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Abstract: The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by the
probability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECT
on sites to avoid false or missing flaw detection. Traditional POD analysis focuses on single uncertain factor or
single response signal with limited credibility in engineering. This paper considers multiple response signals and
multiple flaw parameters to perform POD. The flaw length, the flaw depth, the coil impedance, and the magnetic
flux density are comprehensively studied under various lift-off distances. A finite element model (FEM) of ECT is
established and verified with experiments to obtain sufficient simulation data for discrete POD modeling. The
continuous POD function is then fitted based on the discrete values to show the superiority of integrating multiple
factors. A comparison with conventional POD analysis further demonstrates the higher reliability of ECT flaw
detection considering multiple flaw parameters and multiple response signals, especially for small flaws.
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I. INTRODUCTION
The eddy current testing (ECT) has been widely applied to
detect crack flaws of metal material to ensure structural
integrity [1]. However, detection uncertainty usually occurs
during the detection process in the case of misdetections or
false alarms, as there are a lot of factors largely polluting the
eddy current signals, such as surface roughness [2], nonuni-
form electromagnetic properties [3], and variant lift-off dis-
tances [4]. It is essential to determine the probability that a flaw
with a specific dimension would be detected or missed. This
brings a typical research topic of ECT and other nondestructive
testing (NDT) techniques—probability of detection (POD)
analysis, to evaluate the reliability of flaw detection results.

The primary idea behind the POD analysis is to use a
probabilistic function, POD(a), to indicate the likelihood
that a flawwith a size of awill be detected [5]. NASA firstly
employed a binomial distribution to determine the sensitiv-
ity and reliability of the NDT results on metallic materials
[6]. Later on, the aircraft industry contributed to the major-
ity of the pioneering works of POD research, especially in
the detection of fatigue cracks [7]. Nowadays, POD analy-
sis has been widely applied to assess the detection capabil-
ity in various scenarios, such as early warning of debris flow
in nature [8], ultrasonic detection of railway hollow axle
cracks [9], and weld joints inspection by various NDT
methods in the hydroelectric turbine [10].

POD analysis has been proved a useful way to assess
how well an ECT or other NDT approaches perform toward
flaw detection. Traditional POD analysis requires a large
volume of experimental data to statistically determine the
parameters of the probabilistic function [11,12]. Sufficient
number of machine-made flaw samples and repeated

experiments are necessary to obtain the statistical results
of the POD curve, which is time-consuming and expensive.
With recent developments in computers and computational
physics, model-assisted POD (MAPOD) analysis represents
a growing field with numerical or theoretical simulations
replacing parts or all of the experimental measurements to
construct a POD curve [13]. Rosell et al. [14] established a
fatigue crack model in titanium plates by finite element
analysis, and then MAPOD curve was built using numerical
computations. Du et al. [15] generated sufficient numerical
data by a kriging metamodel to construct the MAPOD curve
and achieved high-efficiency uncertainty analysis for the
ultrasonic defect detection. For the flaw detection using
ECT, experimental data is usually combined with finite
element modeling data to calculate the POD curves [16].

The quality of the constructed probabilistic function
POD(a) ensures the evaluation effectiveness of ECT. Con-
ventional MAPOD analysis of ECT only consider the effect
of single flaw parameter on single response signal. For
example, Yang [17] considered the changes of coil imped-
ance under different flaw lengths to establish the POD
curve. Flaw depth could also affect the POD, as proved
by Yusa [18]. This implies that multiple flaw parameters are
necessary to make a more reliable MAPOD analysis
[19,20]. Tomizawa et al. [21] pointed out that multiple
features abstracted from response signals can contain more
essential information to distinguish signals caused by flaws
and noise. Baskaran et al. [22] showed that MAPOD
analysis with single flaw parameter (flaw length) and
multiple response signal features (the maximum change
in coil impedance at two different frequencies) is more
reliable, especially for larger flaws. Both the multiple flaw
parameters (flaw length and flaw depth) and multiple
response signal features (the maximum change in the
magnetic flux density of three directional components)
were considered when constructing MAPOD in anotherCorresponding author: Xiwen Gu (e-mail: guxw@zju.edu.cn).
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work of them [23]. However, the multiple response signals
used in these studies are essentially homologous.

