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Abstract:Battery state-of-health (SOH) estimation is vital across applications ranging from portable electronics to
electric vehicles, particularly in second-life applications where accurate prediction becomes complex due to
varying degradation levels. This paper introduces a novel SOH estimation model to address the lack of labeled
data, employing domain-adversarial neural networks (DANNs) combined with one-dimensional convolutional
neural networks (CNNs). The proposedmethod allows for effective transfer of knowledge between diverse battery
conditions, enhancing adaptability and efficiency by utilizing both source and target datasets. Experimental results
demonstrate that the proposed model achieves a mean absolute error (MAE) of 1.68% and a root mean squared
error (RMSE) of 2.50%, with minimal data. Specifically, the model requires only one cell of unlabeled data from
the second-life target domain, utilizing only the dQ/dV curve for estimation. Proposed model sets a new standard
in second-life battery health monitoring and management by effectively leveraging a minimal amount of data for
training, and this approach offers a robust solution for accurate SOH estimation, particularly in scenarios with
limited access to labeled data.
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I. INTRODUCTION
Lithium-ion batteries (LIBs) are pivotal in modern energy
storage solutions, powering a wide range of applications
from consumer electronics to electric vehicles (EVs) and
large-scale energy storage systems. As global production and
adoption of EVs surge, the retirement rate of these vehicles
also increases, leading to an urgent need to repurpose their
batteries for second-life applications before considering
recycling [1–3]. This demand emphasizes the importance
of effective battery management, especially as these batteries
often operate beyond their prime, with capacities reduced to
below 80% of their original state. When LIBs in EVs reach
80% of their initial capacity, they are retired from vehicular
use and begin their second life, often in less demanding
applications such as stationary energy storage systems [4].
This transition from high-performance mobility applications
to stationary applications poses unique challenges in battery
management due to the varied degradation and operational
histories of the batteries.

LIBs are complex systems, requiring continuous mon-
itoring to ensure their reliability and safety [5–8]. Key
parameters such as voltage, temperature, state-of-charge
(SOC), state-of-health (SOH), and remaining useful life
(RUL) are essential for effective battery management.
While voltage and temperature can be directly measured
through sensors, SOC, SOH, and RUL cannot be measured
directly and must be estimated [9,10]. A critical aspect of
battery management systems is the accurate estimation of

the SOH, which reflects the current condition of the battery
relative to its ideal state.

The accurate estimation of SOH is of importance to
users for several reasons. First, it ensures the safe operation
of the battery by preventing overcharging or deep dischar-
ging, which can lead to hazardous situations such as thermal
runaway. Second, it optimizes the batter’s performance by
enabling efficient energy management, thereby extending
the battery’s lifespan and reducing maintenance costs.
Third, precise SOH estimation is critical for predicting
RUL, which helps in planning maintenance and replace-
ment schedules, thus minimizing downtime and enhancing
the overall reliability of the system. Therefore, SOH esti-
mation is a major concern for both manufacturers and users,
driving the need for robust and reliable estimation methods.
The degradation characteristics of LIBs can vary widely
depending on the battery chemistry. In some cases, batteries
that have similar degradation profiles during their first life
might exhibit more pronounced or entirely different degra-
dation behaviors once they are repurposed for second-life
applications. For instance, nickel-manganese-cobalt
(NMC) and lithium-iron-phosphate (LFP) batteries might
show relatively stable performance declines in their first life
but could have varied degradation trajectories post the 80%
capacity threshold [11]. This is due to the accumulated
effects of microstructural changes, electrolyte decomposi-
tion, and electrode surface transformations that have pro-
gressed differently based on initial usage conditions,
charging protocols, and environmental factors [12]. All
these factors making SOH estimation particularly challeng-
ing, as it demands models that can capture the multifaceted
nature of battery aging [13].Corresponding author: Xiang Li (e-mail: lixiang@xjtu.edu.cn).
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Significant studies have been devoted to predicting
battery SOH in recent years [14–18]. They result in the two
main paradigms: model-based and data-driven methods.
Mode-based methods rely on mathematical and physical
models to represent the underlying processes and mechan-
isms within the battery [19]. For example, Feng et al. [20]
developed an equivalent-circuit model to capture the chem-
ical and physical relationships with the implementation of
system identification algorithms, and it can identify the
correlated parameters of battery behavior and degradation.
Model-based methods attempt to mitigate domain shift by
incorporating parameters that capture variations in operat-
ing conditions, battery chemistry, and usage patterns. By
using these parameters as adjustable inputs, model-based
techniques can be tuned to accommodate different domains
[21]. While these models can provide detailed insights, they
are typically computationally intense and may not be
practical for real-world applications.

In comparison with model-based methods, data-driven
methods leverage statistical and machine learning algo-
rithms to identify patterns and relationships within empiri-
cal data [22–24]. These methods offer the advantages of
being adaptable, scalable, and less dependent on the com-
plex internal dynamics of batteries. Recent advancements in
machine learning and data analytics have significantly
enhanced the capability of data-driven models to accurately
predict battery SOH [25,26]. Existing data-driven methods
include convolutional neural networks (CNNs), long short-
term memory (LSTM), Gaussian process regression (GPR),
and so on [27]. By utilizing various types of data such as
voltage, current, temperature, and charge/discharge cycles,
these models can capture the patterns and trends associated
with battery degradation. However, one of the primary
challenges in utilizing these methods is the requirement
for large amounts of labeled data, which can be difficult and
expensive to obtain. Furthermore, models trained on data
from a specific battery type or operating condition often
perform poorly when applied to different batteries or con-
ditions due to domain shifts. This requirement is particu-
larly problematic for batteries in second-life applications,
where variability in the source and history of the batteries
introduces additional complexity. Second-life batteries,
often sourced from different types of vehicles and used
under varied conditions, exhibit diverse degradation
patterns.

