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Abstract: In Fused Filament Fabrication (FFF), the state of material flow significantly influences printing
outcomes. However, online monitoring of these micro-physical processes within the extruder remains challeng-
ing. The flow state is affected by multiple parameters, with temperature and volumetric flow rate (VFR) being the
most critical. The study explores the stable extrusion of flow with a highly sensitive acoustic emission (AE) sensor
so that AE signals generated by the friction in the annular region can reflect the flow state more effectively.
Nevertheless, the large volume and broad frequency range of the data present processing challenges. This study
proposes a method that initially selects short impact signals and then uses the Fast Kurtogram (FK) to identify the
frequency with the highest kurtosis for signal filtration. The results indicate that this approach significantly
enhances processing speed and improves feature extraction capabilities. By correlating AE characteristics under
various parameters with the quality of extruded raster beads, AE can monitor the real-time state of material flow.
This study offers a concise and efficient method for monitoring the state of raster beads and demonstrates the
potential of online monitoring of the flow states
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I. INTRODUCTION
Compared to traditional methods, Additive Manufacturing
offers significant advantages in processing complex struc-
tures and provides greater freedom in geometric design
[1,2]. The most commonly used method is material extru-
sion, known as Fused Deposition Modeling (FDM) or
Fused Filament Fabrication (FFF), which reveals the
manufacturing process through its name [3]. This technol-
ogy constructs three-dimensional objects by heating and
extruding plastic filament, depositing it layer by layer.

The raw material used in FFF is filamentous. The
filament undergoes melting and squeezing, it is extruded
at a set speed and state. This process is complex, and former
investigations have attempted to model and validate pro-
cess. The key to the continuous and stable extrusion of the
molten material is to maintain a stable pressure drop inside
the extruder. Bellini proposed a pressure drop model. The
model assumes that the filament immediately melts upon
entering the liquefied zone, and the solid filament acts like a
piston pushing the liquid material. The model calculates the
pressure drop at different positions, however, this model
makes idealized assumptions about thermal melting and
friction, and it overlooks the geometrical discrepancies
between the filament and the inner diameter of the extruder
nozzle. [4]. Osswald and colleagues improved the model,
proposing that the filament primarily melts in the contrac-
tion region, forming a thin melt film [5]. The difference
diameters between filament and extruder inner can generate
a backflow region. The annular backflow is considered a
failure mode in early research [6]. David D discovered that
the backflow region forms a seal on the molten material,
which is crucial for preventing the material from

overflowing upwards [7]. This paper, based on the findings,
analyzes the physical process of material extrusion and
proposes a method for monitoring the stable flow of
materials.

There are numerous methods for flow or extrusion
monitoring, of which the imaging method is most applied
for FFF monitoring [8]. Shahriar used an optical micro-
scope to directly observe the raster beads, demonstrating the
impact of temperature and VFR on extrusion quality [9].
Julian utilized X-ray computed tomography to perform
imaging of the inner detail of flow, confirmed the presence
of the annular backflow phenomenon [10]. Sietse modified
the extruder, using weight sensors and pressure sensors to
measure the total pressure and the pressure inside the nozzle
for theoretical validation [11]. These methods to monitor
flow conditions were primarily applied to validate theories
and FE simulations, determining nozzle design and key
operating parameters [12,13]. However, the methods are
unsuitable for online monitoring of the printing process
since they can possibly damage the structure of extruder.
Therefore, more complex equipment and design are
required.

The material flow inside the extruder generates weak
stress waves, which can be captured by acoustic emission
(AE) sensors [14]. The AE data collected from the nozzle
are usually used for machine learning or neural networks to
classify the flow state [15–17]. Compared to other moni-
toring methods, the AE method can use a single sensor to
monitor the flow state online. Despite its convenience, data
processing of the AE method lacks an explanation of the
physical mechanisms.

