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Abstract: Battery State of Health (SOH) estimation is vital across applications ranging from portable 

electronics to electric vehicles, particularly in second-life applications where accurate prediction becomes 

complex due to varying degradation levels. This paper introduces a novel SOH estimation model to address 

the lack of labeled data, employing Domain Adversarial Neural Networks (DANN) combined with 1-

dimensional Convolutional Neural Networks (CNN). The proposed method allows for effective transfer of 

knowledge between diverse battery conditions, enhancing adaptability and efficiency by utilizing both 

source and target datasets. Experimental results demonstrate that the proposed model achieves a Mean 

Absolute Error (MAE) of 1.68% and a Root Mean Squared Error (RMSE) of 2.50%, with minimal data. 

Specifically, the model requires only one cell of unlabeled data from the second-life target domain, 

utilizing only the dQ/dV curve for estimation. Proposed model sets a new standard in second-life battery 

health monitoring and management by effectively leveraging a minimal amount of data for training, this 

approach offers a robust solution for accurate SOH estimation, particularly in scenarios with limited access 

to labeled data. 
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I. INTRODUCTION 

Lithium-ion batteries (LIBs) are pivotal in 

modern energy storage solutions, powering a wide 

range of applications from consumer electronics to 

electric vehicles and large-scale energy storage 

systems. As global production and adoption of EVs 

surge, the retirement rate of these vehicles also 

increases, leading to an urgent need to repurpose 

their batteries for second-life applications before 

considering recycling [1-3]. This demand 

emphasizes the importance of effective battery 

management, especially as these batteries often 

operate beyond their prime, with capacities reduced 

to below 80% of their original 
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state. When LIBs in EVs reach 80% of their initial 

capacity, they are retired from vehicular use and 

begin their second life, often in less demanding 

applications such as stationary energy storage 

systems [4]. This transition from high-performance 

mobility applications to stationary applications 

poses unique challenges in battery management due 

to the varied degradation and operational histories 

of the batteries. 

Li-ion batteries are complex systems, requiring 

continuous monitoring to ensure their reliability and 

safety [5-8]. Key parameters such as voltage, 

temperature, State-of-Charge (SOC), SOH, and 

Remaining Useful Life (RUL) are essential for 

effective battery management. While voltage and 

temperature can be directly measured through 



 

 

 

sensors, SOC, SOH, and RUL cannot be measured 

directly and must be estimated [9,10]. A critical 

aspect of battery management systems is the 

accurate estimation of the SOH, which reflects the 

current condition of the battery relative to its ideal 

state.  

planning maintenance and replacement schedules, 

thus minimizing downtime and enhancing the 

overall reliability of the system. Therefore, SOH 

estimation is a major concern for both 

manufacturers and users, driving the need for robust 

  and reliable estimation methods. The degradation

 

 

  

on the battery chemistry. In some cases, batteries

 protocols, and environmental factors [12]. All these

 factors

 

Significant studies have been devoted to 

predicting battery SOH in recent years [14-18]. 

They result in the two main paradigms: model

the multifaceted nature of battery aging [13].

-

based and data-driven methods. Mode-based 

methods rely on mathematical and physical models 

to represent the underlying processes and 

mechanisms within the battery [19]. For example, 

Feng et al. [20] developed an equivalent-circuit 

model to capture the chemical and physical 

relationships with the implementation of system 

identification algorithms, it can identify the 

correlated parameters of battery behavior and 

 

In comparison with model-based methods, data

The accurate estimation of SOH is of importance degradation. Model-based methods attempt to 

to users for several reasons. Firstly, it ensures the mitigate domain shift by incorporating parameters 

safe operation of the battery by preventing that capture variations in operating conditions, 

overcharging or deep discharging, which can lead to battery chemistry, and usage patterns. By using 

hazardous situations such as thermal runaway. these parameters as adjustable inputs, model-based 

Secondly, it optimizes the batter’s performance by techniques can be tuned to accommodate different 

enabling efficient energy management, thereby domains [21]. While these models can provide 

extending the battery’s lifespan and reducing detailed insights, they are typically computationally 

maintenance costs. Thirdly, precise SOH estimation intense and may not be practical for real-world 

is critical for predicting RUL, which helps in applications.

-

drive methods leverage statistical and machine 

learning algorithms to identify patterns and 

relationships within empirical data [22-24]. These 

methods offer the advantages of being adaptable, 

scalable, and less dependent on the complex internal 

 characteristics of LIBs can vary widely depending dynamics of batteries. Recent advancements in 

machine learning and data analytics have 

 

 

 

that have similar degradation profiles during their significantly enhanced the capability of data-driven 

first life might exhibit more pronounced or entirely models to accurately predict battery SOH [25, 26]. 

different degradation behaviors once they are Existing data-driven methods include convolutional 

repurposed for second-life applications. For neural networks (CNN), long short-term memory 

instance, Nickel-Manganese-Cobalt (NMC) and (LSTM), gaussian process regression (GPR), and so 

