior to that of MFE
and HDE. Nonetheless, the processing time
for MIESE, MPE, and HIESE is 10.66s,
523.28s, and 65.91s, respectively.
Consequently, the suggested approach
exhibits superior performance in extracting
features for determining the bearing health.

Similarly, SVM is chosen as the classifier
to detect the status of the bearing. The

diagnostic results of four methods are listed in
Table 7. The results clearly show that the
accuracy of MPE, HIESE and MIESE is
significantly higher than that of MFE and
HDE. Nonetheless, the cost time of MIESE,
MPE and HIESE is 10.66s, 523.28s and
65.91s, respectively. Consequently, the
method proposed has better performance in
extracting fault features for bearing health
status.

Same as Case 1, PCA, KPCA and LDA are
introduced comparison with JADE. The
refined feature set is generated by processing
original feature set extracted by MIESE, as
shown in Fig. 11. It can be seen that only the
refined features processed by JADE can
distinguish the bearing faults. For further
comparison, Table 8 lists the accuracy and
cost time of each method. The processing
times are similar across all methods. However,
the test accuracy of JADE is 100%, which is
significantly higher than that of PCA, KPCA
and LDA.



(a) (b)

(c) (d)

Fig.11. Comparison of clustering effects: (a)PCA, (b) KPCA, (c) LDA, (d) JADE.

Table 8. Performance comparison of methods for feature fusion
Method PCA KPCA LDA JADE
Accuracy (%) 78.29 72.57 81.14 100
Cost-time (s) 7.64 8.14 8.03 7.43

Lastly, PNN, RBFNN and BPNN are used
to train and test the refined feature set
extracted by the proposed method. Table 9
displays the test accuracy and cost time for
each classifier. It can be found that the test
accuracy of all classifier is 100%. The cost
times of four classifiers are also similar due to
the small sample of new feature set. Therefore,
the features extracted by proposed method has
good stability.

4.3 Further discussion
To illustrate the impact of parameter

selection on the proposed method, further

discussion is conducted based on XJTU
dataset. It is worth noting that IESE not
require input parameter settings. Therefore,
only the time scale needs to be considered in
MIESE. Besides, the dimension of the refined
features, i.e., the output dimension of JADE,
also needs to be taken into account.

First, the time scale of MIESE is analysed.
The results of the proposed method with
different time scale of MIESE are listed in
Table 10. From the table, it is observed that as
the time scale increases, both the recognition
rate and processing time also increase.



Table 9. Performance comparison of classifiers
Method SVM PNN RBFNN BPNN
Accuracy (%) 100 100 100 100
Cost-time (s) 0.009 0.083 0.371 0.205

Table10. Results of the proposed method with different time scale
Time scale 3 4 5 6 8 10 15 20
Accuracy (%) 89.21 88.89 94.92 99.68 100 100 100 77.78
Cost-time (s) 4.88 5.41 5.58 5.93 6.50 7.34 8.15 8.74

Table 11 Results of the proposed method with different output dimension of JADE
Fused dimension 1 2 3 4 5 6 7
Accuracy (%) 30.48 98.41 100 100 100 100 100
Cost-time (s) 6.49 6.47 6.50 6.56 6.57 6.60 6.72

However, if the time scale is set too large, the
recognition rate significantly decreases. The
reason is that the signal with too little time
scale contains limited information about the
bearing fault status, which hinders model
training. Additionally, despite the time
consumption of MIESE increases with the
increase in time scale, the overall time
consumption does not significantly increase
due to the efficient feature extraction
capability of MIESE. Taking both accuracy
and time consumption into consideration, this
study selects a time scale of 8.

Meanwhile, the dimension of refined
feature set is also analysed, and the
corresponding results are shown in Table 11.
From the table, it is evident that when the
dimensionality of the refined features is
greater than 1, the proposed methods achieve
satisfactory recognition rates. Observation
indicates a significant increase in recognition
rate as the fusion dimension increases from 1
to 2. The reason is that although feature
fusion can eliminate redundant information to
some extent, excessive feature compression
can also result in the loss of useful
information. In addition, there is no

significant difference in time consumption for
different choices of refined feature
dimensions, indicating that JADE does not
significantly increase the time consumption of
the proposed methods. Furthermore, it is
beneficial for spatial distribution
representation and observation while the
fused dimension is 2 or 3. Therefore,
considering comprehensively, the output
dimension of JADE is set to 3 in this study.

5. Conclusion
In this study, to effectively analysis the

complexity of bearing signals generated under
different operating conditions and to improve
the computational efficiency of HIESE, a
novel feature index named MIESE was
proposed. On the basis of MIESE, a novel
effective bearing feature extraction method is
devised, which analysis bearing signals from
multiscale and calculate IESE values of each
time scale to generate original feature set.
Then, JADE is introduced to refine the
original feature set into a new one to eliminate
redundancy generated during feature
extraction. The effectiveness of the proposed



method is tested by two cases, and the results
can be summarized as:

(1) The clustering and ISS reveal that the
proposed MIESE exhibits strong feature
extraction ability. Specifically, features
belonging to the same category cluster
together, while those from different
classes are effectively separated.

(2) Tested accuracy and cost time of
different methods are compared, results
illustrate the designed method not only
has good effective performance in
features extraction ability about health
status of bearings, but also cost least
time.

(3) The input parameters, i.e, time scale of
MIESE and fused dimension of JADE,
are analysed to validate the
applicability of the proposed method.

In future, MIESE will be considered to be
combined with deep learning to solve the
bearing fault diagnosis problem.
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