This paper, based on recent studies of melt flow
model, explains the mechanism of AE generation. How-
ever, the high sampling rate of AE technology generates
large volumes of data. Additionally, due to the random
microscale compression and deformation of materials, theCorresponding author: Zhen Li (e-mail: zhen.li@hud.ac.uk).
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characteristic signals show random, transient, high-fre-
quency elastic waves. The collected signals contain tran-
sient elastic waves, background noise, and equipment
influences, which must be considered when features are
extracted.

The study proposes a data processing method for AE:
First, short segments of waves containing impact signals are
extracted in order to reduce data volume; then, Fast Kurto-
gram (FK) is utilized as the center frequency for band-pass
filtering to calculate the frequency with the highest kurtosis.
By comparing the results, the method greatly increases
processing speed and improves the issue of weak features
caused by the randomness in the elastic wave spectrum.
Experiments were designed to collect AE signals under
various parameters. By comparing these signals with
extruded raster beads, the stable domain for flow parameters
was validated. The main contributions are as follows:

i. The mechanism of AE generation from material flow
within the extruder was analyzed.

ii. The processing speed of AE waveform signals and
improved feature extraction was enhanced.

iii. The characteristics of AE over the parameter domain
of temperature and VFR map the quality of the
raster beads.

II. METHODS
A. FEED FORCE AND PRESSURE DROP
MODEL

In the FFF process, the material is melted and extruded, the
mechanism illustrated in the Fig. 1. The feed gear and idler
wheel propel the filament, while the clamping force on the
filament surface and the rotation of the driven gear are
generating static friction that can push the filament into the
liquefied region [18]. The pressure, Pin, acting on the
extruder module by the driving force can be expressed as:

Pin =
4Fin

πD1
2 (1)

where Fin is the total driving force, D1 is the diameter of
filament.

As Fig. 2 shows, the pressure drop is divided into three
parts in the liquefied zone: P1 in the barrel region, P2 in the
contraction region, and P3 in the capillary. The pressure

drop across three parts can be calculated based on the
parameters of the nozzle and the material [18]. The tem-
perature and volumetric flow rate are the two critical
parameters [19]. The pressure drop can be expressed as:

ΔPtotal = ΔP1 + ΔP2 + ΔP3 (2)

Tomas Sculler proposed that the pressure drop includes
contributions from the friction caused by the molten poly-
mer in the backflow area [20]. Compared the pressure on the
extruder head measured experimentally with the sum of the
three pressure drops, the experimental values are higher,
which proves the friction in the backflow region will
generate an additional pressure drop [11]. Pf represents
the pressure drop caused by the frictional force generated by
shear force Fshear .

Pin = ΔPtotal + Pf (3)

B. SHEAR FORCE

The liquid material in the annular region provides shear
stress to the nozzle wall. After melting, PLA material
behaves as a non-Newtonian fluid, the shear stress τ can
be calculated using the Power law model [21], as follows:

τ = K γ̇n (4)

where K is the flow consistency index that describes the
viscosity characteristics of the fluid. γ̇ represents the shear
rate, which is the gradient change of the VFR. n is the flow
behavior index, the material PLA exhibits shear-thinning
behavior, where 0 < n < 1.

For thermoplastic polymers, the flow consistency
index K changes with temperature. The dependency can
be expressed using the Arrhenius Equation, which relates
the temperature to the viscosity behavior of the polymer:

KðTÞ = K0e
−Ea

R ð1T− 1
T0
Þ (5)

where T and T0 represent the current temperature and
reference temperature, respectively. KðTÞ denotes the
flow consistency index at temperature T . K0 is the flow
consistency index at the reference temperature T0. Ea is the
activation energy parameter that describes the sensitivity of
K to changes in temperature. R is the universal gas constant.Fig. 1. Feed force generated by drive gear.