ECT works on the principle of electromagnetic induc-
tion. The coil impedance signal represents the changes in
the electric field, while the magnetic flux density signal
shows the changes in the magnetic field. Features extracted
from multi-sensor signals have been proved to perform
better in fault diagnosis [24,25]. It inspires us to explore the
performance of using multi-sensor signals in ECT of flaw
detection. There are two main questions worth studying: (1)
Whether the detection reliability would further improve
considering both the electric-related and magnetic-related
signals? (2) Which signal is more sensitive to the flaw
considering both the flaw length and depth?

MAPOD analysis considering multiple response sig-
nals and multiple flaw parameters (2M-MAPOD) is carried
out in this paper to evaluate the reliability of ECT toward
rectangular opening crack. The multiple response signals,
the coil impedance and the magnetic flux density, are for the
first time integrated to build the MAPOD model toward
multiple flaw parameters (flaw length and flaw depth). The
response signals are obtained from a finite element model
(FEM) with normally distributed lift-off distance to perform
MAPOD analysis. The flaw detection probability of ECT
using two heterogenic signals is studied to find the mini-
mum detectable flaw size. Correlation between the response
signals and multiple flaw parameters is captured.

This paper consists of 5 sections. In section II, the
overall framework and details of the proposed 2M-MAPOD
are introduced. The effectiveness of the FEM is verified by
an experiment, and the 2M-MAPOD analysis is carried out
using the simulation data in section III. In section IV, the
proposed 2M-MAPOD are compared with those consider-
ing multiple response signals and single flaw parameter,
single response signal and multiple flaw parameters, and
single response signal and single flaw parameter. In the last
section, we conclude this work with possible future out-
looks and also limitations.

II. THE FRAMEWORK OF THE
PROPOSED 2M-MAPOD ANALYSIS

Figure 1 illustrates the process of the proposed 2M-MA-
POD analysis.

Uncertainty factors influencing the ECT results are
firstly analyzed. The lift-off distance is considered the
most sensitive factor bringing the measurement imperfec-
tion. It is modeled as a normal distribution and sampled by
Latin hypercube sampling (LHS) method. The FEM is
established considering the lift-off variances. Numerical
simulations are carried out to acquire the features of multi-
ple response signals considering a flaw with various length
Lflaw and depth Dflaw. The response signal features are the
peak values of the coil impedance and the magnetic flux
density corresponding to F1 (Ω) and F2 (μT), respectively.
After validating the multivariate normality of the two
response signal features, the discrete POD values can be
gained by computing POD considering multiple flaw
parameters and multiple response signal features. Finally,
the generalized logistic function (GLF) regression is im-
plemented to obtain the continuous POD function.

A. FINITE ELEMENT ANALYSIS

Maxwell’s equations are commonly used to describe elec-
tromagnetic eddy current physical models. The A − V
formulation is employed using the magnetic vector poten-
tial A and the electric scalar potential V [26]. In the FEM,
the electromagnetic fields are computed using the differen-
tial equation [27]:

∇
�
×
1
μ
∇ × A

�
+ σðjωA + ∇VÞ = Js (1)

where Js is the source current density, μ is the magnetic
permeability, ω is the angular frequency, and σ is the
electrical conductivity. The displacement current is ignored
assuming that the induced and source currents predominate.

