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Abstract: Bearing fault diagnosis is vital to safeguard the heath of rotating machinery. It can help to avoid economic
losses and safe accidents in time. Effective feature extraction is the premise of diagnosing bearing faults. However,
effective features characterizing the health status of bearings are difficult to extract from the raw bearing vibration
signals. Furthermore, inefficient feature extraction results in substantial time wastage, making it hard to apply in real-
time monitoring. A novel feature extraction method for diagnosing bearing faults using multiscale improved
envelope spectrum entropy (MIESE) is proposed in this work. First, bearing vibration signals are analyzed across
multiple scales, and improved envelope spectrum entropy (IESE) is extracted from these signals at each scale to form
an original feature set. Subsequently, joint approximate diagonalization eigenmatrices (JADE) is applied to fuse
above feature set for effectively eliminating redundancy and generated a refined feature set. Finally, the newly
generated feature set is input into support vector machines (SVMs) to effectively diagnose bearing health status. Two
cases studies are employed to demonstrate the reliability of the proposed method. The results illustrate that the
proposed method can improve the stability of extracted features and increase the computational efficiency.

Keywords: effective feature extraction; fault diagnosis; feature fusion; multiscale improved envelope spectrum
entropy (MIESE); rolling bearing

I. INTRODUCTION
Rollingmachinery is vital tomodernmanufacturing industry.
The health status of bearing is critical for the safe operation of
rotating machinery due to its key role in rotating machinery
[1,2]. However, bearings typically operate in environments
with high speeds, heavy loads, and high temperatures, which
makes them prone to damage. Thus, accurate and timely
monitoring of bearing faults is essential to ensure the safety
and reliability of rotating machinery [3–5].

Effective feature extraction is the prerequisite to ensure
the accuracy and real-time performance of bearing fault
diagnosis. Over the past few decades, various methods have
been proposed and utilized for extracting features in bearing
fault diagnosis. These methods can be categorized into
time domain analysis, frequency domain analysis, time-
frequency domain analysis, etc. To reduce noise interfer-
ence in bearing vibration signal, several signal decomposi-
tion approaches have been applied in feature extraction for
bearing fault. These include empirical mode decomposition
(EMD) [6], EMD-based improved decomposition ap-
proaches [7–9], singular spectrum decomposition (SSD)
[10], variational mode decomposition (VMD) [11], etc.
Besides, with advancements in artificial intelligence (AI)
and computer hardware, numerous deep learning-based
models have been leveraged to extract features from bear-
ings and achieved satisfied results [12–15].

Entropy, a measure of disorder within a system, was
proposed by Clausius. On this basis, some other entropies
have been proposed, such as information entropy (IE) [16],

approximate entropy (ApEn) [17], energy entropy (EE)
[18], fuzzy entropy (FE) [19], permutation entropy (PE)
[20], dispersion entropy (DE) [21], etc. Entropy-based
methods have also been widely applied in mechanical fault
diagnosis. To address the nonlinear characteristics of bear-
ing fault signals, Zhu et al. [22] proposed an improved FE to
extract degradation indexes, and they then established a
model for bearing degradation assessment. Considering
that the features of bearing fault signals correlate closely
with the fault types, Li et al. [23] combined DE and
improved complete ensemble EMD with adaptive noise
(ICEEMDAN) to extract the features. They subsequently
established a fault identification model for bearings based
on support vector machines (SVMs). Zhou et al. [24]
introduced wavelet packet energy entropy (WPEE) to
capture essential bearing features and constructed a model
for assessing bearing degradation based on radial basis
function neural network (RBFNN).