Data-driven methods address domain shift through
techniques like feature normalization, domain adaptation,
and Grassmann manifold [28–31]. Techniques like domain
adaptation offer a solution to the data scarcity challenge by
allowing models trained on well-documented, homoge-
neous datasets to be effectively adapted to less character-
ized, heterogeneous second-life battery data [32,33]. In the
context of battery SOH estimation, this means leveraging
knowledge from readily available datasets, possibly from
different battery chemistries or operational conditions, to
make accurate predictions on new and less-documented
SOH ranges. This approach not only mitigates the need for
extensive labeled data in every specific application but also
enhances the model’s adaptability and efficiency [34–39].
While these techniques have yielded valuable insights and
advancements in SOH prediction, they are not without
limitations. Lu et al. [35] introduced a method utilizing a
swarm of deep neural network methods for estimating
battery SOH. However, this model requires the use of
thousands of battery samples for training and is limited

to an SOH range of 100%–75%. Zhang et al. [39] devel-
oped a soft-dynamic time warping domain adaptation net-
work for cross-domain SOH estimation. However, the
study focused on batteries with identical chemistry and
SOH range, differing only in their operational conditions.
Challenges arise from the complexity and variability of
battery chemistry, the diverse range of SOH, and the unique
characteristics of individual applications. These factors
often constrain the generalization capabilities of traditional
domain adaptation methods, leaving room for improvement
in predictive accuracy and adaptability.

In real-world second-life applications of LIBs, it is
often the case that only sufficient data from the source
domain are available, with incomplete and unlabeled data
from the target domain, which may encompass different
battery health levels (SOH), various operational conditions,
and other distinct characteristics. This complex challenge in
second-life energy storage systems has received little atten-
tion and is not well addressed in the literature. For instance,
Gotz’s study demonstrated fast prediction capabilities but
was limited to a single battery cell used for both training and
testing, which compromises the robustness of the findings
[40]. Similarly, Braco’s work on reused Nissan Leaf EV
modules, which estimated SOH ranging from 91.3% to
31%, did not disclose the volume of data used for training,
thereby questioning the reliability of the performance if
insufficient data is provided [41]. Furthermore, Faraji-Niri’s
approach involved electrochemical impedance spectros-
copy combined with machine learning to estimate SOH
for second-life batteries, but it only targeted batteries with
SOH ranges from 100% to 80%, thus not fully addressing
the typical conditions of second-life batteries [42].

Despite the research of various data-driven techniques,
no study has comprehensively addressed the simultaneous
challenges of different battery chemistries, diverse opera-
tional environments, limited data, and varying SOH ranges
of estimating SOH for retired LIBs from EVs. To address
this issue, we have proposed a deep learning-based transfer
learning methodology. The following are the key novelties
and contributions of this research:

1) The SOH estimation problem is investigated by
utilizing unlabeled battery data from second-life tar-
get domain, where only a segment of the SOH ranges
from a single battery cell within the target domain’s
life cycle is employed during the training stage.

2) The differential capacity (dQ/dV) curve analysis is
introduced to extract features that directly reflect the
battery’s health status. This method is effective in
addressing the variations in battery chemistry and
operational conditions, providing a comprehensive
understanding of degradation patterns across different
domains.

3) CNNs and domain-adversarial neural networks
(DANNs) are deployed to ensure robust model per-
formance. These neural networks are crucial for
accommodating the uncertainties and variability
within the datasets, leading to more precise and
reliable SOH estimations.

To validate the effectiveness of our methodology, we
conducted experiments on second-life battery cells, as no
public dataset targets SOH levels exceeding 80%. These
experiments test the model’s ability to predict SOH ranges
beyond first-life applications, demonstrating the practical
applicability and scalability of our approach.
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The reminder of this paper is organized as follows.
Section II gives the problem statement, datasets, method-
ology overview, and the proposed SOH estimation model.
Section III discusses the experimental results and perfor-
mance evaluation. Finally, Section IV concludes the paper
and outlines potential future research directions.

II. MATERIALS AND METHODS
The research methodology shown in Fig. 1. outlines a
framework designed to improve the prediction accuracy
for battery SOH estimation using domain adaptation. We
utilize a strategy involving both source and target domains.
This approach comprises two main components: offline
training and online monitoring. In the offline training phase,
the deep neural network is first pretrained using sufficient
aging data from the source domain Ds. This pretraining
process helps in initializing the network parameters based
on the abundant labeled data available in the source domain.
Once the network parameters are initialized, both the source
domain data Ds and the target domain data Dt are fed into
the network. During this phase, the deep neural network is
trained to adapt the feature distributions between the source
and target domains. This adaptation process aims to gener-
alize the model to perform well on both the source and
target domains. By aligning the feature distributions, the
network learns domain-invariant features that are crucial for
accurate SOH estimation across different domains. After
the model has been trained and the parameters have been
optimized to minimize domain discrepancy, it is deployed
for online monitoring for the target domain data. In this
stage, the trained model is used to predict the SOH of the

target domain batteries in real time. Themodel leverages the
knowledge transferred from the source domain to provide
accurate and reliable SOH estimations, even with the
limited labeled data available in the target domain.

A. DATASET INTRODUCTION

The focus of this study is on the estimation of the SOH of
batteries under conditions where data may be insufficient or
unlabeled. To demonstrate the application of domain adap-
tation in second-life SOH modeling, experiments have been
conducted using Nissan Leaf retired batteries. As shown in
Fig. 2, the experimental setup has eight battery modules that
each include two battery cells, an ITECH battery tester for
charging and discharging the batteries. The aging cycles
were conducted in alignment with energy storage market
applications. The batteries were charged and discharged
according to a 7-day schedule, following both day-ahead
and real-time energy timing shifts. During the testing, key
parameters of the battery such as voltage, current, and
temperature were recorded. After every four aging tests, a
characteristic test which includes complete low current
charge and discharge was performed. The coulomb counting
method, also known as the ampere-hour integral method,was
applied to compute the batteries’ capacities. The overall
number of testing cycles ranges from 1500 to 2100.

For validation of our approach, we utilized the MIT
battery dataset from Severson’s group [43] as source domain,
which consists of 124 commercial high-power LFP/graphite
A123 APR18650M1A cells subjected to similar fast-charg-
ing tests using a 48-channel Arbin LBT battery testing cycler.
All tests are conducted under a constant environmental
temperature of 30 Celsius. Each test is programmed with

Fig. 1. Flow diagram for the proposed methodology.
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the same discharge policy but various fast-charging policies.
The dataset presented a complete aging trajectory at varying
usage conditions, accompanied by operation features like
charging capacity, discharging capacity, current, voltage,
internal resistance, and temperature. The overall number
of testing cycles ranges from 150 to 2,300, compiled into
three batches, with each representing approximately 48 cells.
The temperature measurements were performed by attaching
a Type T thermocouple with thermal epoxy and Kapton tape
to the exposed cell can after stripping a small section of the
plastic insulation. Internal resistance measurements were
obtained during charging at 80% SOC by averaging 10
pulses of 3.6C with a pulse width of 30–33 ms. Details
on both datasets are provided in Table I.