The magnetic flux density in the finite element analysis
is presented as [28]:

B = ∇ × A (2)

The change in the impedance is computed considering the
conductivity of the conductor in the unflawed region and
the conductivity of the air in the flawed region:

ΔZ = Zflawed − Zunflawed = ΔX + ΔR (3)

whereΔX is the change in reactance andΔR is the change in
resistance. ΔX and ΔR can be calculated by [29]:

Influential factors analysis Finite element analysis 2M-MAPOD model construction
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2M integrating 
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Fig. 1. The framework of the 2M-MAPOD analysis proposed in this study.
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ΔX=
2πf

I2

�ððð
Hflawed ·B�

flaweddΓ−
ððð

Hunflawed ·B�
unflaweddΓ

�
(4)

ΔR=
1

I2

�ððð
Ji,flawed ·E�

flaweddΓf −
ððð

Ji,unflawed ·E�
unflaweddΓf

�
(5)

where H represents the magnetic field, B� is the complex
conjugate of the magnetic flux density, and Ji is the induced
current density. E� represents the complex conjugate of the
electric field. Γf is the volume of the conductor and flaw
domains, and Γ is the entire volume of all domains.

In this work, the FEM is established on an aluminum
plate with a narrow opening surface flaw. All simulations
are carried out with COMSOL using second-order vector
and nodal basis functions to describe the magnetic vector
potential and electric scalar potential separately. Outer
boundary is set to be infinite element field to ensure
sufficient distance between the positions of the outer
boundaries and any source. The FEM is used to get the
response signals toward a given flaw.

B. 2M-MAPOD MODEL CONSTRUCTION

The coil is located at a lift-off distance z, and the variation of
z is assumed to be normally distributed with a mean of μmm
and a standard deviation of σ mm [30]:

z∼Nðμ,σ2Þ (6)

M different flaw lengths and N different flaw depths are
taken into consideration for the POD construction. All the
flaw lengths are designated as L1, L2, · · · , LM , and all the
flaw depths are designated asD1,D2, · · · ,DN. For each set
of the flaw parameters fLi,Djg, the lift-off distances of
sample size K are generated through LHS based on equa-
tion (6). Then each response signal feature with a sample
size of K is obtained. The set of features are expressed as
fF1, F2g ∈ F where F1 is the peak value of coil impedance
and F2 is the peak value of magnetic flux density.

With the assumption of normal distribution of z, the
feature distribution F can be modeled as:

pðFjLflaw = Li,Dflaw = DjÞ∼Nðμ̂,K̂Þ (7)

where the mean μ̂ = ½μ1,μ2� ∈ R2×2. The covariance

K̂ =
�

σ1
2 ρ1σ1σ2

ρ1σ1σ2 σ2
2

�
∈ R2×2, denoted with a circum-

flex hat, can be estimated from the FEM data with a sample
size of K. Mardia’s multivariate skewness and kurtosis test
[31] is implemented to testify the multivariate normality of
the response signal features.

The POD for a given pair of flaw parameters is
calculated as:

Pod

�
FjLflaw = Li,Dflaw = Dj

�

=
ð
∞

Fth
2

ð
∞

Fth
1

p
�
Li,Dj

�
dF1dF2 (8)

where Fth
1 and Fth

2 correspond to the threshold levels for
each of the two response signal features. The threshold
values are determined from the response signals when the
probe is moved over the plate in an unflawed region.

Equation (8) yields a discrete form of the POD curve.
To obtain a continuous function, the discrete values can be
connected to a form of the GLF denoted as:

f ðLi,DjjΘÞ = αp=
n
1 + χ:e−½βpðLi−γpÞ+δpðDj−εpÞ�ηp

o
(9)

where parameter χ = e½ςpðLi−γpÞðDj−εpÞ� is related to the cross-
correlation between the flaw length and depth. αp represents
the upper asymptote of the function. γp and εp are shifts
along the Lflaw and Dflaw directions. βp and δp correspond to
the weights associated with Lflaw and Dflaw. Θ is the
collective set of all the parameters in equation (9), that
is, Θ = ½αp,βp,γp,δp,εp,ηp,ςp�.