It is worth stating that valuable features of a signal are
typically distributed across multiple frequency bands, indi-
cating that single-band analysis has its limitations due to the
entropy of the signal being spread out [25]. To overcome this
defect, several entropy-based hierarchical analysis ap-
proaches have been proposed and applied to extract bearing
features. For instance, Xue et al. [25] introduced hierarchical
DE (HDE) in bearing fault diagnosis and combined it with
joint approximate diagonalization eigenmatrices (JADE) to
extract health status features for fault diagnosis. To reduce
the interference in the transmission path of inter-shaft bearing
signals, Tian et al. [26] combined hierarchical permutation
entropy (HPE) with locally linear embedding (LLE) for fault
feature extraction. Moreover, recognizing that signal features
are usually embedded across multiple timescales, feature
extraction based on multiscale entropy has been widely
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applied, including multiscale entropy (MSE) [27], multiscale
FE (MFE) [28], multiscale DE (MDE) [29], and multiscale
PE (MPE) [30]. However, tradition entropy methods based
on multiscale or hierarchical analysis typically involve a
cumbersome selection process for numerous input parame-
ters. To reduce the number of input parameters, a new
entropy named hierarchical improved envelope spectrum
entropy (HIESE) was proposed and tested in our previous
work [31], requiring only the selection of a single hierarchi-
cal node as an input parameter. However, although HIESE is
more efficient than hierarchical entropy (HE) [32], HDE,
MPE, and MFE, it still spends too much time in features
extraction due to the hierarchical decomposition process is
still complex. In addition, the data length of HIESEmethod is
chosen as an exponential power of 2, restricting its applica-
bility. Therefore, it is necessary to develop a feature index
that has higher computational efficiency, is not dependent on
sample length, and has few input parameters. To mitigate
these challenges, multiscale analysis is introduced to replace
hierarchical decomposition. Then, a novel entropy, that is,
multiscale improved envelope spectrum entropy (MIESE) is
proposed in this work, which only has one input parameter
and no too much restriction about the sample length.

Notably, some timescale signals lack effective infor-
mation regarding the health status of bearings, leading to the
generation of redundant original features during extraction
[33]. It is crucial to reduce redundant within the original
feature set. In our earlier research, JADE is selected as
feature fusion method due to its effectiveness in eliminating
redundancy [25]. Consequently, JADE was utilized to
fuse the original feature set and create a refined set that
eliminates redundancy in this study. To explain the choice
of JADE as fusion approach, several prominent feature
fusion methods, including principal component analysis
(PCA) [34], kernel PCA (KPCA) [35], and linear
discriminant analysis (LDA) [36], are introduced for
comparison.

To evaluate the performance of the refined feature set,
some evaluate approaches should be introduced. Feature
clustering stands out as a primary method for evaluating the
spatial distribution of feature sets. Therefore, clustering is
selected as evaluation approach. In addition, to quantita-
tively measure the features distribution, between-class and
within-class scatters (ISS) are adopted [37]. Larger ISSmeans
better performance of feature distribution.

Lastly, in order to determine the health status of the
bearing via the extracted refined feature set, a fault identifi-
cation model should be developed. In our previous work,
the performance of SVM is tested, and the results illustrated
that the SVM has strong generalization ability, suitability
for small sample learning, and no local minimum [38].
Therefore, SVM is also selected in this work. Meanwhile,
commonly used classifiers such as probabilistic neural
networks (PNNs) [39], back probabilistic neural network
(BPNN) [40], and RBFNNs [41] are employed to analyze
the stability of extracted feature set.

The contributions of this study can be summarized as:

(1) Propose a novel entropy, namely MIESE, which
requires the selection of only one input parameter:
the scale factor.

(2) Based on MIESE, design a novel framework for
bearing features extraction that boasts high computa-
tional efficiency and overcomes the limitations of
traditional methods in real-time monitoring.

(3) A refined feature is gotten by fusing original features
using JADE, thus eliminating the redundancy gener-
ated during feature extraction.

The rest of this paper is structured as follows. The
proposed entropy MIESE is presented in Section II fol-
lowed by the feature fusion method JADE. Section III
outlines the framework of the methodology proposed,
which is then validated with two cases in Section IV. Lastly,
conclusion is drawn in Section V.

II. METHODOLOGY
A. IMPROVED ESE

Envelope spectrum entropy (ESE) is a novel entropy pro-
posed by introducing entropy into the envelope spectrum,
aimed at measuring the complexity of a time series. ESE
demonstrates good performance in calculation efficiency
and requires no input parameters to be set.

Assuming that x(t) is a time series and e(t) is its
envelope signal, described as:

eðtÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xðtÞ�2 + ½HðtÞ�2

q
(1)

where x(t) is the time series andH(t) denotes its correspond-
ing Hilbert transform.

The envelope spectrum is obtained using fast Fourier
transform (FFT) to process the envelope signal e(t), fol-
lowed by performing modulation operation, expressed as:

E=jFFTðeðtÞÞj: (2)

Then, by introducing entropy into E, the ESE can be
calculated as follows:

P = E=
XN
i=1

Ei (3)

ESE= −
XN
j=1

Pjlog2Pj (4)

where P refers to the ratio of E,Nmeans the data length, and
Ei and Pj are the i-th data of E and j-th data of P,
respectively.