Fig. 2. Filament material liquefied in extruder.
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In this study, the shear force in annular backflow region
is considered, the shear rate in the gap can be simplify as v

d,
where v is the filament feed speed, d is the gap distance
between filament and nozzle inner wall. The shear rate can
be express as:

γ̇ =
4Q

πD1
2d

(6)

where Q is the VFR.
The Annual Backflow region affected by shear stress

can be approximated as the contact area between the molten
material and the inner walls. The shear force Fshear can be
expressed as:

Fshear =
4nQnh

πn−1D1
2n−1dn

K0e
−Ea

R ð1T− 1
T0
Þ (7)

where h is the height of the backflow region, assumed to be
constant because the filament material liquefies upon enter-
ing the liquefied zones and quickly forms a seal. From the
equation, it is observed that only temperature T and volu-
metric flow rate Q serve as variables influencing the shear
force. The shear force decreases with an increase in tem-
perature and increases with an increase in volumetric
flow rate.

C. AE RESPONSES IN FFF PROCESS

In the material flow process, shear forces between viscous
materials and the wall of a nozzle act on microscopic
asperities on the nozzle wall, resulting in viscous friction.
As illustrated in Fig. 3, these microscopic asperities
undergo forced deformation, quickly rebound, and release
elastic waves, leading to AE behavior. Furthermore,
another significant challenge is suitable features need to
be extracted from the collected AE waveform signals to
represent this physical process. Existing investigations on
AE from viscous friction suggest that the root mean square
(RMS) value of the AE signals produced by this process has
a linear relationship with the power of friction [22–24],
which can be represented as:

AErms = C
ffiffiffiffiffiffiffiffiffiffiffiffi
U̇shear

q
(8)

where U̇shear represents the power of the shear stress in the
active area, where C is a constant, which is the conversion
ratio of the shear force to AE elastic wave energy and the
preamplification ratio of the acquisition system.

U̇shear = Fshearv (9)

where v is the velocity of the material flow inside the nozzle
along the vertical direction. Substitute Equ. 7 into the
equation, therefore, the RMS of the collected AE signal is:

AErms = C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n+1Qn+1h

πnD1
2n+1dn

K0e
−Ea

R ð1T− 1
T0
Þ

s
(10)

This equation describes the relationship between shear
force and the root mean square (RMS) value of AE. Under
constant material and environmental conditions, the RMS
of AE is influenced by the material temperature and volu-
metric flow rate.

D. FAST KURTOGRAM

The FK is a tool used for analyzing and identifying transient
characteristics and nonlinear features in signals. It is par-
ticularly effective for detecting anomalies and spikiness in
signals, which often indicate the presence of transient
impacts. This tool provides a powerful means for the precise
detection of impact induced vibroacoustic signals [25–27].

Handling large volumes of high-sensitivity AE signals
poses multiple challenges. The high sensitivity of these
signals allows for the detection of minute physical changes
but also captures a substantial amount of irrelevant noise
and environmental disturbances. The high sampling rate
characteristic generates a large amount of data, requiring
significant computational power and time for storage and
processing, which is not good to real-time monitoring
applications. To solve these issues, short signals that con-
tain clear impacts are extracted at first. Due to the wide-
frequency characteristics of AE, the FK is used to calculate
the Center Frequency (FC) and extract a self-adaptive
feature band for filtering the impact signals. The approaches
are depicted as follows.

Identify n impact points from the signal SðtÞ through
local querying:

fPimpact1 ,Pimpact2 , : : : ,Pimpactng
= FindPeakðSðtÞ , nÞ (11)

Extract short segments of length L that contain all the
energy of each impact point:

SlocalðtÞi = SðtÞt ∈
�

Pimpacti − L
2

,Pimpacti + L
2

�
(12)

The FK is also capable of describing the distribution of
peaks in the frequency domain of a signal. The kurtosis for
each frequency component can be described as:

Kurðf Þi =
P

N
t=1 ðjFFTðSlocalðtÞiÞj − μÞ4

Nσ4
(13)

where Kurðf Þ is the kurtosis at frequency f where μ and σ
are the mean and standard deviation of jFFTðSlocalðtÞiÞj
respectively, and N is the number of signal samples. The
Center Frequency f center can be found corresponding to the
maximum kurtosis, as shown below:

f center = argmaxf Kurðf Þ (14)