To estimate the unknown parametersΘ in equation (9),
a residual function is created and the residual in the least
squares approach is minimized as:

SðΘÞ =
XM
i=1

XN
j=1

1
2
½PodðFjLi,DjÞ − f ðLi,DjjΘÞ�2,

Θ̂ ∈ argmin
Θ

SðΘÞ (10)

The residual function is a nonlinear function hardly to
obtain a closed-form solution. Levenberg–Marquardt (LM)
algorithm, a widely used optimization algorithm, is adopted
to estimate Θ [32]. Generating an initial guess (Θ̂k), the
parameter (Θ̂k+1) is updated by descending the gradient.
This parameter searching process is iterated until the dif-
ference of the residual sum of squares between two succes-
sive iterations stops improving (i.e., δkSðΘÞ → 0) or the
number of iterations exceeds a certain value. The LM
parameter update principle is given as:h

Jres
TJres +∧:diag

�
Jres

TJres
�in

Θ̂k+1 − Θ̂k
o

=
h
Jres

TRres

i
(11)

where Rres = PodðFjLi,DjÞ − f ðLi,DjjΘÞ. The Jacobian
matrix Jres of Rres has a dimension of ðM·NÞ × 7,

J res =
h
∂Rres
αp

, ∂Rres
βp

, ∂Rres
γp

, ∂Rres
δp

, ∂Rres
εp

, ∂Rres
ηp

, ∂Rres
ςp

i
. The scalar ∧,

is the damping parameter. It determines the percentage
of step change that can be updated along the gradient
direction of the parameter. The term diagðJresTJresÞ is a
diagonal matrix containing the diagonal entries of JresTJres,
which is one way to mitigate the consequences of parameter
scaling. It represents an ellipsoidal trust region instead of a
traditional spherical trust region that relies on an identity
matrix in place of diagðJ resTJresÞ.

III. 2M-MAPOD ANALYSIS
A. FEM CONSTRUCTION

Numerical simulations are conducted on flat plates made of
aluminum using COMSOL Multiphysics 5.6 with the AC/
DC module. The tangential components of the magnetic
vector potential are set to zero. For the 3D electromagnetic
field simulation, the gauge fixing for the magnetic vector
potential should be added in the magnetic fields. The finite
element mesh employs free tetrahedral mesh, and the mesh
in the probe domain and the flaw domain is super-
refined. The movement of the probe in the geometry is
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achieved via a parametric sweep. The air conductivity is set
to 0.1 for the convergence of the calculation.

The parameters used in simulations are presented in
Fig. 2., and the corresponding values are listed in Table I.
During simulation, the flaw length Lflaw is set to vary from
0.1 mm to 10 mm. The increment is 0.1 mm from 0.1 mm to
0.9 mm while from 1 mm to 10 mm, a larger increment of
1 mm is applied. Similarly, the flaw depth Dflaw includes 10
values. It manifests a rise step of 0.1 mm from 0.1 mm to
0.4 mm and another rise step of 0.5 mm from 0.5 mm to
3 mm. The flaw width Wflaw is fixed at 0.5 mm.

Hand-held eddy current probe with relatively small
size is chosen in the simulation and also the experiments to
ensure the flaw detection sensitivity. In real testing, the
slight shake of the probe during movement and the rough-
ness of the plate could bring uncertainty to the lift-off
distance. The lift-off distance of the probe to the plate
surface is set to fluctuate around 0.5 mm to prevent abrasion
and ensure the detectability. The exciting frequency is
chosen as 200 kHz based on the skin effect of the material
so that the detection depth could reach 3 mm. Figure 3
displays the finite element simulation model.

The distribution of the magnetic flux density during
probe movement is displayed in Fig. 4. The center of the
coil has the highest magnetic flux density, and magnetic
flux density aggregation occurs at the corners of the flaw

compared with unflawed region. Figure 5 exhibits the eddy
current distribution in the specimen when the flaw exists.
The red arrow represents the flow direction of the eddy
current. When the eddy current touches the flaw, it flows
along the flaw edge firstly and then continues to flow around
the flaw. In the direction of flaw depth, the eddy currents
deflect and flow from the bottom of the flaw.