It should be noted that ESE consists of envelope
spectrum and entropy and shares the same problem as
entropy, that is, it exhibits poor stability when measuring
the complexity of multiple signals [42]. In bearing fault
diagnosis, this instability affects the recognition rate as the
variety of samples increases. To address this challenge, an
enhanced version called improved ESE (IESE) was intro-
duced in our prior research [31], formulated as:

IESE = − lnðESE=NÞ (5)

where N denotes the data length.

B. MIESE

The effective health status information in bearing vibration
signals typically spans multiple scales, implying that IESE
is unable to extract full information from the signal. There-
fore, to fully extract the effective information, multiscale
analysis is usually introduced to process the signal for
extracting the information across each scale. Inspired by
traditional multiscale approaches, MIESE is proposed with
the following computational steps:
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Step 1: For a time-series signal S= [s1, s2, : : : , sn], its
multiple scale pnm can be calculated as:

pnm =
1
n

Xm+n−1
i=m

sij1 < m < N − n + 1 (6)

where m denotes scale number in multiscale analysis and n
represents the dynamical feature measurements of the time
series at each scale. If n is 1, p11 is the original time series. The
time series process for n= 2 and n= 3 is shown in Fig. 1.

Step 2: The MIESE is derived by calculating the IESE
for each multiscale time series as:

MIESE = ½IESE1
m, IESE2

m, : : : , IESEn
m� (7)

C. JADE

JADE is a blind source separation approach that can sepa-
rate mutually statistically independent signals, thereby
enhancing signal observation in a low-dimensional space.
Assuming that x(t) is a standard linear signal mode, it can be
expressed as:

mðtÞ = sðtÞ + nðtÞ = AxðtÞ + nðtÞ (8)

where the signal m(t) contains noise and serves as the source
signal, while s(t) denotes the resulting output signal, and n(t)
and x(t) refer to the noise and source signal, respectively. A is
used to describe the transformation between s(t) and x(t).

The detail separation of JADE can be divided into four
steps as follows:

Step 1: Calculate whitening matrix W for sample
covariance Rx with the following formula:

W = ½ðυ1 − θÞ−1
2h1, : : : ,ðυn − θÞ−1

2hn�H (9)

where vn is the n-th largest eigenvalues, θ is the noise
deviation, and hnmeans the n-th eigenvectors of Rx, and the
signal after whitening is described as v(t) =Wx(t).

Step 2: Calculate the fourth-order cumulants of v(t)
using the following formula:

Qz = fCðvi,vj,vk,vlÞ,1 ≤ i,j,k,l ≤ dg (10)

where Qz is the fourth-order cumulants of v(t), while d
stands for the dimension of v, and C represents the calcula-
tion of the cumulants expressed as:

Cðvi,vj,vk,vlÞ = Evivjvkvl − EvivlEvjvk

− EvjvlE vivk − EvivjEvkvl
(11)

where vi,vj,vk,vl is the mean value of vi,vj,vk,vl, respectively.

Then, the cumulant with maximal set can be calculated
as follows:

QzðMiÞ = λiMi,1 ≤ i ≤ n (12)

where Qz(Mi) represents the cumulant with maximal set,Mi

denotes the eigen matrix, and λi is the eigenvalue.
Step 3: To make the cumulant diagonalized, unitary

matrix bU is employed as follows:

bU = argmin

X
i

of f ðU#QzðMiÞUÞ, 1 ≤ i ≤ n (13)

where argmin denotes the plural argument, off pertains to the
square of non-diagonal elements, U represents the rotation
matrix, and # is the pseudo-inverse.

Step 4: Then, the separate matrix bA is obtained as:

bA = bUW# (14)

Finally, the separation result of x(t) is given as:

xðtÞ = bAmðtÞ (15)

III. DESCRIPTION OF THE METHOD
The vibration signal collected by accelerometers is usually
one-dimensional. However, bearing vibration signal often
contains noise due to the complex operating condition such
as high speed, heavy load, and high temperature. Therefore,
it is difficult to identify the health status of the bearing by
directly analyzing the vibration signal. Furthermore, fault
information of the bearing does not manifest in a single
timescale, complicating feature extraction. To overcome
these problems, a novel bearing health status feature extrac-
tion method using MIESE is proposed. The specific process
of the proposed method can be described as Fig. 2, which
consists of five steps:
Step 1: Data collection.