The FK, serving as a crucial guiding parameter for the
adaptive filtering band, is shown as follows:

FilterRangei = ½f centeri − Δf , f centeri + Δf � (15)

where Δf is the chosen filtering band width.Fig. 3. Flow-Induced AE Elastic Waves from Micro Asperities.
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E. OVERALL FRAMEWORK

This paper investigates the mechanism of AE generated
within the extruder and utilizes extracted AE features to
characterize the material flow state. To validate the pro-
posed study, the research approach includes collecting AE
waveforms generated inside the extruder and applying
appropriate methods to extract features that reflect the
flow characteristics under varying parameters.

To facilitate understanding of this paper, Fig. 4 pre-
sents an overview of the experimental and data analysis
framework. The test bench includes a 3D printer, AE
collection equipment, and modified parts.

The overall figure illustrates the analysis processing of
an AE waveform to demonstrate the data processing
approach. Figure 4(a) shows a raw AE waveform.

The previous analysis how material flow acts on
microscopic asperities, leading to the instantaneous defor-
mation rebound releasing AE elastic waves. Therefore, we
consider that the impact signal can reflect the flow state. As
Fig. 4(b) shows, Impacts are extracted from the AE wave-
form to obtain short signals, reducing computational
demand, while still including the complete impact event.

Figure 4(c) displays the frequency spectrum of the im-
pacts, which is found to have a random distribution. The AE
waveform signals collected may from other sources and
include noise, which the components are complex. To extract
characteristics better, it is necessary to identify the frequency
bands in which the elastic wave energy is concentrated.

Therefore, by utilizing the FK ability to process burst
signals. As shown in Fig. 4(d), the locations of the highest

kurtosis of frequency for different impact signals are
marked with red circles. The frequency of the highest
kurtosis represents the area where the impact energy is
most concentrated. Band-pass filtering centered on the FC
can removes noise, which unrelated to the flow state. As
shown in Fig. 4(e), the filtered spectrum displays the
primary frequency bands of the elastic wave.

The Fig. 4(f) explains how to construct a stable param-
eter domain. AE features under various parameters are used
to construct a parameter domain. This domain, combined
with equipment and material parameters, is compared with
the corresponding quality of raster beads. It enables the
prediction of the parameter range for stable material flow
states through the parameter domain.

III. EXPERIMENTAL STUDY
To demonstrate the previous theoretical assumptions and
verify the reliability and superiority of the proposed feature
extraction algorithm, this chapter outlines an experiment
designed to collect AE signals from a working printer
extruder. The experiment was conducted under the hard-
ware conditions available in our current laboratory. The
experimental data include AE waveform signals under
different working parameters.

A. EXPERIMENTAL PLATFORM

The objective of the experiment is to capture AE waveform
signals generated by the minor flows inside the nozzle. As

Fig. 4. Overall Framework of Study.
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shown in Fig. 5, a waveguide rod is designed to be installed
on the nozzle, allowing the sensor to collect signals through
this rod without interfering with the normal operation of the
nozzle. Combining the printer’s suggested dataset for the
temperature and VFR, the chosen range of parameters
exceeded the normal operating conditions, but the extruder
can inject out the material raster.

The parameters are set as follow:

i. The nozzle temperature is initially set at 180°C and
then increased incrementally by 2°C up to 200°C,
resulting in a total of 11 temperature settings. The
suggested range is 195–200°C.

ii. The VFR of material flow set 6 degrees, from
3.2 mm3/s and increased incrementally by 3.2 up to
19.2 mm3/s. the suggest range is 6.4–12.8 mm3/s.

In this study, a FFF 3D printer was utilized for experi-
ments. This printer with an open gantry structure and open-
source control facilitates the installation of sensors and
control of experimental parameters. The primary parame-
ters in this study are shown in Table I.