LHS method is used to sample 200 times of lift-off
distances. The peak values of the coil impedance F1 and the
magnetic flux density F2 concerning a flaw are extracted as
response signal features for all the lift-off distances. Take a
flaw with a length of 10 mm and depth of 1 mm as an
example, the scan results at a certain lift-off distance are
shown in Fig. 6. The red asterisks are the points of the
features fF1, F2g.

B. FEM VALIDATION

To verify the FEM, an ECT experimental system is built
consisting of a numerical control (NC) platform, an eddy
current instrument, a probe, and the specimens, as shown in
Fig. 7. The NC platform is driven by the servo motors,
which controls the xyz triaxial movement of the probe. The
coil impedance of the response signal is collected by the
eddy current instrument. The lift-off distance is determined
with a feeler gauge of 0.5 mm thickness. Fifty repeated
scans are performed to ensure sufficient changes of lift-off
distance during measurement. Electrical discharge machin-
ing and wire cutting method are applied to fabricate rect-
angular defects [33]. Due to the limitations of electric

Coil
H

Lift-off

Scanning direction

Lflaw

Dflaw Plate

Wflaw

L

W

2r2

y

y
x

z

(a)

(b)

T

Fig. 2. Setup of parameters: (a) front view and (b) top view.

Table I. Parameter values in simulations

Parameter Value

Plate Length L 200 mm

Width W 100 mm

Thickness T 5 mm

Conductivity 3.557×107 S/m
Flaw Lflaw 0.1:0.1:0.9 mm and 1:1:10 mm

Wflaw 0.5 mm

Dflaw 0.1:0.1:0.4 mm and 0.5:0.5:3 mm

Coil Inner radius r1 1.487 mm

Outer radius r2 5 mm

Height H 10 mm

Turns number 325

Lift-off N(0.5,0.1) mm

Fig. 3. Finite element simulation model.

2.64 10-12

25 10-5Probe moving

Fig. 4. Distribution of magnetic flux density during scanning.

2.64 10-12

25 10-5

Fig. 5. Eddy current distribution when the flaw exists.
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discharge machining manufacturing, the flaw lengths on the
plate are 1, 2, and 3 mm, and the corresponding depth
increases from 0.5 to 2 mm with an increment of 0.5 mm.
Besides, the flaw lengths of 0.2 mm and 0.5 mm can only be
machined with depth of 0.5 and 1.0 mm.

After normalizing and averaging the results of 50
measurements, the response signal feature, the peak value
of coil impedance (F1), is gained. Comparison of the model
simulated F1 and experimental signals is illustrated in
Fig. 8. Both of the values from simulation and experiments
increase with the increasing flaw depth (Fig. 8(a)) or flaw
length (Fig. 8(b)). The simulation values are slightly larger
than the experimental values because the simulation envi-
ronment is ideal without noise interference. The overall
trend of simulation and experimental values is consistent. It

can be clearly seen in Fig. 8. that the ECT signal is affected
by both the flaw length and flaw depth. In order to build a
more reliable POD curve, two flaw parameters, flaw length
and flaw depth, should be considered at the same time.

C. IMPLEMENTATION OF 2M-MAPOD

A multivariate normality test is carried out to verify the
distribution normality of the two response signal features in
simulation. The lift-off distance is distributed as N(0.5, 0.1).
Taking a flaw with 10 mm length and 1 mm depth as an
example, the Mardia’s multivariate skewness and kurtosis
test is implemented. The significance level is chosen as
0.05. The obtained P-values of the max kurtosis test are
0.6281 and 0.9169. The P-values are both greater than 0.05,
meaning that there is no statistical evidence of the presence
of skewness and kurtosis in the features. So the response
signal features of the flaw with given parameters follow
multivariate normal distribution.