Bearing vibration signals containing health status are
collected from the designed experimental device. To bal-
ance computational efficiency and feature validity, the
sample length of 2048 is selected in this work.
Step 2: Multiscale analysis.

To effectively extract features about the health status of
the bearings, multiscale analysis is introduced to process the
raw signal. Considering the scale factor is crucial to the
performance of the proposed method, that is, a large-scale
factor results in too much time cost in feature extraction,
whereas a small one may hinder effective feature extraction.
Therefore, the scale factor is set as 8 in this study.
Step 3: Original feature extraction.

The initial feature set can be derived by evaluating the
IESE value of all scale signals, and the results can be
described as MIESE = ½IESE1

m, IESE2
m, : : : , IESEn

m�:
Step 4: Feature fusion.

It should be noted that not all scale signals contain
effective features, which means redundancy in the original
feature set. To focus on effective features, the above set is
fused by JADE to generate a refined feature set, denoted as:

F3=bAFn
MIESE (16)

where F3 represents new feature set, bA is separate matrix,
Fn
MIESErefers to original feature set, 3 is the dimension of

initial feature set, and n denotes the dimension of new
feature set and is 8 in this study.
Step 5: Establish health status identification model of the
bearings.

n=2

n=3

x1 x2 x3 x4 x5 x6 xi xi+1

y2
(1) y2

(2) y2
(3) y2

(j)=(xi+xi+1)/2

x1 x2 x3 x4 x5 x6 xi-1 xi xi+1

y3
(1) y3

(2) y3
(j)

=(xi-1+xi+xi+1)/2

...

...

...

...

...

Fig. 1. Coarse-grained process of time series.
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To identify the health status of the tested bearings via
the refined feature set extracted in Step 4, a classifier should
be selected to construct a status identification model. In this
study, SVM is selected for its robust performance in
training with limited data.

IV. EXPERIMENTAL VERIFICATION
Two datasets are analyzed to validate the proposed method
described above in this section. Furthermore, to better

illustrate the superiority of the proposed method, other
methods are introduced for comparison. It is important to
note that only one condition in each comparative experi-
ment is inconsistent with the proposed method, categorized
as follows: (1) to test the performance of MIESE in
extracting effective features, some prevalent entropies are
introduced as comparisons, including MFE, MPE, HDE,
and HIESE. (2) Other methods for feature fusion, such as
PCA, KPCA, and LDA, are presented for a comparison
with the feature fusion method used. (3) Lastly, for

Experimental Device Bearing Signals

Vibration Signal Acquisition Fault Diagnosis

Diagnosis Model (SVM) 

Multi-timescale Signals

Vibration Signal Acquisition

Original Feature Set New Feature Set

IESE JADE

Multiscale Analysis Fault Identification

 

Fig. 2. Description of the method.

Digital force 
display

Motor speed 
controller

Support 
shaft

AC motor Support
bearings

Hydraulic
loading

Horizontal 
accelerometer

Vertical 
accelerometer

Tested
bearing

Fig. 3. Test platform of XJTU.
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analyzing the stability of the new feature set extracted,
BPNN, PNN, and RBFNN are employed to further assess
the effectiveness of the proposed method in feature extrac-
tion. Additionally, the ISS index serves as a tool for asses-
sing spatial distribution of the set for quantitative analysis.
The performance of each method is evaluated by comparing
recognition rates and processing times. As a note, the
datasets are analyzed using Matlab-R2018a. The algorithm
runs on an Inter(R) Core(TM) i5-10210 CPU. The reported
accuracy and processing time represent the average of five
analysis runs.

A. CASE 1

Dataset 1 was collected from bearing experiment diverse at
Xian Jiaotong University (XJTU) [43,44]. Figure 3 shows
the corresponding experimental setup, which consists of a
digital force display, an AC motor, a hydraulic loading, a
motor speed controller, a support shaft, and tested bearings.
To facilitate comparison, nine types of fault signals were
measured, including outer ring defect, cage ring defect,
inner element defect, and mixed detects. The corresponding
operational conditions of the bearings are detailed in
Table I, with specifics summarized in Table II. Each sample
has a length of 2048, and a total of 450 samples are selected
from exhibiting weak faults.