Lithium Iron Phosphate (LFP) batteries might show on [27]. By utilizing various types of data such as 

relatively stable performance declines in their first voltage, current, temperature, and charge/discharge 

life but could have varied degradation trajectories cycles, these models can capture the patterns and 

post the 80% capacity threshold [11]. This is due to trends associated with battery degradation. 

the accumulated effects of microstructural changes, However, one of the primary challenges in utilizing 

electrolyte decomposition, and electrode surface these methods is the requirement for large amounts 

transformations that have progressed differently of labeled data, which can be difficult and 

based on initial usage conditions, charging expensive to obtain. Furthermore, models trained on 

data from a specific battery type or operating 

making SOH estimation particularly condition often perform poorly when applied to 

shifts. This requirement 

challenging, as it demands models that can capture different batteries or conditions due to domain 

is particularly problematic 

for batteries in second-life applications, where 

variability in the source and history of the batteries 

introduces additional complexity. Second-life 

batteries, often sourced from different types of 

vehicles and used under varied conditions, exhibit 

diverse degradation patterns.  



 

 

 

  

 

domain adaptation, and Grassmann manifold [28-

make accurate predictions on new and less-

  

of 100%-75%. Zhang et al. [39] developed a soft-

dynamic time warping domain adaptation 

every specific application but also enhances the 

network 

range of SOH, and the unique characteristics of 

adaptability. 

In real-world second-life applications of lithium-

ion batteries, it is often the case that only sufficient 

 

received little attention and is not well-addressed in 

and testing, which compromises 

Data-driven methods address domain shift demonstrated fast prediction capabilities but was 

through techniques like feature normalization, limited to a single battery cell used for both training 

the robustness of 

 

 

 

31]. Techniques like domain adaptation offer a the findings [40]. Similarly, Braco’s work on reused 

solution to the data scarcity challenge by allowing Nissan Leaf EV modules, which estimated SOH 

models trained on well-documented, homogeneous ranging from 91.3% to 31%, did not disclose the 

datasets to be effectively adapted to less volume of data used for training, thereby 

characterized, heterogeneous second-life battery questioning the reliability of the performance if 

data [32, 33]. In the context of battery SOH insufficient data is provided [41]. Furthermore, 

estimation, this means leveraging knowledge from Faraji-Niri’s approach involved electrochemical 

readily available datasets, possibly from different impedance spectroscopy combined with machine 

battery chemistries or operational conditions, to learning to estimate SOH for second-life batteries, 

but it only targeted batteries with SOH ranges from 

 

   

 

documented SOH ranges. This approach not only 100% to 80%, thus not fully addressing the typical 

mitigates the need for extensive labeled data in conditions of second-life batteries [40].

 

 

 

Despite the research of various data-driven

model’s adaptability and efficiency [34-39]. While techniques, no study has comprehensively 

these techniques have yielded valuable insights and addressed the simultaneous challenges of different 

advancements in SOH prediction, they are not battery chemistries, diverse operational 

without limitations. Lu et al. [35] introduced a environments, limited data and varying SOH ranges 

method utilizing a swarm of deep neural network of estimating SOH for retired lithium-ion batteries 

methods for estimating battery SOH. However, this from EVs. To address this issue, we have proposed 

model requires the use of thousands of battery a deep learning-based transfer learning 

samples for training and is limited to an SOH range methodology. The following are the key novelties 

 and contributions of this research:

1)      The SOH estimation problem is 

 

 

for cross-domain SOH estimation. However, the investigated by utilizing unlabeled battery data from 

study focused on batteries with identical chemistry second-life target domain, where only a segment of 

and SOH range, differing only in their operational the SOH ranges from a single battery cell within the 

conditions. Challenges arise from the complexity target domain’s life cycle is employed during the 

and variability of battery chemistry, the diverse training stage.

      2) The differential capacity (dQ/dV) curve 

individual applications. These factors often analysis is introduced to extract features that 

constrain the generalization capabilities of directly reflect the battery’s health status. This 

traditional domain adaptation methods, leaving method is effective in addressing the variations in 

room for improvement in predictive accuracy and battery chemistry and operational conditions, 

  

providing a comprehensive understanding of 

degradation patterns across different domains.

      3)

 

Convolutional Neural Networks (CNN) 

 

data from the source domain are available, with and Domain-Adversarial Neural Networks (DANN) 

incomplete and unlabeled data from the target are deployed to ensure robust model performance. 

domain, which may encompass different battery These neural networks are crucial for 

health levels (SOH), various operational conditions, accommodating the uncertainties and variability 

and other distinct characteristics. This complex within the datasets, leading to more precise and 

challenge in second-life energy storage systems has reliable SOH estimations.

To validate the effectiveness of our methodology, 

the literature. For instance, Gotz’s study we conducted experiments on second-life battery 



 

 

 

 

 

The reminder of this paper is organized as follows. 