Multivariate normal distribution can also be certified
by the Q-Q plot concisely, as an example shown in Fig. 9.
The horizontal axis is the value of the quantile of the chi-
square distribution, while the vertical axis is the square of
the Mahalanobis distance. The points in the scatter plot are
directly opposite to the angular bisector of the xy axis,
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Fig. 6. An example of the flaw response signals: (a) coil
impedance |Z| and (b) magnetic flux density |B|.
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Fig. 8. Comparison of F1 between experiment and simulation:
(a) depth direction and (b) length direction.
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indicating that the signal features conform to the binary
normal distribution. Figure 10 displays an example of the
distribution of the response signal featuresfF1,F2g under
various lift-off distances. The black dot represents the
discrete points of fF1,F2g when the lift-off distance
changes. The solid line represents the contour of the
probability density of the binary normal distribution.

The lift-off distance is sampled 200 times in simula-
tion. For each of the lift-off distance, different pairs of flaw
length and flaw depth are set to obtain the corresponding
response signal features fF1,F2g in the noise condition. The
results are exhibited in Fig. 11. F1 and F2 both show high
sensitively to the variation of the flaw parameters. They
vary with the flaw length as well as the flaw depth, not just
single flaw parameter. F1 of the coil impedance keeps
increasing rapidly with the increase in flaw length and
depth. Differently, F2 of the magnetic flux density grows
quickly in the small value region, while the growing trend
slows down when the flaw parameters getting larger.
Considering the behavior distinction of F1 and F2 toward
flaw parameters, the 2M-MAPOD analysis integrating
multiple response signals could fuse more information in
different aspects, thus improving the reliability of ECT.

The threshold values for F1 and F2 are decided from
the noise. The coil is scanned in a flaw-free area over the

plate for 500 times to obtain the corresponding signals. It is
shown in Fig. 12 that the noise has a normal distribution.
The mean value for F1 is μ1 = 252.0216 Ω and for F2 is
μ2 = 58.4678 μT. The distribution of the standard deviation
for the measured values, also called the measurement
uncertainty, is determined by bootstrapping. Figure 13
represents the histogram of the standard deviation of the
data points around the mean value at the two response signal
features. The standard deviation for F1 is σ1 = 0.4367 Ω
and for F2 σ2 = 1.4800 μT. The detection thresholds
should be higher than the level of noise so that the flaw
response signal could be distinguished from the noise
signal. Thus, the values used for the thresholds are Fth

1 =
μ1 + 3σ1 = 253.3317 Ω and Fth

2 = μ2 + 3σ2 = 62.9078 μT.
After determining the detection thresholds, the 2M-

MAPOD is obtained in a discrete form based on equa-
tion (8). A continuous POD is finally obtained going
through GLF regression and parameter optimization via
the LM algorithm. The parameters are initialized as Θ̂0 =
[1; 1; 1; 1; 1; 1; 1]. Two stopping criteria for the algorithm
are set. One is the maximum number of iterations and the
other is the error tolerance level. The maximum number of
iterations is set to 5×104, and the tolerance level, represent-
ing the maximum difference of the residual sum of squares
between two consecutive iterations (δkSðΘÞ), is set to
1×10−5. Eventually, the parameters estimated from the
LM algorithm are Θ̂= [1.0, 1.7612, 1.5793, 1.2389,
2.4548, 0.3759, –0.7258]. From the estimated parameters
Θ̂, the 2M-MAPOD model is acquired as shown in Fig. 14.
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Fig. 9. Chi-square Q-Q plot of a flaw with 10 mm length and
1 mm depth.
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The black asterisks are the discrete POD obtained from
equation (8), and the color surface is the continuous POD
obtained by the GLF regression. In the POD analysis, it is
crucial to include a confidence bound, as the estimated
parameters are from a limited number of samples. However,
it may not always be possible to increase the number of flaw
parameters to construct the POD model. So, in order to
encompass the confidence bounds, the bootstrap technique
is applied. In our case, since 190 different flaw parameters
are used to construct the 2M-MAPOD model, the confi-
dence bounds are very narrow and hence not depicted.