First, multiscale analysis is performed on all samples.
The original feature set is obtained by calculating the IESE
value across all timescale signals, which has a dimension of
450×8. Then, these features are fused by JADE to eliminate
redundant information from their extraction process, pro-
ducing a refined feature set sized at 450×3. For comparison,
MFE, MPE, HDE, and HIESE are also used to derive their
respective refined feature sets. Figure 4 illustrates the
clustering of these new feature sets. It can be seen that
the clustering of HIESE andMIESE outperforms the others,
which can be explained by the fact that, for most features,
those from the same samples are gathered to one point,
while those from different samples are clustered. However,
as seen in Fig. 4(d), B1-4, B2-1, B3-1, and B3-3 of HIESE
are too close together, whereas this phenomenon does not
exist for the clustering of MIESE. Therefore, the refined
features generated by MIESE show better space
distribution.

It is necessary to introduce evaluation indices to quan-
titatively compare the clustering performance of the
different methods. Effective feature clustering involves

Table I. Working conditions of tested bearing

Condition 1 2 3

Rotation speed 2100 2250 2400

Radial force 12 11 10

Table II. Descriptions of tested dataset

Condition
Bearing
dataset Fault location

1 B1_2 Outer

B1_4 Cage

B1_5 Inner and outer

2 B2_1 Inner

B2_2 Outer

B2_3 Cage

3 B3_1 Outer

B3_2 Inner, outer, roller, and cage

B3_3 Inner

Fig. 4. Comparison of clustering effects: (a) MFE, (b) MPE, (c) HDE, (d) HIESE, and (e) MIESE.
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aggregating similar features while dispersing dissimilar
ones. Therefore, ISS, which combines inter-class and in-
tra-class, serves as a quantitative evaluation index. Figure 5
is the ISS value of each entropy-based methods, from which

it can be seen that most ISS values of MIESE are larger than
those of other methods. Consequently, the proposed
method demonstrates strong performance in feature
extraction.

To determine bearing health via the extracted refined
set, a bearing health status identification model is estab-
lished. SVM is selected to establish the model due to its
strong performance in small sample classification and
stability. Thirty percent of the refined set is randomly
selected as training samples, with the remaining 70%
designated as testing samples. The accuracy and cost
time of each entropy-based methods are listed in
Table III. It is easy to see that the recognition rate of
HIESE-based and MIESE-based methods are highest.
However, the MIESE-based requires approximately one-
ninth of the time compared to the HIESE-based method.
This suggests that the proposed method outperforms com-
parative methods by being less time-consuming while
achieving a higher fault recognition rate, making it suitable
in real-time bearing health status monitoring.

Further, PCA, KPCA, and LDA are selected to high-
light the superiority of JADE in feature fusion. The clus-
tering results of each fusion methods are shown in Fig. 6,
revealing that PCA, KPCA, and LDA struggle to effectively
separate features from different categories. In stark contrast,
JADE demonstrates outstanding clustering performance.
Then, SVM is used to test the refined sets extracted by
each method, and the results are presented in Table IV. The
findings indicate that the proposed method achieves a test

Fig. 5. ISS values of compared methods.

Table III. Performance comparison of methods for
feature extraction

Method MFE MPE HDE HIESE MIESE

Accuracy (%) 71.75 96.83 84.76 100 100

Cost-time (s) 200.17 335.53 133.92 32.92 6.50

Fig. 6. Comparison of clustering effects: (a) PCA, (b) KPCA, (c) LDA, and (d) JADE.
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accuracy of 100%, surpassing that of the comparison
methods. This suggests that JADE is able to enhance the
features of MIESE than that of other methods.

Finally, PNN, RBFNN, and BPNN are introduced to
build fault diagnosismodel of the bearing, aimed to verify the
feature stability of the proposed method. The hidden layer of
BPNN is 10 neurons, and its spread is 1. Other input
parameters are maintained at default values [25]. The results
are described in Table V. It can be noticed that the test
accuracy of SVM and RBFNN are 100%, and both PNN and
BPNN also have good test accuracy. These results indicate
that the feature set extracted using proposedmethod has good
stability and its performance is minimally influenced by
classifier selection. In this work, SVM is selected as the
classifier due to it has good theoretical foundation, robust-
ness, and more suitable for small sample training.