Section 2 gives the problem statement, datasets, 

methodology overview and the proposed SOH 

estimation model, respectively. Section 3 discusses 

the experimental results and performance 

evaluation. Finally, Section 4 concludes the paper 

applicability and scalability of our approach.

and outlines potential future research directions. 

 

II. Materials and Methods 
The research methodology shown in Fig. 1. 

outlines a framework designed to improve the 

prediction accuracy for battery SOH estimation 

using domain adaptation. We utilize a strategy 

involving both source and target domains. This 

approach comprises two main components: offline 

training and online monitoring. In the offline 

training phase, the deep neural network is first 

domain. Once the network paramet

cells, as no public dataset targets SOH levels pretrained using sufficient aging data from the 

exceeding 80%. These experiments test the model’s source domain Ds. This pretraining process helps in 

ability to predict SOH ranges beyond first-life initializing the network parameters based on the 

applications, demonstrating the practical abundant labeled data available in the source 

ers are 

initialized, both the source domain data Ds and the 

target domain data Dt are fed into the network. 

During this phase, the deep neural network is 

trained to adapt the feature distributions between 

the source and target domains. This adaptation 

process aims to generalize the model to perform 

well on both the source and target domains. By 

aligning the feature distributions, the network learns 

domain-invariant features that are crucial for 

accurate SOH estimation across different domains. 

After the model has been trained and the parameters 

have been optimized to minimize domain 

discrepancy, it is deployed for online monitoring for 

the target domain data. In this stage, the trained 

model is used to predict the SOH of the target 

domain batteries in real-time. The model leverages 

the knowledge transferred from the source domain 

to provide accurate and reliable SOH estimations, 

Fig. 1. Flow diagram for the proposed methodology. 



 

 

 

 

Fig. 2. Experimental setup for second-life battery 

testing using Nissan Leaf retired batteries. 

even with the limited labeled data available in the 

target domain. 

A. Dataset Introduction 

The focus of this study is on the estimation of the 

SOH of batteries under conditions where data may 

be insufficient or unlabeled. To demonstrate the 

application of domain adaptation in second-life 

SOH modeling, experiments have been conducted 

using Nissan Leaf retired batteries. As shown in 

Fig. 2, the experimental setup has eight battery 

modules that each include two battery cells, an I-

tech battery tester for charging and discharging the 

batteries. The aging cycles were conducted in 

alignment with energy storage market applications. 

The batteries were charged and discharged 

according to a 7-day schedule, following both day-

ahead and real-time energy timing shifts. During the 

testing, key parameters of the battery such as 

voltage, current, and temperature were recorded. 

After every four aging tests, a characteristic test 

which includes complete low current charge and 

discharge was performed. The coulomb counting 

method, also known as the ampere-hour integral 

method, was applied to compute the batteries’ 

capacities. The overall number of testing cycles 

ranges from 1500 to 2100. 

For validation of our approach, we utilized the 

MIT battery dataset from Severson’s group [43] as 

source domain, which consists of 124 commercial 

high-power LFP/graphite A123 APR18650M1A 

cells subjected to similar fast-charging tests using a 

48-channel Arbin LBT battery testing cycler. All 

tests are conducted under a constant environmental 

temperature of 30 Celsius. Each test is programmed 

with the same discharge policy but various fast-

charging policies. The dataset presented a complete 

aging trajectory at varying usage conditions, 

accompanied by operation features like charging 

capacity, discharging capacity, current, voltage, 

internal resistance, and temperature. The overall 

number of testing cycles ranges from 150 to 2,300, 

compiled into three batches, with each representing 

approximately 48 cells. The temperature 

measurements were performed by attaching a Type 

T thermocouple with thermal epoxy and Kapton 

tape to the exposed cell can after stripping a small 

section of the plastic insulation. Internal resistance 

measurements were obtained during charging at 

Table 1.Main specifications of the selected LIBs 



 

 

 

80% SOC by averaging 10 pulses of 3.6C with a 

pulse width of 30-33 ms. Details on both datasets 

are provided in Table 1. 

B. Data Pre-processing 

The data pre-processing step is crucial for 

preparing the dataset for effective model training 

and subsequent analysis. The process consists of 

organizing data, cleaning noise, and removing 

inconsistent samples. Additionally, unlike 

conventional data processing, which often involves 

feature extraction, our approach involves 

constructing a derivative curve directly from the 

raw measurements. 

The raw data, comprising current, voltage, internal 

resistant, and temperature measurements from the 

battery cells, are first organized for each cycle of 

each battery cell. This organization aids in the 

subsequent steps of noise cleaning and curve 

generation, ensuring consistency across the dataset. 

Noise in the data, which can arise from 

measurement inaccuracies or external disturbances, 

is mitigated through a combination of filtering 

techniques. Data points that deviate significantly 

from expected behavior are identified and removed. 

This includes outlier detection where measurements 

are inconsistent with the rest of the dataset, possibly 

due to sensor errors or faulty cell operations. 

Outliers are detected using statistical thresholds. 