B. DATA PREPROCESSING

The data preprocessing step is crucial for preparing the
dataset for effective model training and subsequent

analysis. The process consists of organizing data, cleaning
noise, and removing inconsistent samples. Additionally,
unlike conventional data processing, which often involves
feature extraction, our approach involves constructing a
derivative curve directly from the raw measurements.

The raw data, comprising current, voltage, internal
resistant, and temperature measurements from the battery
cells are first organized for each cycle of each battery cell.
This organization aids in the subsequent steps of noise
cleaning and curve generation, ensuring consistency across
the dataset. Noise in the data, which can arise from mea-
surement inaccuracies or external disturbances, is mitigated
through a combination of filtering techniques. Data points
that deviate significantly from expected behavior are iden-
tified and removed. This includes outlier detection where
measurements are inconsistent with the rest of the dataset,
possibly due to sensor errors or faulty cell operations.
Outliers are detected using statistical thresholds.

Instead of traditional feature extraction, our preproces-
sing involves generating a differential capacity curve (dQ/dV)
directly from the cleaned current (I) and voltage (V) data. The
dQ/dV curve, which represents the derivative of capacitywith
respect to voltage, is calculated by numerically differentiating
the charge capacity (Q) with respect to voltage. This curve is
pivotal as it highlights the characteristic peaks correlating to
specific electrochemical processes within the battery cell,
serving as a direct input feature for our neural networkmodel.

Finally, to ensure uniformity across different datasets,
all generated dQ/dV curves are normalized to the same scale
using a unified Min-Max scaling approach. This technique
involves identifying the global minimum and maximum
values across all datasets prior to normalization. The nor-
malization is conducted using the formula:

Xnorm =
X − Xglobal min

Xglobal max − Xglobal min
(1)

where X is the original value, Xglobal min is the minimum
value found across all datasets, and Xglobal max is the
maximum value across all datasets. By applying the
same scale to all datasets, the neural network is better
equipped to handle variations in data from different sources
without bias or scale-related distortions.

C. FEATURE EXTRACTION BASED ON CNN
NETWORK

CNNs have become one of the most popular deep learning
models in the analysis of data that contains spatial or
temporal patterns, such as images or time-series data.
This makes them particularly well suited for processing
the dQ/dV curves derived from battery charge–discharge
cycles, which are rich in temporal patterns and character-
istics indicative of battery health.

Fig. 2. Experimental setup for second-life battery testing using
Nissan Leaf retired batteries.

Table I. Main specifications of the selected LIBs

Dataset
Manufacturer/

Provider

Electrode Active
Materials

(Cathode/Anode)

Nominal
Capacity

(ah)

Voltage
Range
(V)

Data
Amount
(Samples)

SOH
Range Operation Condition

#1 A123/MIT
public

LFP/graphite 1.1 Ah 2–3.6V 124 80–100% 4C Fast-charging

#2 Nissan Leaf/
private

LiMn2O4 with
LiNiO2/graphite

33.1 Ah 2.6–4.2V 9 60–80% Day-Ahead and Real-
Time Energy Timing

Shift (DART)
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A typical CNN architecture comprises convolutional
layers, activation functions, pooling layers, and fully con-
nected layers. Convolution layers are the core building
blocks of a CNN. They apply a set of learnable filters to
the input. Each filter captures specific features from the data
at various spatial or temporal resolutions. Activation func-
tions refer to nonlinear activation functions, such as the
rectified linear unit (ReLU), are applied to the output of the
convolutional layers. This step introduces nonlinearity into
the model, enabling it to learn complex features. Pooling
layers reduce the spatial or temporal size of the feature
maps, thereby decreasing the number of parameters and
computation in the network. Pooling can be performed in
various ways, such as max pooling or average pooling.

Using CNNs allows for a robust analysis of battery data
with several advantages. CNNs are capable of automati-
cally detecting important features without the need for
manual intervention. This is crucial in battery data analysis
where key features may not be immediately apparent or are
difficult to extract manually. CNNs also learn hierarchies of
features. Lower layers might detect simple edges or transi-
tions in dQ/dV curves, while deeper layers can identify
complex patterns that are more abstract and represent the
underlying electrochemical processes. During training,
CNNs can be easily adapted and retrained to handle data
from different battery types or operating conditions,
enhancing the versatility of the battery health monitoring
system. Once trained, CNNs can process new data rapidly,
making them suitable for energy storage applications where
real-time analysis is critical.

D. PROPOSED CNN-DANNMODEL FOR SOH
ESTIMATION

ADANN is designed to predict SOH in batteries, referred to
as one-dimensional CNN-DANN, as shown in Fig. 3. It
consists of two stages specifically designed to the SOH
prediction problem. The convolutional layers in CNNs are
adept at identifying temporal patterns and anomalies within
the sequential data, encoding them into representations.
This capability makes CNNs ideal for analyzing dQ/dV
curves, where subtle changes in the curve can be extracted

as important health indicators of the battery. Additionally,
CNNs can recognize both local and global patterns in the
dQ/dV curves. By applying different filters and kernel sizes,
CNNs can capture a wide range of dependencies and
features across the curve, from short-term changes to
long-term trends, which are indicative of various degrada-
tion mechanisms. A model trained in one domain may
perform poorly in another domain. The use of DANNs
in our methodology addresses the challenge of domain
discrepancy. By aligning the representations from different
domains, DANNs help in learning features that are not only
relevant to the health estimation task but also invariant
across different operational domains, thereby improving the
model’s generalizability and robustness. This approach of
using CNNs and DANNs for one-dimensional dQ/dV curve
data combines the deep learning strengths in pattern recog-
nition with capabilities in domain adaptation.