B. CASE 2

For further testing the proposed method, the signals with
different fault types and operation conditions collected from

bearing fatigue experiment device designed by ourselves
are used for analyzing. The device is shown in Fig. 7, which
consists of the tested bearings, load, sensors, drive system,
test piece, simulation module, lubrication system, and
spindle system. The sampling frequency is 10240 Hz,
with a radial load of 0.9 kN applied to the tested SKF-
6011 bearings. Figure 8 illustrates five bearings tested in the
fatigue experiment, exhibiting minor outer defects, severe
outer defects, cage defects with inner contact, cage defects
with outer contact, and cage defects. Each bearing operates
at two speeds: 3000 r/min and 8000 r/min, resulting in a
total of 10 fault signals used to validate the proposed
method, summarized in Table VI.

As previously mentioned, the signals are first pro-
cessed using MIESE to generate an original feature set
(500×8). Subsequently, JADE is employed to fuse this
initial feature set into a refined feature set (500×3), aiming
to eliminate redundancy and reduce feature dimensions.

Table IV. Performance comparison of methods for
feature fusion

Method PCA KPCA LDA JADE

Accuracy (%) 53.65 59.05 86.35 100

Cost-time (s) 6.43 7.15 7.04 6.50

Table V. Performance comparison of classifiers

Method SVM PNN RBFNN BPNN

Accuracy (%) 100 97.46 100 97.30

Cost-time (s) 0.004 0.043 0.186 0.187

1.Drive system 
2.Spindle system 
3.Test piece 
4.Simulation module 
5.Load 
6.Tested bearing box
7.Sensors
8.Lubrication system

(a) (b)

(c)
678

54321

Fig. 7. Experimental details: (a) test platform; (b) sensors positions; and (c) description of device structure.

(a) (b) (c)

(d) (e)

Fig. 8. Photos of fault bearings: (a) outer minor fault, (b) outer
severe fault, (c) cage fault and contact with inner, (d) cage fault and
contact with outer, and (e) only cage fault.
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Similar to Case 1, MFE, MPE, HDE, and HIESE are
utilized for comparison to demonstrate the superior capa-
bility ofMIESE in extracting bearing fault features. Figure 9
shows the feature clustering results, highlighting that both
HIESE and MIESE excel in clustering similar features
together, indicated by the convergence of identical features
into single clusters. However, upon comparing HIESE and
MIESE results, it can be found that the overlapping of
HIESE is more obvious, such as CO3K and C3K. In
addition, some of the features extracted by HIESE are
close, such as CI3K and C8K. Whereas from the clustering
results of MIESE, it can be seen that only CS8K and CI8K
are close, while the other features can be separated.

ISS is still used as a contrast index to evaluate the spatial
distribution performance of each method. In Fig. 10, the ISS
values of each method demonstrate that both HIESE and
MIESE notably exceed those of MFE, MPE, and HDE.
Furthermore, the ISS values ofMIESE are bigger than that of

HIESE, except for OM8K and OS8K. Hence, the features
extracted by proposed method have better spatial
distribution.

The SVM is chosen as the classifier for detecting the
health status of the bearing. Table VII displays the accuracy
and processing time of the four methods. It is evident from
the findings that the accuracy of MPE, HIESE, and MIESE
is notably superior to that of MFE and HDE. Nonetheless,
the processing time for MIESE, MPE, and HIESE is 10.66s,
523.28s, and 65.91s, respectively. Consequently, the

Table VI. Descriptions of tested dataset

Fault description
Rotating
speed

Bearing
dataset

Outer minor fault 3000 r/min OM3

8000 r/min OM8

Outer severe fault 3000 r/min OS3

8000 r/min OS8

Cage fault and contact with
inner

3000 r/min CI3

8000 r/min CI8

Cage fault and contact with
outer

3000 r/min CO3

8000 r/min CO8

Only cage fault 3000 r/min C3

8000 r/min C8

Fig. 9. Comparison of clustering effects: (a) MFE, (b) MPE, (c) HDE, (d) HIESE, and (e) MIESE.

Fig. 10. ISS values of compared methods.

Table VII. Performance comparison of methods for
feature fusion

Method MFE MPE HDE HIESE MIESE

Accuracy (%) 92.29 100 99.14 100 100

Cost-time (s) 224.19 378.68 149.43 37.24 7.43
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suggested approach exhibits superior performance in ex-
tracting features for determining the bearing health.

Similarly, SVM is chosen as the classifier to detect the
status of the bearing. The diagnostic results of four methods
are listed in Table VII. The results clearly show that the
accuracy of MPE, HIESE, and MIESE is significantly
higher than that of MFE and HDE. Nonetheless, the cost
time of MIESE, MPE, and HIESE is 10.66 s, 523.28 s, and
65.91 s, respectively. Consequently, the method proposed
has better performance in extracting fault features for
bearing health status.