B. MARTERIAL PROPERTIES

Polylactic Acid (PLA) was selected as the material for this
experiment. PLA is a widely used biodegradable thermo-
plastic polymer in 3D printing, known for its stable rheo-
logical properties within the common printing temperature

range. This stability is beneficial for ensuring consistency in
the experimental material and continuity in the process.

In FFF, the temperature of the nozzle plays a critical
role in influencing the flow of the molten material. The
viscosity of the molten material is significantly affected by
temperature; for PLA (polylactic acid) material, viscosity
decreases as the temperature increases [28].

The main parameters relevant to the material are pre-
sented in Table II.

C. COLLECT OF AE SIGNALS

The AE signals generated by the material flow inside the
nozzle are relatively weak, making the selection of appro-
priate sensors and the setting of proper parameters crucial
for signal collection. In this study, the design of the
waveguide rod enabled direct data collection near the
nozzle’s proximal end. The AE sensor was affixed to the
surface of the waveguide rod with a coupling agent to
ensure maximum sensitivity and the shortest signal trans-
mission path. The sensor’s sampling rate was set at 1 MHz,
ensuring the capture of minute AE elastic waves. A four-
channel high-speed acquisition card from Qingcheng Com-
pany was used, guaranteeing high data throughput. Table III
below presents the main sensor parameters and acquisition
system settings used for signal collection.

Fig. 5. Flow in FFF extruder on different parameters test bench.

Table I. Key printing parameters

Item Key specifications

Nozzle Diameter 0.4 mm

Liquefier Diameter 2 mm

Filament Diameter 1.75 mm

Suggested Temperature 195–200°C

Scan Speed 20∼100 mm/s

Suggested material type PLA, TPU, ABS

Table II. PLA parameters

Type Diameter
Melting
point

Heat distortion
temperature

PLA 1.75 mm 162.4°C 52–58°C

Table III. AE Signal acquisition settings

Operating
temperature

Frequency
band

Peak
sensitivity Pre-gain

–20–120°C 20–400 kHz 75 dB 60 dB

Identification of Stability Domains for Flow Parameters 229
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IV. RESULT AND DISCUSSION

Through experiments, AE signals from the nozzle were
collected at 11 different temperature states and 6 VFR
degrees. Signals at three significantly different tempera-
tures—180°C, 190°C, and 200°C—were selected to ana-
lyze time-frequency characteristics and power spectra, with
little difference observed in the time-domain signals. Three
VFR degrees were chosen for comparison. Due to the high
sampling rate, the volume of data was huge, leading to
excessive computational load and prolonged computer
processing times. To address this issue, a new data analysis
method was proposed. It starts by extracting short segments
of data where impacts occur, then rapidly identifies the
center of frequency (FC) of each impact using FK and
finally filters the signals using the identified center frequen-
cies. The characteristics of the original and the impact
signals were compared at the end.

A. RAW SIGNAL CHARACTERISTICS AT
DIFFERENT PARMETERS

First, the raw signals are compared. The experiment com-
pares the time-frequency characteristics of AE when there
are variations in two groups of variables: material tempera-
ture and VFR. This analysis includes a comparison of the
time domain, frequency domain, and power spectrum.
Figure 6 shows the time domain signals for two groups.
Figure 6(a)–(c) illustrate the AE waveforms at three typical
temperatures, from high to low. Figure 6(d)–(f) display the

waveforms for three different VFR. When the parameters
change slowly, it is difficult to directly observe differences
from the time-domain signals.

Figure 7 compares the frequency spectra and power
spectra of two sets of parameters, which the frequency band
was between 20 and 250 kHz. While the frequency bands
vary widely, and their locations are random and discontin-
uous. It can be observed that the power spectra of the two
parameter sets show trends of variation under different
parameters, but the changes are not significant. This in-
dicates that the proportion of noise in the signals is too high,
need further feature extraction.

If Fig. 7(b) and (d) are compared, it can be found that
the influence of VFR changes on the power spectrum is
more pronounced than that of temperature changes. The
influence of two sets on AE characteristics will be further
compared in subsequent analyses.