Stage 1: It contains a 1DCNNmodel to extract features
from the battery data. These features may include temporal
patterns in voltage, current, temperature, and other related
battery signals. The feature extraction process at this stage
can be expressed as:

yi
ðlÞ = f

�Xk−1
j=0

W ðlÞ
ij · xðl−1Þiþj þ bðlÞi

�
(2)

dðlÞi = yðlÞi · rðlÞi (3)

zðlÞi = max
�
yðlÞi·s , y

ðlÞ
i·sþ1, : : : , y

ðlÞ
i·sþs−1

�
(4)

where the convolution operation is applied to the input signal,

using a set of kernels. yðlÞi is the output of the i-th neuron in

layer l. xðl−1Þi+j is the input to the convolution layer from the

previous layer or the original input signal.W ðlÞ
ij represents the

weight between the i-th neuron and the j-th element in the

kernel at layer l. bðlÞi is the bias term for the i-th neuron at layer
l. k is the size of the convolutional kernel. f is the activation
function, often a ReLU or another nonlinear function. During
training, a certain fraction of the neurons is randomly set to
zero, effectively “dropping out” those neurons from the

network for that specific iteration. dðlÞi is the output of the

i-th neuron after applying dropout at layer. yðlÞi is the input to

the dropout layer (output of the previous layer). rðlÞi is a
random variable that takes the value of 0 with probability p
(the dropout rate) and 1 otherwise. Pooling layers are then
used to reduce the dimensionality of the data, which can help

the model focus on the most essential features. zðlÞi is the

output of the i-th neuron in the pooling layer. yðlÞi is the input
to the pooling layer from the previous convolution layer. s is
the stride or size of the pooling operation.

Stage 2: This stage leverages the extracted features and
focuses on addressing the domain shift problem. It consists
of two neural network parts: the label predictor and the
domain classifier. The former targets accurate SOH predic-
tion, while the latter aims to erase the differences between
source and target domains. By training these parts simulta-
neously in an adversarial manner, DANN ensures that the
model’s predictive ability is complemented by its adapt-
ability to different domains. The DANN equation can be
expressed as:Fig. 3. Illustrative overview of the proposed DANN.
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yL+1 = ϕðαL+1yL + βL+1Þ (5)

pij = yL+M+Z+1 (6)

dk = ψðϒkyk þ δkÞ, k ∈ f1,2, : : : ,Dg (7)

L = LSOH − λLdomain (8)

where the first equation focuses on predicting the actual
output labels without considering the domain differences
between the source and target datasets. It takes the features
extracted by the 1D CNN and attempts to map them to the
SOH values. ψðxÞ from the second equation denotes the
activation function in domain classification, and d_k is
the output related to domain discrimination. The combined
training of the 1D CNN, label predictor, and domain
classifier requires a joint loss function that balances the
objectives of accurate SOH prediction and effective
domain adaptation, where L_soh is the loss for SOH
prediction, L_domain is the loss for domain classification,
and λ is a hyperparameter controlling the balance between
the two.

The proposed 1D CNN-DANN model for battery SOH
estimation combines the strength of CNNs in feature
extraction with the adaptability of domain adversarial train-
ing. The formal steps of this methodology are detailed in
Algorithm 1, and this two-stage approach promises a
versatile and robust model capable of operating seamlessly
across different battery chemistries, SOH ranges, and oper-
ational conditions.

E. COMPARATIVE METHODS

In this section, the performance of the proposed CNN-
DANN method on battery SOH estimation is compared
with three other transfer learning including gated recurrent
unit (GRU)-DANN, LSTM-DANN, and maximum mean
discrepancy (MMD). GRU-DANN is selected for compari-
son due to its architectural efficiency and capability to
process time-series data effectively. GRUs are known for
their simpler structure compared to LSTMs, which often
allows for faster training times without sacrifice in perfor-
mance. This makes GRU-DANN a valuable baseline for
scenarios where computational resources or data availabil-
ity are constrained. LSTM-DANN is included due to its
proficiency in capturing long-term dependencies in
sequence data, a common feature in battery usage cycles.
LSTMs are capable of overcoming vanishing gradient
problems better than traditional recurrent neural networks,
making them highly suitable for modeling complex patterns
over extended periods. This comparison aims to assess
whether the additional complexity of LSTMs translates
into better SOH estimation accuracy when coupled with
domain adaptation. MMD is a powerful nonparametric
measure used in domain adaptation to quantify the differ-
ence between the source and target domain distributions.
Comparing MMD with DANN-based methods provides
insight into how well domain discrepancy can be mitigated
purely through statistical means, offering a contrast to the
deep learning-based approaches.

The comparison among these methods allows the
examination of how different architectures and adaptation
mechanisms can influence the robustness and accuracy of
SOH estimations under varying operational conditions and

Algorithm 1: CNN-DANN for SOH Estimation.

Input: Source domain dataset Ds, target domain dataset Dt, learning rates ηf, ηd, ηc., number of epochs E

Output: Trained CNN-DANN model capable of SOH estimation on target domain

1. Initialize Parameters: Initialize the parameters of the feature extractor layers F, the domain classifier layers D, and the label
predictor layers C.

2. For each epoch e from 1 to E:

a. For each batch b in Ds and Dt:

Extract Features:

I. Xs, ys= next batch from Ds

II. Xt= next batch from Dt

III. Use F to extract features fs= F(Xs) and ft= F(Xt)

b. Domain Classification

I. Concatenate fs and ft to form fc
II. Predict domain labels d=D(fc) using domain classifier D

III. Calculate domain classification loss LD using the true domain labels and d

c. Label Prediction (only for source domain)

I. Predict labels yS=C(fS) using label predictor C

II. Calculate label prediction loss LC using the true labels yS
d. Backpropagation and Parameter Update:

I. Calculate total loss L= Lc – λ LD where λ is the trade-off weight

II. Update F using gradient descent with learning rate ηf
III. Update D using gradient descent with learning rate ηd
IV. Update C using gradient descent with learning rate ηc

3. End For

4. Return: Return the trained model components F, C, D.
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dataset characteristics. By comparing the performance of
these models, this study aims to highlight the specific
advantages of using CNN-DANN for battery estimation
and to identify potential areas where alternative models may
offer preferable outcomes.