Instead of traditional feature extraction, our pre-

processing involves generating a differential 

capacity curve (dQ/dV) directly from the cleaned 

current (I) and voltage (V) data. The dQ/dV curve, 

which represents the derivative of capacity with 

respect to voltage, is calculated by numerically 

differentiating the charge capacity (Q) with respect 

to voltage. This curve is pivotal as it highlights the 

characteristic peaks correlating to specific 

electrochemical processes within the battery cell, 

serving as a direct input feature for our neural 

network model. 

Finally, to ensure uniformity across different 

datasets, all generated dQ/dV curves are normalized 

to the same scale using a unified Min-Max scaling 

approach. This technique involves identifying the 

global minimum and maximum values across all 

datasets prior to normalization. The normalization is 

conducted using the formula: 

 

             𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑖𝑛

𝑋𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥−𝑋𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑖𝑛
            (1) 

 

Where X is the original value, Xglobal min is the 

minimum value found across all datasets, and Xglobal 

max is the maximum value across all datasets. By 

applying the same scale to all datasets, the neural 

network is better equipped to handle variations in 

data from different sources without bias or scale-

related distortions. 

C. Feature Extraction Based on CNN Network 

Convolutional Neural Networks (CNNs) have 

become one of the most popular deep learning 

models in the analysis of data that contains spatial 

or temporal patterns, such as images or time-series 

data. This makes them particularly well-suited for 

processing the dQ/dV curves derived from battery 

charge-discharge cycles, which are rich in temporal 

patterns and characteristics indicative of battery 

health. 

A typical CNN architecture comprises 

convolutional layers, activation functions, pooling 

layers, and fully connected layers. Convolution 

layers are the core building blocks of a CNN. They 

apply a set of learnable filters to the input. Each 

filter captures specific features from the data at 

various spatial or temporal resolutions. Activation 

functions refer to non-linear activation functions, 

such as the Rectified Linear Unit (ReLU), are 

applied to the output of the convolutional layers. 

This step introduces non-linearity into the model, 

enabling it to learn complex features. Pooling layers 

reduce the spatial or temporal size of the feature 

maps, thereby decreasing the number of parameters 

and computation in the network. Pooling can be 

performed in various ways, such as max pooling or 

average pooling. 

Using CNNs allows for a robust analysis of 

battery data with several advantages. CNNs are 

capable of automatically detecting important 

features without the need for manual intervention. 

This is crucial in battery data analysis where key 

features may not be immediately apparent or are 

difficult to extract manually. CNNs also learn 

hierarchies of features. Lower layers might detect 



 

 

 

simple edges or transitions in dQ/dV curves, while 

deeper layers can identify complex patterns that are 

more abstract and represent the underlying 

electrochemical processes. During training, CNNs 

can be easily adapted and retrained to handle data 

from different battery types or operating conditions, 

enhancing the versatility of the battery health 

monitoring system. Once trained, CNNs can process 

new data rapidly, making them suitable for energy 

storage applications where real-time analysis is 

critical. 

D. Proposed CNN-DANN Model for SOH Estimation 

A Domain Adversarial Neural Network (DANN) 

is designed to predict SOH in batteries, referred to 

   

   

 

 

 

 

 

 

Stage 1: It contains a 1D CNN model to extract 

features from the battery data. These features may 

include temporal patterns in voltage, current, 

temperature, and other related battery signals. The 

mechanisms. A model trained in one domain may 

perform poorly in another domain. The use of 

DANNs in our methodology addresses the 

challenge of domain discrepancy. By aligning the 

representations from different domains, DANNs 

help in learning features that are not only relevant to 

the health estimation task but also invariant across 

different operational domains, thereby improving 

the model’s generalizability and robustness. This 

approach of using CNNs and DANNs for 1-

dimensional dQ/dV curve data combines the deep 

learning strengths in pattern recognition with 

trends, which are indicative of various degradation 

capabilities in domain adaptation.

feature extraction process at this stage can be 

expressed as: 

        𝑦𝑖
(𝑙) = 𝑓(∑ 𝑊𝑖𝑗

(𝑙)
∙ 𝑥𝑖+𝑗

(𝑙−1)
+  𝑏𝑖

(𝑙)𝑘−1
𝑗=0 )         (2) 

 

                           𝑑𝑖
(𝑙)

= 𝑦𝑖
(𝑙)

∙  𝑟𝑖
(𝑙)

                      (3) 

          𝑧𝑖
(𝑙)

= 𝑚𝑎𝑥( 𝑦𝑖∙𝑠
(𝑙)

,  𝑦𝑖∙𝑠+1
(𝑙)

, … ,  𝑦𝑖∙𝑠+𝑠−1
(𝑙)

 )       (4) 

Where the convolution operation is applied to the 

input signal, using a set of kernels. 𝑦𝑖
(𝑙)  is the 

output of the i-th neuron in layer l. 𝑥𝑖+𝑗
(𝑙−1)

 is the input 

to the convolution layer from the previous layer or 

the original input signal. 𝑊𝑖𝑗
(𝑙)

 represents the weight 

between the i-th neuron and the j-th element in the 

kernel at layer l. 𝑏𝑖
(𝑙)

 is the bias term for the i-th 

 