B. IMPACT SIGNAL CHARACTERISTICS AT
DIFFERENT PARMETERS

In the section illustrating methods, the physical mechan-
isms of AE impacts were analyzed, demonstrating that
impact signals effectively characterize flow states. Addi-
tionally, cutting short signal segments containing impacts
reduces the data volume caused by high sampling rates.

Figure 8(a)–(c) display the impact signals with the
highest amplitude as the temperature decreases, showing
peak values at 200°C, 190°C, and 180°C of 0.03V, 0.05V,
and 0.3V, respectively. Figure 8(d)–(f) illustrate the
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maximum impacts with increasing volumetric flow rates
(VFR), with peak values at 3.2 mm3/s, 9.6 mm3/s, and
19.2 mm3/s of 0.028V, 0.125V, and 1.9V, separately.
Comparing the peak values of AE impacts for the two
parameters, VFR has a greater effect on the flow state than
temperature within the selected range.

Figure 9(a) and (c) show the frequency spectrum of
impact signals, with observable differences in amplitudes.
The power spectrums in Fig. 9(b) and (d) indicate that,
compared to raw signals, impact signals exhibit more
distinct differentiation in the power spectrum. However,
these features display significant randomness, likely related
to the broadband characteristics of AE signals.

The analysis highlights that although impact signals
perform well in the power spectrum, the complex compo-
nents of AE signals necessitate identifying frequency bands
where impact energy is concentrated to reduce noise inter-
ference, thereby enhancing the AE characteristics generated
by the flow.

C. EXTACTION OF CENTRAL FREQUENCY
BY FK ANALYSIS

The former section has demonstrated the capability of
impact signals to characterize flow states. However, the
analysis of their power spectra occurs over a wide frequency
range, and the power spectra of different impacts exhibit
randomness.

The FK is particularly suitable for analyzing non-
stationary signals that include bursts of high-frequency
components. This method, with examination of multiple
frequency resolutions and levels of kurtosis, can determine

which frequency band contains the key information about
impact events, making it ideal for selecting the optimal
frequency band.

Considering the impact characteristics of the signals,
FK is introduced to decompose segments of impact signals.
Choose the decomposition degree as 6 level. As shown in
Fig. 10, there are frequency-kurtosis heatmap for six impact
events from the same waveform signal. The red circles mark
the frequency positions with the highest kurtosis of the
impact signals. The positions of the highest kurtosis vary,
which also indicates that the central frequency of each
impact signal is uncertain. Through this method, the central
frequency of the impact can be determined, with the energy
of the impact concentrated near the central frequency.

Therefore, using the central frequency (FC) for band-
pass filtering can reduce other signals in the AE signals that
are unrelated to the flow. This part of the noise may
originate from other noise sources or the background noise
of the collection system. Here, the function of FK is to
determine the central frequency of the frequency band for
band-pass filtering. This method can adapt to different
impacts, overcome the randomness of impact signals,
and enhance the characteristics related to transient elastic
waves caused by flow.”

D. FEATURE EXTRATION AND RASTER
QUALITY

According to the theoretical analysis in Section II, the lower
the temperature in the nozzle, the higher the viscosity
consistency coefficient of the material flow, consequently
it results in higher AE power and higher RMS values of the

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6
10

-4

180°C

190°C

200°C

50 100 150 200 250 300 350 400

Frequency (KHz)Frequency (KHz)

Frequency (KHz)Frequency (KHz)

-120

-110

-100

-90

-80
180°C
190°C
200°C

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3
10

-3

3.2mm
3
/s

9.6mm
3
/s

19.2mm
3
/s

50 100 150 200 250 300 350 400
-120

-110

-100

-90

-80

-70

-60

3.2mm
3
/s

9.6mm
3
/s

19.2mm
3
/s

P
o
w

er
/F

re
q
u
en

cy
 (

d
B

/H
z)