F. EVALUATION METRICS

The testing set was used to evaluate the transfer learning
model’s ability to estimate the SOH. Performance metrics
such as root mean squared error (RMSE) and mean absolute
error (MAE) were calculated to quantify the model’s accu-
racy and reliability. Specifically, we calculated the errors
mentioned above with formulas as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
N=1

ðyi − byiÞ2
vuut (9)

MAE =
1
N

XN
N=1

jyi − byij (10)

In these equations, yi represents ground-truth label, byi
represents the model’s prediction, and N is the total number
of samples.

III. RESULTS AND DISCUSSION
A. ANALYSIS OF dQ/dV CURVES AS INPUT
FEATURES

The dQ/dV curve, illustrated in Fig. 4, represents the
differential capacity (dQ) as a function of the potential
voltage difference (dV) and is known to be highly sensitive
to changes in the internal structure and condition of the
battery [14]. The left graph presents data from anMITA123
battery (#b1c0), while the right graph features a Private
Nissan Leaf battery (#NP5). These curves are input features
for the transfer learning models, helping to estimate the
SOH across different battery chemistries and operational
conditions.

The dQ/dV curves show distinct peak patterns and
baseline shifts, indicating the influence of different battery
chemistries, operational histories, and SOH ranges. The
MIT A123 battery demonstrates a single peak, which shifts
upward as the battery degrades from 100% to 80% SOH. In

contrast, the Nissan Leaf battery displays multiple peaks,
with the entire set of peaks shifting upward as the SOH
decreases from 80% to 60%. Despite the differences in peak
number and shape, a consistent trend is observed across
both types of batteries. As the battery ages, regardless of the
type, SOH range, or operational conditions, the entire
dQ/dV curve shifts upward. This upward movement is a
key indicator of degradation, as it reflects the increased
resistance and decreased efficiency of the battery at higher
cycle numbers. The uniform degradation pattern captured
by the dQ/dV curves is crucial for the CNN-DANNmodel’s
ability to learn from one domain and effectively transfer that
knowledge to another.

B. TRANSFER EXPERIMENTS

The designed transfer experiments as shown in Fig. 5
explore the effectiveness of the proposed CNN-DANN
approach in transferring knowledge from a well-character-
ized source domain to a less-characterized target domain.
The experiments are structured to simulate a realistic
scenario where sufficient cycling data is available for
battery cells from source domain, but very limited data is
available for the target domain. For the purpose of these
experiments, we arbitrarily selected 1000 cycles data from
124 cells of the source domain. In contrast, the target
domain is significantly more restricted, consisting of data

Fig. 4. Voltage–capacity discharge curves. a, dQ/dV from A123 battery. b, dQ/dV from Nissan Leaf battery.

Fig. 5. The experiment design of 9 trail runs for transfer learning.
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from only 9 cells. Initially, we select one cell’s data as
unlabeled data from the target domain for training the
model, simulating a real-world scenario where sufficient
labeled data is unavailable. The remaining eight cells are
used as testing data to evaluate the model’s ability to
generalize and accurately estimate battery SOH based
solely on the transferred knowledge and the minimal unla-
beled data from the target domain.

Despite the promising applications of deep learning in
SOH estimation, the reliability of deep learning methods
remains under investigation due to their complex, often
refer as black boxes. Ongoing research, such as demon-
strated in [44], continues to explore and address these
reliability issues, emphasizing a solution for utilizing a
framework that derives SOH results from the quantile
distribution of deep features, providing associated
confidence interval. Additionally, it employs a novel
Wasserstein distance-based quantile Huber (QH) loss func-
tion that integrates Huber loss with quantile regression loss
for optimized model training based on distribution outputs.
To address concerns regarding the transparency and reli-
ability of deep learning models, we have conducted the
experiment across nine trails, where different subsets of
source and target data are utilized to train and test the model,
as illustrated in Fig. 5. Each trail helps in assessing the
stability and consistency of the model across varying con-
ditions within the target domain. The arbitrary selection of
samples for each trail ensures a robust evaluation under
diverse conditions, aiding in mitigating the “black box”
nature by providing reproducible evidence of the model’s
performance.

C. IMPLEMENTATION DETAILS

The dQ/dV curves were first processed to ensure uniformity
in input data structure, being sampled to 1000 data points
per curve. This standardization is for maintain consistency
in feature extraction across different battery cells. The
sampled data points were then used as input for the one-
dimensional CNN-DANN network.

The structure of the CNN-DANN used in this study is
detailed in Table II. Key hyperparameters of the model
include CNN layers, filter size, batch size, learning rate,
dropout rate, and epochs. The network features three sets of
layers with 32, 32, and 64 filters, respectively, allowing for
a progressive feature extraction from raw input data. Each
filter has a size of 3, which is typical for capturing local
dependencies within the sequence data. Batch size is set at
87, optimizing the balance between training speed and
memory usage. A rate of 0.0001 is used as the learning
rate to ensure stable convergence during training. The
dropout rate is set at 0.5 to provide regularization to prevent
overfitting. The network is trained for 250 epochs, allowing

sufficient time for the model to learn the patterns inherent in
the battery data.

The feature extraction part of the model is first trained
using the source domain data. After feature extraction, the
output from the CNN feeds into a fully connected layer
designed to estimate the SOH of the battery. This layer
functions as the SOH estimator and consists of two layers
which process the features to produce a prediction of the
battery’s health. Simultaneously, the DANN is employed to
address the challenge of domain adaptation. This part
includes a label classifier, which also comprises two fully
connected layers. The label classifier’s task is to predict the
domain of each input sample, trying to distinguish between
the source and target domains. The training involves a
unique adversarial process where the model learns to
minimize the ability of the label classifier to determine
the domain of the data while still maintaining its ability to
accurately predict the SOH. This adversarial training helps
in making the feature extractor domain-invariant, enhanc-
ing the model’s ability to generalize from the source to the
target domain without loss in performance.

By incorporating these layers, the CNN-DANN model
not only learns the specific features related to SOH but also
adapts to handle data from different domains, thus addres-
sing the key challenge in applying machine learning models
to real-world scenarios where data conditions can vary
significantly.