 

as 1-dimensional CNN DANN, as shown in Fig. 3. neuron at layer l. k is the size of the convolutional 

It consists of two stages specifically designed to the kernel. f is the activation function, often a Rectified 

SOH prediction problem. The convolutional layers Linear Unit (ReLU) or another nonlinear function.

in CNNs are adept at identifying temporal patterns During training, a certain fraction of the neurons is 

and anomalies within the sequential data, encoding randomly set to zero, effectively "dropping out" 

them into representations. This capability makes those neurons from the network for that specific 

 

  

CNNs ideal for analyzing dQ/dV curves, where iteration. 𝑑𝑖
(𝑙)

is the output of the i-th neuron after 

 
the curve, from short-term changes to long-term 

model focus on the most essential features. 𝑧𝑖
(𝑙)

a wide range of dependencies and features across 

different filters and kernel sizes, CNNs can capture 

global patterns in the dQ/dV curves. By applying 

Additionally, CNNs can recognize both local and 

important health indicators of the battery. dropout layer (output of the previous layer). 𝑟𝑖
(𝑙)

subtle changes in the curve can be extracted as applying dropout at layer. 𝑦𝑖
(𝑙) is the input to the 

is a 

random variable that takes the value of 0 with 

probability p (the dropout rate) and 1 otherwise. 

Pooling layers are then used to reduce the 

dimensionality of the data, which can help the 

is 

Fig. 3. Illustrative overview of the proposed DANN 



 

 

 

the output of the i-th neuron in the pooling layer. 

𝑦𝑖
(𝑙) is the input to the pooling layer from the 

previous convolution layer. s is the stride or size of 

the pooling operation. 

Stage 2: This stage leverages the extracted 

features and focuses on addressing the domain shift 

problem. It consists of two neural network parts: 

The Label Predictor and the Domain Classifier. The 

former targets accurate SOH prediction, while the 

latter aims to erase the differences between source 

and target domains. By training these parts 

simultaneously in an adversarial manner, DANN 

ensures that the model's predictive ability is 

complemented by its adaptability to different 

domains. The DANN equation can be expressed as: 

                   𝑦𝐿+1 = 𝜙(𝛼𝐿+1𝑦𝐿 +  𝛽𝐿+1 )               (5) 

 

                             𝑝𝑖𝑗 = 𝑦𝐿+𝑀+𝑍+1                         (6) 

 

        𝑑𝑘 = 𝜓(Υ𝑘𝑦𝑘 +  𝛿𝑘 ), 𝑘 ∈ {1,2, … , 𝐷}         (7) 

 

                          𝐿 = 𝐿𝑆𝑂𝐻 − 𝜆𝐿𝑑𝑜𝑚𝑎𝑖𝑛                 (8) 

 

Where the first equation focuses on predicting the 

actual output labels without considering the domain 

differences between the source and target datasets. 

It takes the features extracted by the 1D CNN and 

attempts to map them to the SOH values. ψ(x )from 

the second equation denotes the activation function 

in domain classification, and d_k is the output 

related to domain discrimination. The combined 

training of the 1D CNN, Label Predictor, and 

Domain Classifier requires a joint loss function that 

balances the objectives of accurate SOH prediction 

and effective domain adaptation. where L_SOH is 

the loss for SOH prediction, L_domain is the loss 

for domain classification, and λ is a hyperparameter 

controlling the balance between the two. 

The proposed 1D CNN DANN model for battery 

SOH estimation combines the strength of 

convolutional neural networks in feature extraction 

with the adaptability of domain adversarial training. 

The formal steps of this methodology are detailed in 

Algorithm 1, this two-stage approach promises a 

versatile and robust model capable of operating 

seamlessly across different battery chemistries, 

SOH ranges, and operational conditions. 

Algorithm 1: CNN-DANN for SOH Estimation. 

Input: Source domain dataset Ds, target domain 

dataset Dt, learning rates ηf, ηd, ηc., number of 

epochs E  

Output: Trained CNN-DANN model capable of 

SOH estimation on target domain 

1. Initialize Parameters: Initialize the 

parameters of the feature extractor layers F, 

the domain classifier layers D, and the label 

predictor layers C. 

2. For each epoch e from 1 to E: 

a. For each batch b in Ds and Dt: 

Extract Features:  

I. Xs, ys = next batch from Ds 

II. Xt = next batch from Dt 

III. Use F to extract features fs = 

F(Xs) and ft = F(Xt) 

b. Domain Classification  

I. Concatenate fs and ft to form fc 

II. Predict domain labels d = D(fc) 

using domain classifier D 

III. Calculate domain classification 

loss LD using the true domain 

labels and d 

c. Label Prediction (only for source domain) 

I. Predict labels yS=C(fS) using 

label predictor C 

II. Calculate label prediction loss 

LC using the true labels yS  

d. Backpropagation and Parameter Update: 

I. Calculate total loss L = Lc – λ 

LD where λ is the trade-off 

weight 

II. Update F using gradient descent 

with learning rate ηf 

III. Update D using gradient descent 

with learning rate ηd 

IV. Update C using gradient descent 

with learning rate ηc 

3. End For 

4. Return: Return the trained model components 

F, C, D. 