P
o
w

er
/F

re
q
u
en

cy
 (

d
B

/H
z)

A
m

p
li

tu
d
e 

(V
)

A
m

p
li

tu
d
e 

(V
)

(a) (b)

(c) (d)

Fig. 9. Impact signals analysis of Frequency domain and Power Spectral Density.
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signal. And higher VFR results in higher AE power. This
study introduces a data processing method that uses FK to
extract features from small datasets of impact signals.
Figures 11 and 12 presents the RMS values obtained
through four different methods: the raw signal, the impact
signal, the raw signal with FK band-pass filtering, and the
impact signal with self-adaptive FK band-pass filtering. The
two sets of parameters: temperature and VFR are compared.

In the temperature group, as shown in Fig 11, RMS
values from the raw signals and after filtering shows poor
distinction between the parameter ranges, i.e. it is hard to
identify the change in temperature from 184°C to 186°C.
The two methods use impact signals demonstrate better
performance than the first two. However, the red line,
representing the impact signal without self-adaptive
band-pass filtering, shows an outlier at 182°C. In contrast,
the green line, which represents the impact signal with self-
adaptive band-pass filtering, which corrected the anomaly
at 182°C, showing an improved trend. The VFR group is showing similar trend in Fig. 12 in

which two impact signals gave better characteristics. but in
the low VFR degree, it has no discrimination.

Overall, impact signals provide better characterization.
Self-adaptive filtering methods can correct some anomalies,
resulting in more accurate trend representation. The analy-
sis results show correlations with the theoretical analysis
presented in Section II.

By comparing the same set of experimental data
through four different methods, the theory that temperature
and VFR affect material flow in the nozzle has been
validated. The new data processing method proposed shows
improved performance in feature extraction. However, the
two graphs in Figs. 11 and 12 are compared, which reveals
that the ranges of changes for the two types of parameters
are on different orders of magnitude. The impact of VFR on
AE characteristics is significantly greater than that of
temperature. Both parameters influence the friction in the
annular backflow region within the nozzle. There is a

Fig. 10. Fast Kurtogram Frequency-Kurtosis Distribution Heatmaps.
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stability domain that ensures the flow state and the quality
of the raster.

The Fig. 13 shown the characteristic domain of AE
formed by the two parameters. Parameters combinations are
analyzed from the four edges of the defined region for real
raster printing. The four selected parameter combinations
represent high and low VFR at normal temperature, and
high and low temperature at normal VFR. The two warm-
colored points corresponding to low temperature and high
VFR exhibit significant quality defects in the printed raster.
These defects include a rough surface and unstable diame-
ter, indicating oscillations in the flow state. The two cool-
colored points correspond to good surface quality, with the
raster being uniform and stable.

V. CONCLUSIONS

i. Based on the existing nozzle material flowmodel, it is
inferred that the additional pressure drop caused by
material friction in the annular backflow region can be
captured by AE sensors located on the proximal end
of the nozzle. Theoretical analysis has demonstrated
the correlation between the additional pressure drop
with the two parameters, material temperature and
volumetric flow rate. Data analysis has shown that the
RMS value of AE waveform signals effectively re-
presents frictional power, thereby allowing for the
assessment of the flow state.

ii. After large volumes of high-sampling-rate AE data
were collected, a method based on the Fast Kurtogram
(FK) was proposed to extract features from short,
transient signals. The FK self-adaptive center fre-
quency filtering method effectively addresses the
issue of the random distribution of impact signal
center frequencies across a wide bandwidth by auto-
matically selecting the most suitable band-pass filter.
Compared to directly analyzing raw signals, the
proposed method significantly improves data proces-
sing speed and enhances feature extraction
capabilities.

iii. The AE characteristics correspond to a parameter
domain composed of material temperature and

volumetric flow rate (VFR), which can be mapped
to the quality of the extruded raster. By comparing
signal characteristics with printing quality, it has been
found that the constructed parameter domain can
predict raster quality, providing a valuable reference
for selecting parameter combinations.
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