IV. COMPARISON WITH
TRADITIONAL POD ANALYSIS

A. COMPARISON WITH POD CONSIDERING
SINGLE FLAW PARAMETER AND MULTIPLE
RESPONSE SIGNALS

The results of proposed 2M-MAPOD are compared with
POD considering single flaw parameter and multiple
response signals. The single flaw parameter is either the
flaw length or the depth. The flaw response signals remain
the coil impedance and the magnetic flux density. The POD
for each flaw length or depth is computed as:

Pod
�
FjLflaw = Li,Dflaw = Cons

�
=
ð
∞

Fth
2

ð
∞

Fth
1

p
�
Li,Dflaw = Cons

�
dF1dF2 (12)

Pod
�
FjLflaw = Constant,Dflaw = Di

�
=
ð
∞

Fth
2

ð
∞

Fth
1

p
�
Lflaw = Cons, Di

�
dF1dF2 (13)

POD considering single flaw parameter is 1-dimen-
sional as the cross section of Fig. 14. As shown in Fig. 15,
the blue line is the POD that only considers the flaw length
with a fixed flaw depth of 1 mm and the red line is the
POD that only considers the flaw depth with a fixed flaw
length of 10 mm. POD considering two flaw parameters is
2-dimensional, allowing for a more comprehensive under-
standing of the relationship between the POD and these two
flaw parameters than just single flaw parameter.

B. COMPARISON WITH POD CONSIDERING
SINGLE RESPONSE SIGNAL AND MULTIPLE
FLAW PARAMETERS

The results of proposed 2M-MAPOD are compared with
POD considering single response signal and multiple flaw
parameters. The single response signal is the coil imped-
ance or the magnetic flux density. The flaw parameters
remain the flaw length and flaw depth. The POD for each
flaw response signal is computed as:
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Fig. 12. Histogram plot of the noise distribution: (a) F1 and
(b) F2.
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Fig. 14. Estimated 2M-MAPOD model.
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The obtained POD contour plot is shown in Fig. 16.
The red line represents the proposed 2M-MAPOD contours
considering multiple response signals, the blue line repre-
sents the traditional POD contours considering the magnetic
flux density with feature F2, and the black line represents
the traditional POD contours considering the coil imped-
ance with feature F1. The contour curves correspond to ax
of the relevant flaw parameters, where ax is the x% proba-
bility that a flaw with a given parameter shall be detected.
The a50 and a90 are plotted in Fig. 16. The proposed 2M-
MAPOD contours are located at the lower left of the
conventional ones, indicating that the proposed method
still has a high detection probability for flaws with small
parameters. To be specific, the proposed POD contour is
0.9, whereas the conventional POD contours are less than
0.9. The contour curves also indicate the presence of a
correlation between the two flaw parameters. Longer and
deeper flaws are easier to be detected.

C. COMPARISON WITH POD CONSIDERING
SINGLE RESPONSE SIGNAL AND SINGLE
FLAW PARAMETER

Traditional POD considering single response signal and
single flaw parameter is calculated through the “â versus a”
regression [33]:

lnðâÞ = A0 + A1lnðaÞ + ε (16)

where â could be the coil impedance or the magnetic flux
density, while the single flaw parameter a is the flaw length
or the flaw depth. A0 and A1are coefficients to be estimated
by the regression fitting. ε follows the distribution of

Nð0,δ2Þ. With a defined threshold âth, which is also ob-
tained from the noise condition based on 3σ criteria, the
POD considering single response signal and single flaw
parameter is computed as:

PodðaÞ = 1 −Φ
�
lnðbathÞ − ðA0 + A1lnðaÞÞ

δ

�
(17)

where Φ is the standard normal distribution function.
Taking the relationship between the magnetic flux

density F2 and the flaw length as an example, the obtained
“â versus a” plot is shown in Fig. 17. The flaw depth is fixed
as 1 mm. The blue dots represent the measured values of F2

for different flaw lengths at various lift-off distances.
Normal curves and bar charts are distributed fits of the
measured values. The brown line is a linear regression
fitting of F2 and flaw length. The red line is the decision
threshold. The integral of the normal curve above the
decision threshold is the POD value at the corresponding
flaw length.