E. Comparative Methods 

In this section, the performance of the proposed 

CNN-DANN method on battery SOH estimation is 

compared with three other transfer learning including 



 

 

 

Gated Recurrent Unit (GRU)-DANN, Long Short-

term Memory (LSTM)-DANN, and Maximum Mean 

Discrepancy (MMD). GRU-DANN is selected for 

comparison due to its architectural efficiency and 

capability to process time-series data effectively. 

GRUs are known for their simpler structure compared 

to LSTMs, which often allows for faster training times 

without sacrifice in performance. This makes GRU-

DANN a valuable baseline for scenarios where 

computational resources or data availability are 

constrained. LSTM-DANN is included due to its 

proficiency in capturing long-term dependencies in 

sequence data, a common feature in battery usage 

cycles. LSTMs are capable of overcoming vanishing 

gradient problems better than traditional recurrent 

neural networks, making them highly suitable for 

modeling complex patterns over extended periods. 

This comparison aims to assess whether the additional 

complexity of LSTMs translates into better SOH 

estimation accuracy when coupled with domain 

adaptation. MMD is a powerful non-parametric 

measure used in domain adaptation to quantify the 

difference between the source and target domain 

distributions. Comparing MMD with DANN-based 

methods provides insight into how well domain 

discrepancy can be mitigated purely through statistical 

means, offering a contrast to the deep learning-based 

approaches.  

The comparison among these methods allows the 

examination of how different architectures and 

adaptation mechanisms can influence the robustness 

and accuracy of SOH estimations under varying 

operational conditions and dataset characteristics. By 

comparing the performance of these models, this 

study aims to highlight the specific advantages of 

using CNN-DANN for battery estimation and to 

identify potential areas where alternative models may 

offer preferable outcomes. 

F. Evaluation Metrics 

The testing set was used to evaluate the transfer 

learning model’s ability to estimate the SOH. 

Performance metrics such as Root Mean Squared 

Error (RMSE) and Mean Absolute Error (MAE) 

were calculated to quantify the model’s accuracy 

and reliability. Specifically, we calculated the errors 

mentioned above with formulas as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)2𝑁

𝑁=1              (9) 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑁=1                (10) 

 

In these equations, 𝑦𝑖 represents ground-truth 

label, 𝑦�̂�  represents the model’s prediction, and N is 

the total number of samples. 

III. RESULTS AND DISCUSSION 

A. Analysis of dQ/dV Curves as Input Features 

The dQdV curve, illustrated in Fig. 4, represents the 

differential capacity (dQ) as a function of the potential 

voltage difference (dV), is known to be highly 

sensitive to changes in the internal structure and 

condition of the battery [14]. The left graph presents 

data from an MIT A123 battery (#b1c0) while the 

right graph features a Private Nissan Leaf battery 

(#NP5). These curves are input features for the 

transfer learning models, helping to estimate the state 

of health across different battery chemistries and 

operational conditions. 

The dQ/dV curves show distinct peak patterns and 

baseline shifts, indicating the influence of different 

battery chemistries, operational histories, and SOH 

ranges. The MIT A123 battery demonstrates a single 

peak, which shifts upward as the battery degrades 

from 100% to 80% SOH. In contrast, the Nissan Leaf 

battery displays multiple peaks, with the entire set of 

peaks shifting upward as the SOH decreases from 

80% to 60%. Despite the differences in peak number 

and shape, a consistent trend is observed across both 

types of batteries. As the battery ages, regardless of 

the type, SOH range or operational conditions, the 

entire dQ/dV curve shifts upward. This upward 

Fig. 4. Voltage-capacity discharge curves. a, dQ/dV 

from MIT A123 battery. b, dQ/dV from Nissan Leaf 

battery  



 

 

 

movement is a key indicator of degradation, as it 

 

knowledge to another.  

B. Transfer Experiments 

The designed transfer experiments as shown in Fig. 5, 

explore the effectiveness of the proposed CNN-

DANN approach in transferring knowledge from a 

well-characterized source domain to a less-

characterized target domain. The experiments are 

structured to simulate a realistic scenario where 

sufficient cycling data is available for battery cells 

from source domain, but very limited data is available 

for the target domain. For the purpose of these 

experiments, we arbitrarily selected 1000 cycles data 

from 124 cells of the source domain. In contrast, the 

target domain is significantly more restricted, 

consisting of data from only 9 cells. Initially, we 

select one cell’s data as unlabeled data from the target 

domain for training the model, simulating a real-world 

scenario where sufficient labeled data is unavailable. 

evaluate the model’s ability to generalize and 

accurately estimate battery SOH based solely on the 

transferred knowledge and the minimal unlabeled data 

from the target domain.  