D. VISUALIZATION OF FEATURE
DISTRIBUTIONS

In deep learning frameworks, especially when dealing with
complex input such as the dQ/dV curves from battery
systems, it is important to measure the significance and
applicability of autonomously extracted features. Unlike
conventional machine learning approaches where feature
engineering is manually achieved, the CNNs within our
model autonomously extract features from raw data. This
automated feature extraction needs an investigation into
whether the derived features are robust and discriminative
for tasks such as domain adaptation and SOH estimation in
batteries. To address this, we employ dimensionality reduc-
tion techniques to visualize and compare the feature dis-
tributions as learned by the model.

To visualize the feature distribution, we utilize t-dis-
tributed stochastic neighbor embedding (t-SNE), a machine
learning algorithm designed for the visualization of high-
dimensional data by embedding it into a two-dimensional
space. This method is particularly chosen for its proficiency
in maintaining the local structure of the data, thereby
allowing us to visually assess the clustering tendency
and separation between features from low-dimensional
domains. Through t-SNE, we can observe whether the
features encapsulate distinct characteristics of the data
indicative of different operational domains and degradation
states.

The t-SNE visualizations in Fig. 6. illustrate the spatial
distribution of features corresponding to the source and
target domains for models trained using different architec-
tures, including CNN-DANN, GRU-DANN, LSTM-
DANN, and MMD. Ideal feature representation should
exhibit substantial overlap between domains, indicating
effective domain adaptation. The CNN-DANN model
demonstrates a higher degree of feature overlap between
domains, suggesting superior capability in feature

Table II. Proposed model parameters

Parameter Meaning Value

J Number of CNN layers [32, 32, 64]

P Filter size 3

l Batch size 87

L Learning rate 0.0001

M Dropout 0.5

E Epochs 250
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extraction across diverse battery chemistry, SOH range, and
operational conditions.

Further down, the density plots of the first and second
t-SNE features in Fig. 6. offer a quantitative perspective on
the density distribution of the features across domains. The
CNN-DANN model not only shows greater overlap in the
first-SNE feature but also maintains consistency across the
second feature, indicating robust generalization capabili-
ties across domains. In contrast, the divergence observed
in the plots for other models signifies less effective
adaptation.

E. COMPARISONS WITH OTHER
DATA-DRIVEN METHODS

In this section, the performance of the proposed method on
battery SOH estimation is compared with three other
transfer learning methods, including GRU-DANN,
LSTM-DANN, andMMD. Table III presents the estimation
performance of methods using the average values from 10
trails. The proposed CNN-DANN method showcases
superior estimation performance, in terms of RMSE
and MAE.

Fig. 6. t-SNE visualization of A123 batteries and Nissan batteries.

Table III. Overall comparisons with all data-driven methods

Testing Battery Cells

Proposed GRU-DANN LSTM-DANN MMD

MAE RSME MAE RSME MAE RSME MAE RSME

#1 1.97 2.56 6.86 7.11 12.53 12.66 14.51 14.69

#2 1.60 2.42 6.41 6.68 12.30 12.44 14.81 14.99

#3 2.26 2.79 7.71 7.92 12.86 12.98 14.21 14.40

#4 1.24 2.34 6.92 7.14 12.71 12.85 15.13 15.26

#5 1.26 2.35 7.19 7.44 12.78 12.92 15.00 15.13

#6 2.11 2.78 7.46 7.81 12.94 13.07 13.97 14.25

#7 1.75 2.48 7.56 7.80 12.85 12.99 14.28 14.47

#8 1.25 2.30 7.94 8.12 12.95 13.09 14.84 14.97
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Figure 7 illustrates the estimation results for 8 cells
from target domain. The MMD method exhibited the high-
est MAE and RMSE value among the four approaches,
reflecting its limitation as a statistical approach that may not
align well with the practical complexities of battery degra-
dation. The LSTM-DANN kept the MAE and RMSE below
12.74% and 12.88%. It exhibits moderately higher error
rates; this could be caused by struggling with capturing the
full complexity of degradation patterns without extensive
tuning or larger datasets. GRU-DANN shows reasonable
tracking of the SOH trend. The GRU-DANN kept the
MAE and RMSE below 7.26% and 7.5%, suggesting
less effective adaptation on feature extraction in compari-
son to the MAE and RMSE of 1.68% and 2.50% from
CNN-DANN.

The bar graphs illustrate the comparative analysis of
MAE and RMSE for each battery cell from target test data,
highlighting the consistent superiority of the proposed
CNN-DANN model over the other methods. This improve-
ment reveals the proposed model’s estimation accuracy,
adaptability to varying SOH condition, and robustness
against variations in battery chemistry and operational
scenarios. This performance is crucial for applications
like battery health monitoring, where accurate and reliable
predictions are essential for operational safety and
efficiency.

To further investigate the robustness of our proposed
method under conditions of limited data availability, we
conducted additional experiments where only partial

segments (80% and 60%) of the dQ/dV curve were utilized.
This approach simulated more challenging scenarios fre-
quently encountered in practical applications where com-
plete data may not be accessible. Our findings indicate a
progressive increase in prediction error as the amount of
available data decreases: utilizing 80% of the dQ/dV curve
resulted in the MAE and RMSE of 2.12% and 3.43%, while
reducing the data to 60% led to a higher MAE and RMSE of
4.42% and 6.76%. These results underscore the importance
of data completeness in achieving accurate SOH estimation
and highlight the capability of our model to provide reliable
predictions even with reduced data.

IV. CONCLUSION
This paper presents a domain adaptation model for second-
life battery SOH estimation, utilizing one-dimensional
CNN and DANN. The proposed approach is designed to
be lightweight, allowing for efficient adaptation and pre-
diction with minimal unlabeled data requirements from the
target domain. We demonstrate that even with the data of
only one unlabeled target battery cell, our method is capable
of transferring the knowledge from the source batteries.
This has significant practical implications:

Data Economy: The ability to make accurate predic-
tions with minimal target domain data is essential in
scenarios where collecting large quantities of labeled
data is challenging, time-consuming, or costly.

Fig. 7. SOH estimation performance analysis using various methods.
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Scalability: The method can be readily applied to any
new or used battery types or operating conditions without
the need for extensive retraining or additional data
collection.

Resource Efficiency: The lightweight design means
lower computational requirements, making the algorithm
suitable for real-time applications or resource-constrained
environments.