Same as Case 1, PCA, KPCA, and LDA are introduced
in comparison with JADE. The refined feature set is gener-
ated by processing original feature set extracted by MIESE,
as shown in Fig. 11. It can be seen that only the refined
features processed by JADE can distinguish the bearing
faults. For further comparison, Table VIII lists the accuracy
and cost time of each method. The processing times are
similar across all methods. However, the test accuracy of
JADE is 100%, which is significantly higher than that of
PCA, KPCA, and LDA.

Lastly, PNN, RBFNN, and BPNN are used to train and
test the refined feature set extracted by the proposed
method. Table IX displays the test accuracy and cost
time for each classifier. It can be found that the test accuracy
of all classifier is 100%. The cost times of four classifiers are
also similar due to the small sample of new feature set.
Therefore, the features extracted by proposed method has
good stability.

C. FURTHER DISCUSSION

To illustrate the impact of parameter selection on the
proposed method, further discussion is conducted based
on XJTU dataset. It is worth noting that IESE not require
input parameter settings. Therefore, only the timescale
needs to be considered in MIESE. Besides, the dimension
of the refined features, that is, the output dimension of
JADE, also needs to be taken into account.

First, the timescale of MIESE is analyzed. The results
of the proposed method with different timescale of MIESE
are listed in Table X. From the table, it is observed that as
the timescale increases, both the recognition rate and
processing time also increase.

Fig. 11. Comparison of clustering effects: (a) PCA, (b) KPCA, (c) LDA, and (d) JADE.

Table VIII. Performance comparison of methods for
feature fusion

Method PCA KPCA LDA JADE

Accuracy (%) 78.29 72.57 81.14 100

Cost-time (s) 7.64 8.14 8.03 7.43

Table IX. Performance comparison of classifiers

Method SVM PNN RBFNN BPNN

Accuracy (%) 100 100 100 100

Cost-time (s) 0.009 0.083 0.371 0.205
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However, if the timescale is set too large, the recogni-
tion rate significantly decreases. The reason is that the
signal with too little timescale contains limited information
about the bearing fault status, which hinders model training.
Additionally, despite the time consumption of MIESE
increases with the increase in timescale, the overall time
consumption does not significantly increase due to the
efficient feature extraction capability of MIESE. Taking
both accuracy and time consumption into consideration,
this study selects a timescale of 8.

Meanwhile, the dimension of refined feature set is also
analyzed, and the corresponding results are shown in
Table XI. From the table, it is evident that when the
dimensionality of the refined features is greater than 1,
the proposed methods achieve satisfactory recognition
rates. Observation indicates a significant increase in recog-
nition rate as the fusion dimension increases from 1 to 2.
The reason is that although feature fusion can eliminate
redundant information to some extent, excessive feature
compression can also result in the loss of useful informa-
tion. In addition, there is no significant difference in time
consumption for different choices of refined feature dimen-
sions, indicating that JADE does not significantly increase
the time consumption of the proposed methods. Further-
more, it is beneficial for spatial distribution representation
and observation, while the fused dimension is 2 or 3.
Therefore, considering comprehensively, the output dimen-
sion of JADE is set to 3 in this study.

V. CONCLUSION
In this study, to effectively analysis the complexity of
bearing signals generated under different operating condi-
tions and to improve the computational efficiency of
HIESE, a novel feature index named MIESE was proposed.
On the basis of MIESE, a novel effective bearing feature
extraction method is devised, which analyzes bearing sig-
nals from multiscale and calculates IESE values of each
timescale to generate original feature set. Then, JADE is
introduced to refine the original feature set into a new one to
eliminate redundancy generated during feature extraction.
The effectiveness of the proposed method is tested by two
cases, and the results can be summarized as:

(1) The clustering and ISS reveal that the proposed MI-
ESE exhibits strong feature extraction ability. Spe-
cifically, features belonging to the same category
cluster together, while those from different classes
are effectively separated.

(2) Tested accuracy and cost time of different methods
are compared, and the results illustrate that the de-
signed method not only has good effective perfor-
mance in features extraction ability about health
status of bearings but also cost least time.

(3) The input parameters, that is, timescale of MIESE and
fused dimension of JADE, are analyzed to validate
the applicability of the proposed method.

In future, MIESE will be considered to be combined
with deep learning to solve the bearing fault diagnosis
problem.
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