The calculated POD curve is plotted in Fig. 18, taking
the flaw depth 1 mm (Fig. 18(a)) or the flaw length 10 mm
(Fig. 18(b)) as examples. In Fig. 18(a), the red solid line

Fig. 15. POD considering two flaw parameters versus single flaw
parameters.
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Fig. 16. POD analysis contours, red line: POD considering
multiple response signals, blue line: POD only considering the
magnetic flux density, black line: POD only considering the coil
impedance.
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Fig. 17. “â versus a” plot showing the relationship between the
magnetic flux density F2 and the flaw length.
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represents POD considering multiple signals and flaw
length; the blue solid line represents POD only considering
the magnetic flux density and flaw length; the black solid
line represents POD only considering the coil impedance
and flaw length; the red dashed line represents Pod = 0.9;
and the black dashed line represents Pod = 0.5. In
Fig. 18(b), the red solid line represents POD considering
multiple signals and flaw depth; the blue solid line repre-
sents POD only considering the magnetic flux density and
flaw depth; the black solid line represents POD only
considering the coil impedance and flaw depth; and the
red dashed line and the black line represent the same
meaning as those in Fig. 18(a).

As shown in Fig. 18(a), the detection probability of
single coil impedance signal is relatively lowest for all the
flaw length with 17 mm flaw length still half possibility of
misdetection. The magnetic flux density signal performs
better than the coil impedance signal, meaning that mag-
netic flux density is more sensitive to the flaw during ECT
than coil impedance. The minimum detectable length of

90% probability by the proposed 2M-MAPOD is 5.7 mm.
a90 is 9.3 mm for single magnetic flux density signal, which
means the detection results for flaw length smaller than
9.3 mm is not convincing. For the length of 5.7 mm, the
detection probability using single magnetic flux density is
only 64%. As shown in Fig. 18(b), the minimum detectable
depth of 90% probability by the proposed 2M-MAPOD is
0.59 mm. a90 is 0.92 mm for single magnetic flux density
signal. For flaw depth of 3 mm, the detection probability of
single coil impedance signal is less than 50%. The integra-
tion of multiple response signals has better detection per-
formance of ECT than single response signal.

V. CONCLUSIONS
In this paper, a 2M-MAPOD analysis is performed with
consideration of multiple flaw parameters and multiple
response signals to evaluate the detection reliability of
ECT system. The multiple flaw parameters are the length
and depth of a flaw. The response signals are the coil
impedance and the magnetic flux density representing
the electric and magnetic characteristics of the ECT system.
A FEM is established to simulate multiple response signals
under different flaw sizes and lift-off distances. The discrete
POD is obtained by the FEM-assisted simulation data, and a
GLF is created to obtain the continuous POD function. The
applicability of the proposed 2M-MAPOD is evaluated for
ECT against flaws on aluminum plates. For the flaw of
1 mm depth, the minimum flaw length of 90% detection
probability considering multiple response signals is
5.7 mm, which is much smaller than single response signal.
The proposed method performs well for a high detection
reliability with small flaws.

The main limitation with this method is that a large
dataset might be required to perform POD, which is time-
consuming for three-dimensional FEM. In this paper, we have
only taken into account defects with rectangular cross sec-
tions. Other geometries like semielliptic can also be studied
because the flaw features also depend on its geometry. Also,
we will further carry on more validation experiments and on-
site application to use multiple response signals for flaw
detection for the improvement of detection reliability.
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