Our future work plans are to investigate various battery
chemistries. By doing so, we aim to test the generalization
and robustness of our model. Lastly, implementing and
testing the model in actual industrial settings for second-life
energy storage applications will be essential for evaluating
its practicality, efficiency, and effectiveness in real-world
conditions.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

REFERENCES

[1] M. Shahjalal, P. Roy, T. Shams, A. Fly, J. Chowdhury, M.
Ahmed, and K. Liu “A review on second-life of Li-ion
batteries: prospects, challenges, and issues,” Energy,
vol. 241, p. 122881, 2022.

[2] C. Font, H. Siqueira, J. Neto, J. Santos, S. Stevan, A.
Converti, and F. Correa “Second life of lithium-ion batteries
of electric vehicles: a short review and perspectives,”
Energies, vol. 16, p. 953, 2023.

[3] T. Montes, M. Etxandi-Santolaya, J. Eichman, V. Ferreira, L.
Trilla, and C. Corchero “Procedure for assessing the suitabil-
ity of battery second life applications after EV first life,”
Batteries, vol. 8, p. 122, 2023.

[4] J. Zhu, I. Mathews, D. Ren, W. Li, D. Cogswell, B. Xing, T.
Sedlatschek, S. Kantareddy, M. Yi, T. Gao, Y. Xia, Q. Zhou,
T. Wierzbicki, and M. Bazant “End-of-life or second-life
options for retired electric vehicle batteries,” Cell Rep.
Physical Sci., vol. 2, p. 100537, 2021.

[5] P. Chombo and Y. Laoonual “A review of safety strategies of
a Li-ion battery,” J. Power Sources, vol. 478, p. 228649,
2020.

[6] S. Pradhan and B. Chakraborty “Battery management
strategies: an essential review for battery state of health
monitoring techniques,” J. Storage Mater., vol. 51,
p. 104427, 2022.

[7] X. Zhao, Z. Wang, E. Li, and H. Miao “Investigation into
impedance measurements for rapid capacity estimation of
lithium-ion batteries in electric vehicles,” J. Dynamic, Moni-
toring Diagnostics, vol. 3, pp. 21–31, 2024.

[8] P. Makeen, H. Ghali, S. Memon, and F. Duan “Electric
vehicles lithium-polymer ion battery dynamic behaviour
charging identification and modelling scheme,” J. Dynamic,
Monitoring Diagnostics, vol. 2, pp. 170–176, 2023.

[9] J. Bokstaller, J. Schneider, and J. Brocke “Estimating SoC,
SoH, or RuL of rechargeable batteries via IoT: a review,”
IEEE Internet Things, vol. 99, pp. 1–1, 2023.

[10] L. Yao, S. Xu, A. Tang, F. Zhou, J. Hou, Y. Xiao, and Z. Fu
“A review on state of health estimations and remaining useful
life prognostics of lithium-ion batteries,” World Electr. Veh.
J., vol. 2, p. 113, 2021.

[11] Y. Preger, H. Barkholtz, A. Fresquez, D. Campbell, B. Juba,
J. Kustas-Roman, S. Ferreira, and B. Chalamala “Degrada-
tion of commercial litthium-ion cells as a function of

chemistry and cycling conditions,” J. Electrochem. Soc.,
vol. 167, p. 120532, 2020.

[12] J. Pender, G. Jha, D. Youn, J. Ziegler, I. Andoni, E. Choi, A.
Heller, B. Dunn, P. Weiss, R. Penner, and C. Mullins
“Electrode degradation in lithium-ion batteries,” ACS
Nano, vol. 14, pp. 1243–1295, 2020.

[13] J. Zhao, X. Han, M. Ouyang, and A. Burke “Specialized deep
neural networks for battery health prognostics: opportunities
and challenges,” J. Energy Chem., vol. 87, pp. 416–438,
2023.

[14] J. Lu, R. Xiong, J. Tian, C. Wang, and F. Sun “Deep learning
to estimate lithium-ion battery state of health without addi-
tional degradation experiments,” Nat. Commun., vol. 14,
p. 2760, 2023.

[15] F. Wang, Z. Zhai, Z. Zhao, Y. Di, and X. Chen “Physics-
informed neural network for lithium-ion battery degradation
stable modeling and prognosis,” Nat. Commun., vol. 15,
p. 4332, 2024.

[16] D. Roman, S. Saxena, V. Robu, M. Pecht, and D. Flynn
“Machine learning pipeline for battery state-of-health esti-
mation,” Nat. Mach. Intell., vol. 3, pp. 447–456, 2021.

[17] N. Yang, Z. Song, H. Hofmann, and J. Sun “Robust State of
Health estimation of lithium-ion batteries using convolu-
tional neural network and random forest,” J. Storage Mater.,
vol. 48, p. 103857, 2022.

[18] A. Naha, S. Han, S. Agarwal, A. Guha, A. Khandelwal, P.
Tagade, K. Hariharan, S. Kolake, J. Yoon, and B. Oh “an
incremental voltage difference based technique for online
state of health estimation of Li-ion batteries,” Sci. Rep.,
vol. 10, p. 9526, 2020.

[19] M. Zhang, D. Yang, J. Du, H. Sun, L. Li, L. Wang, and K.
Wang “A review of SOH prediction of Li-ion batteries based
on data-driven algorithms,” Energies, vol. 16, p. 3167, 2023.

[20] T. Feng, L. Yang, X. Zhao, H. Zhang, and J. Qiang “Online
identification of lithium-ion battery parameters based on an
improved equivalent-circuit model and its implementation on
battery state-of-power prediction,” J. Power Sources,
vol. 281, pp. 192–120, 2015.

[21] M. Streb, M. Andersson, V. Klass, M. Klett, M. Johansson,
and G. Lindbergh “Investigating re-parametrization of elec-
trochemical model-based battery management using real-
world driving data,” eTransportation, vol. 16, p. 100231,
2023.

[22] Y. Zhang and Y. Li “Prognostics and health management of
lithium-ion battery using deep learning methods: a review,”
Renewable SustainableEnergy Rev., vol. 161, p. 112282, 2022.