 

 

 

methods remains under investigation due to their 

complex, often refer as black boxes. Ongoing 

research, such as demonstrated in [44], continues to 

explore and address these reliability issues, 

emphasizing a solution for utilizing a framework that 

derives SOH results from the quantile distribution of 

deep features, providing associated confidence 

interval. Additionally, it employs a novel Wasserstein 

distance-based Quantile Huber (QH) loss function that 

integrates Huber loss with quantile regression loss for 

optimized model training based on distribution 

outputs. To address concerns regarding the 

transparency and reliability of deep learning models, 

we have conducted the experiment across nine trails, 

where different subsets of source and target data are 

utilized to train and test the model, as illustrated in 

reflects the increased resistance and decreased Fig. 5. Each trail helps in assessing the stability and 

efficiency of the battery at higher cycle numbers. The consistency of the model across varying conditions 

uniform degradation pattern captured by the dQ/dV within the target domain. The arbitrary selection of 

curves is crucial for the CNN-DANN model’s ability samples for each trail ensures a robust evaluation 

 

  

 

    Table 2. 

to learn from one domain and effectively transfer that under diverse conditions, aiding in mitigating the 

“black box’ nature by providing reproducible 

evidence of the model’s performance.

Proposed Model Parameters 

Parameter Meaning Value 

J Number of CNN layers [32,32,64] 

P Filter size 3 

l Batch size 87 

L Learning rate 0.0001 

M Drop out 0.5 

E Epochs 250 

 

C. Implementation details 

The dQ/dV curves were first processed to ensure 

uniformity in input data structure, being sampled to 

1000 data points per curve. This standardization is for 

maintain consistency in feature extraction across 

different battery cells. The sampled data points were 

 

 

The structure of the CNN-

The remaining eight cells are used as testing data to 
then

network. 

used as input for the 1-dimensional CNN-DANN 

DANN used in this study 

is detailed in Table 2. Key hyperparameters of the 

model include CNN layers, filter size, batch size, 

Despite the promising applications of deep learning 
learning rate, dropout rate, and epochs. The network 

in SOH estimation, the reliability of deep learning 
features three sets of layers with 32, 32, and 64 filters 

Fig. 5. The experiment design of 9 trail runs for 

transfer learning. 



 

 

 

 

respectively, allowing for a progressive feature 

extraction from raw input data. Each filter has a size 

of 3, which is typical for capturing local dependencies 

within the sequence data. Batch size is set at 87, 

optimizing the balance between training speed and 

memory usage. A rate of 0.0001 is used as the 

learning rate to ensure stable convergence during 

training. The dropout rate is set at 0.5 to provide 

regularization to prevent overfitting. The network is 

trained for 250 epochs, allowing sufficient time for the 

model to learn the patterns inherent in the battery data. 

The feature extraction part of the model is first 

trained using the source domain data. After feature 

extraction, the output from the CNN feeds into a fully 

connected layer designed to estimate the SOH of the 

battery. This layer functions as the SOH estimator and 

consists of two layers which process the features to 

produce a prediction of the battery’s health. 

Simultaneously, the DANN is employed to address 

the challenge of domain adaptation. This part includes 

a label classifier, which also comprises two fully 

connected layers. The label classifier’s task is to 

predict the domain of each input sample, trying to 

distinguish between the source and target domains. 

The training involves a unique adversarial process 

where the model learns to minimize the ability of the 

label classifier to determine the domain of the data 

while still maintaining its ability to accurately predict 

the SOH. This adversarial training helps in making the 

feature extractor domain-invariant, enhancing the 

model’s ability to generalize from the source to the 

target domain without loss in performance. 

By incorporating these layers, the CNN-DANN 

model not only learns the specific features related to 

SOH but also adapts to handle data from different 

domains, thus addressing the key challenge in 

applying machine learning models to real-world 

scenarios where data conditions can vary significantly. 

D. Visualization of feature distributions 

In deep learning frameworks, especially when 

dealing with complex input such as the dQ/dV 

curves from battery systems, it is important to 

measure the significance and applicability of 

autonomously extracted features. Unlike 

conventional machine learning approaches where 

feature engineering is manually achieved, the 

Fig. 6. t-SNE visualization of MIT batteries and Nissan batteries 



 

 

 

convolutional neural networks (CNN) within our 

model autonomously extract features from raw data. 

This automated feature extraction needs an 

investigation into whether the derived features are 

robust and discriminative for tasks such as domain 

adaptation and SOH estimation in batteries. To 

address this, we employ dimensionality reduction 

techniques to visualize and compare the feature 

distributions as learned by the model. 

To visualize the feature distribution, we utilize t-

Distributed Stochastic Neighbor Embedding (t-SNE), 

a machine learning algorithm designed for the 

visualization of high-dimensional data by embedding 

it into a two-dimensional space. This method is 

particularly chosen for its proficiency in maintaining 

the local structure of the data, thereby allowing us to 

visually assess the clustering tendency and separation 

between features from low dimensional domains. 