[23] X. Chen, X. Li, S. Yu, Y. Lei, N. Li, and B. Yang “Dynamic
vision enabled contactless cross-domain machine fault diag-
nosis with neuromorphic computing,” IEEE/CAA J. Autom.
Sin., vol. 11, pp. 788–790, 2024.

[24] H. Yang, X.Wang, S. Zheng, M. Xu, and X. Li “Prediction of
solid rocket motor performance based on deep learning and
ignition experimental data,” In IEEE Transactions on Aero-
space and Electronic Systems, 2024.

[25] E. Vanem, Q. Liang, M. Bruch, G. Bothun, K. Bruvik, K.
Thorbjornsen, and A. Bakdi “Statistical models for condition
monitoring and state of health estimation of lithium-ion
batteries for ships,” J. Dynamic, Monitoring Diagnostics,
vol. 3, pp. 11–20, 2024.

[26] J. Reniers, G. Mulder, and D. Howey “Review and perfor-
mance comparison of mechanical-chemical degradation
models for lithium-ion batteries,” J. Electrochem. Soc.,
vol. 166, pp. A3189–A3200, 2019.

[27] V. Sulzer, P.Mohtat, A. Aitio, S. Lee, Y. Yeh, F. Steinbacher,
M. Khan, J. Lee, J. Siegel, A. Stefanopoulou, and D. Howey

256 Shaojie Yang et al.

JDMD Vol. 3, No. 4, 2024



“The challenge and opportunity of battery lifetime prediction
from field data,” Joule, vol. 5, pp. 1934–1955, 2019.

[28] M. Chen, G. Ma, W. Liu, N. Zeng, and X. Luo “An overview
of data-driven battery health estimation technology for bat-
tery management system,” Neurocomputing, vol. 531,
pp. 152–169, 2023.

[29] Y. Zhang, Y. Li, M. Zhang, and H. Wang “A novel health
indicator by dominant invariant subspace on graassmann
manifold for state of health assessment of lithium-ion bat-
tery,” Eng. Appl. Artif. Intell., vol. 130, p. 107698, 2024.

[30] X. Li, W. Zhang, X. Li, and H. Hao “Partial domain
adaptation in remaining useful life prediction with incom-
plete target data,” IEEE/ASME Trans. Mechatron., vol. 29,
pp. 1903–1913, 2023.

[31] B. Yang, Y. Lei, Y. Li, N. Li, and A. Nandi. “Label recovery
and trajectory designable network for transfer fault diagnosis
of machines with incorrect annotation,” IEEE/CAA J. Autom.
Sin., vol. 11, pp. 932–945, 2024.

[32] J. Jiang “A literature survey on domain adaptation of statis-
tical classifiers,” 2008, http.sifaka.cs.uiuc.edu/jiang4/
domainadaptation/survey.

[33] S. Siahpour, X. Li, and J. Lee “Data-driven prediction of
battery cycle life before capacity degradation,” IEEE Trans.
Instrum. Meas., vol. 71, p. 3509411, 2019.

[34] Z. Ye and J. Yu “State-of-health estimation for lithium-ion
batteries using domain adversarial transfer learning,” IEEE
Trans. Power Electron., vol. 37, p. 3528, 2022.

[35] J. Lu, R. Xiong, J. Tian, C. Wang, and F. Sun “Deep learning
to estimate lithium-ion battery state of health without addi-
tional degradation experiments,” Nat Commun, vol. 14,
p. 2760, 2023.

[36] G. Ma, S. Xu, T. Yang, Z. Du, L. Zhu, H. Ding, and Y. Yuan
“A transfer learning-based method for personalized state of
health estimation of lithium-ion batteries,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 35, pp. 759–769, 2024.

[37] Z. Deng, L. Xu, H. Liu, X. Hu, B. Wang, and J. Zhou “Rapid
health estimation of in-service battery packs based on limited
labels and domain adaptation,” J. Energy Chem., vol. 89,
pp. 345–354, 2024.

[38] S. Su, W. Li, J. Mou, A. Garg, L. Gao, and J. Liu “A hybrid
battery equivalent circuit model, deep learning, and transfer
learning for battery state monitoring,” IEEE Trans. Transp.
Electrif., vol. 9, pp. 1113–1127, 2022.

[39] W. Zhang, J. Hu, B. Lin, D. Liu, M. Wang, D. Mu, and Y. Lu
“Cross-domain state-of-health estimation of Li-ion batteries
based on trasfer neural network with soft-dynamic time
warping,” Energy Sci. Eng., vol. 11, pp. 3137–3148, 2023.

[40] J. Gotz, J. Galvao, F. Correa, A. Badin, H. Siqueira, E. Viana,
A. Converti, and M. Borsato “Random forest-based grouping
for accurate SOH estimation in second-life batteries,” Veh.,
vol. 6, pp. 799–813, 2024.

[41] E. Braco, I. Martin, P. Sanchis, A. Ursua, and D. Stroe “State
of health estimation of second-life lithium-ion batteries under
real profile operation,” Appl. Energy, vol. 326, p. 119992,
2022.

[42] M. Faraji-Niri, M. Rashid, J. Sansom, M. Sheikh, D.
Widanage, and J. Marco “Accelerated state of health estima-
tion of second life lithium-ion batteries via electrochemical
impedance spectroscopy tests and machine learning techni-
ques,” J. Storage Mater., vol. 58, p. 106295, 2023.

[43] K. Severson, P. Attia, N. Jin, N. Perkins, B. Jiang, Z. Yang,
M. Chen, M. Aykol, P. Herring, D. Fraggedakis, M. Bazant,
S. Harris, W. Chueh, and R. Braatz “Data-driven prediction
of battery cycle life before capacity degradation,” Nat.
Energy, vol. 4, pp. 383–391, 2019.

[44] Y. Zhang, M. Zhang, C. Liu, Z. Feng, and Y. Xu “Reliability
enhancement of state of health assessment model of lithium-
ion battery considering the uncertainty with quantile distri-
bution of deep features,” Reliab. Eng. Syst. Saf., vol. 245,
p. 110002, 2024.

Industrial Battery State-of-Health Estimation 257

JDMD Vol. 3, No. 4, 2024

http.sifaka.cs.uiuc.edu/jiang4/domainadaptation/survey
http.sifaka.cs.uiuc.edu/jiang4/domainadaptation/survey