Through t-SNE, we can observe whether the features 

encapsulate distinct characteristics of the data 

indicative of different operational domains and 

degradation states. 

The t-SNE visualizations in Fig. 6. illustrate the 

spatial distribution of features corresponding to the 

source and target domains for models trained using 

different architectures, including CNN-DANN, GRU-

       Table 3. Overall comparisons with all data-driven methods 

Fig. 7. SOH estimation performance analysis using various methods. 



 

 

 

DANN, LSTM-DANN, and MMD. Ideal feature 

representation should exhibit substantial overlap 

between domains, indicating effective domain 

adaptation. The CNN-DANN model demonstrates a 

higher degree of feature overlap between domains, 

suggesting superior capability in feature extraction 

across diverse battery chemistry, SOH range, and 

operational conditions. 

Further down, the density plots of the first and 

second t-SNE features in Fig. 6. offer a quantitative 

plots for other models signifies less effective 

adaptation. 

E. Comparisons with other data-driven methods  

In this section, the performance of the proposed 

 

three other transfer learning methods including GRU- 

DANN, LSTM-DANN, and MMD. Table 3 presents 

  

average values from 10 trails. The proposed CNN-

DANN method showcases superior estimation 

performance, in terms of RMSE and MAE.  

Fig. 7. illustrates the estimation results for 8 cells 

from target domain. The MMD method exhibited 

the highest MAE and RMSE value among the four 

approaches, reflecting its limitation as a statistical 

approach that may not align well with the practical 

complexities of battery degradation. The LSTM-

DANN kept the MAE and RMSE below 12.74% 

and 12.88%. It exhibits moderately higher error 

rates; this could be caused by struggling with 

capturing the full complexity of degradation 

patterns without extensive tuning or larger datasets. 

GRU-DANN shows reasonable tracking of the SOH 

trend. The GRU-DANN kept the MAE and RMSE 

below 7.26% and 7.5%, suggesting less effective 

adaptation on feature extraction in comparison to 

the MAE and RMSE of 1.68% and 2.50% from 

CNN-DANN. 

The bar graphs illustrate the comparative analysis of 

MAE and RMSE for each battery cell from targe test 

data, highlighting the consistent superiority of the 

proposed CNN-DANN model over the other methods. 

This improvement reveals the proposed model’s 

estimation accuracy, adaptability to varying SOH 

condition, and robustness against variations in battery 

chemistry and operational scenarios. This 

performance is crucial for applications like battery 

health monitoring, where accurate and reliable 

predictions are essential for operational safety and 

efficiency. 

To further investigate the robustness of our 

 

  

across domains. The CNN-DANN model not only 

perspective on the density distribution of the features 
proposed method under conditions of limited data

availability, we conducted additional experiments 

  

shows greater overlap in the first-SNE feature but also 
where only partial segments (80% and 60%) of the 

 

 

 

 

IV. C

and highlight the capability of our model to provide 
the estimation performance of methods using the completeness in achieving accurate SOH estimation

higher MAE and RMSE of 4.42% and 6.76%. 

accessible. Our findings indicate a progressive 

increase in prediction error as the amount of available 

data decreases: utilizing 80% of the dQ/dV curve 

resulted in the MAE and RMSE of 2.12% and

domains. In contrast, the divergence observed in the 

indicating robust generalization capabilities across 

maintains consistency across the second feature, 
dQ/dV curve were utilized. This approach simulated 

more challenging scenarios frequently encountered in 

practical applications where complete data may not be 

 

method on battery SOH estimation is compared with 3.43%, while reducing the data to 60% led to a 

These results underscore the importance of data 

 

reliable predictions even with reduced data.

ONCLUSION 

This paper presents a domain adaptation model for 

second-life battery SOH estimation, utilizing one-

dimensional CNN and DANN. The proposed 

approach is designed to be lightweight, allowing for 

efficient adaptation and prediction with minimal 

unlabeled data requirements from the target domain. 

We demonstrate that even with the data of only one 

unlabeled target battery cell, our method is capable 

of transferring the knowledge from the source 

batteries. This has significant practical implications: 

Data Economy: The ability to make accurate 

predictions with minimal target domain data is 

essential in scenarios where collecting large 

quantities of labeled data is challenging, time-

consuming, or costly.  

Scalability: The method can be readily applied to 

any new or used battery types or operating 



 

 

 

conditions without the need for extensive retraining 

or additional data collection. 

Resource Efficiency: The light-weight design 

means lower computational requirements, making 

the algorithm suitable for real-time applications or 

resource-constrained environments. 

Our future work plans are to investigate various 

battery chemistries. By doing so, we aim to test the 

generalization and robustness of our model. Lastly, 

implementing and testing the model in actual 

industrial settings for second-life energy storage 

applications will be essential for evaluating its 

practicality, efficiency, and effectiveness in real-

world conditions. 
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