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Abstract: The appearance of flow instabilities like the blockage severity, impeller cut flaws, pitted cover plate
flaws can cause to diminish the efficiency of centrifugal pump (CP), and may result in excessive vibration and
noise, and their failure may lead to the system imploding. To bridge the gap of downfall in the efficiency of CP, it is
crucial that a system can be created to monitor the condition of the CP and must be maintained. The present work
proposes at identifying and determining the severity of various blockage levels in the inlet pipe with three different
kinds of pumps using three distinct sensors. One pump works faultlessly (healthy pump), another has cuts
artificially made on the impeller blade, and the third has pits artificially created on the cover plate. The inlet pipe
blockage mimics pump blockage which is made more severe step by step. As the blockage gets worse and the flow
slows down, recirculation starts, causing vapor bubbles to form. Utilizing a mechanical modulating valve, the inlet
flow area of the pipe is partitioned into six intervals (0%, 16.7%, 33.3%, 50%, 66.6%, and 83.33%) to replicate
pump blockage. This obstruction directly influences vibrations, current line signals, and fluid dynamic pressure.
To gather data across a spectrum of blockage levels and operational frequencies (30 Hz, 35 Hz, 40 Hz, 45 Hz,
50 Hz, 55 Hz, and 60 Hz), a combination of a pressure transducer, accelerometer, and current probes were
strategically employed in this investigation. Multiple sets of statistical features were extracted from the data, and
through various algorithms, the most effective combined statistical feature set was determined. In this domain, the
combination of standard deviation, mean, and entropy demonstrates superior performance compared to other
features. This feature set was input into an ANN model, which is developed by optimizing parameters like hidden
layer count, neurons, epochs and then the results of this investigation are then compared with existing literature. It
has been noted that employing combinations of multiple sets of statistical features significantly improves the
accuracy in identifying obstruction levels, often achieving near-perfect accuracy for various feature sets (nearly
100% across various combinations). In comparison to other SOTA methods, this approach achieves higher
accuracy, ranging from 2.41% to 15.69% across different metrics. This study presents a method to classify inlet
pipe blockages into various levels, enhancing maintenance prioritization and reducing downtime and repair costs,
ensuring long-term equipment health and operational efficiency. The fault prediction methodology proves highly
robust across various CP operating conditions.
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I. INTRODUCTION
A pump is essential component in the industrial and
manufacturing purposes due to their functionality as well
as their lifespan. CPs typically operate based on forced
vortex motion within the impeller; as the water exits
radially, it transitions to free vortex motion. The liquid
enters in the suction pipe and then moves to the central part
of the pump, called as ‘eye’ and passes through a number of
blades, called ‘impeller’. The impeller accelerates it in the
radially outward direction because of the centrifugal force
imparted by the rotating blades, which leads liquid into a
casing, from where it exits into the downstream piping
system. The normal operating speed range of CP is between
1000 and 3000 rpm, and they operate in harsh circum-
stances. CPs assure the smooth operation of the process and
are essential components of many industrial plants. Multi-
ple types of contaminants in the form of hard particles may

be found in the liquid being pump in industry sectors.
Impurities may obstruct pipe, which causes instability in
flow in the pump. Pump malfunctions could halt the plant’s
process flow or reduce its efficiency, failing to produce the
desired results. Furthermore, if the defects are not addressed
at the appropriate stage, the life of the pumps is drastically
reduced [1].

CP flaw is most typically caused by flow disruptions or
mechanical faults (ruptured impellers, bearing problems,
and bent rotors), as well as leaks and obstructions. On using
polluted working fluids or inducing damage to the surface to
the pipe, suction obstruction problems can happen. Such
flow obstacles lead the flow rate to decline and recirculation
of flow, a secondary flow, to emerge. Vortices arise as flow
separation expands, which leads to a decrease in local
pressure and the emergence of vapour bubbles. Addition-
ally, any bubble generation in CP is not preferred because it
minimizes the head, which is being developed; and ends in
holes at CP surfaces owing for the generation of micro-jets.
It is therefore impractical to treat CP failures as independent
faults. The presence of one flaw can amplify the appearanceCorresponding author: Rajiv Tiwari (e-mail: rtiwari@iitg.ac.in).
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of another. To maintain the assets in the industries, mainte-
nance strategies are available [2].

Perovic et al. [3] created the fault signatures through
linking spectral features to specific faults and analysing
their behaviour in the presence of faults by using fuzzy
logic, and the cavitation, obstruction, and impeller damage
faults were examined. Chudina [4] used the generated
noises to identified the beginning of cavitation. The initia-
tion and progression of cavitation can be specifically
monitored using a noise spectrum structure. A specific
frequency tone, at 147 Hz, has been found through experi-
ments, and it has been found to be highly reliant on the
cavitation process and its progression and also, to estimate
net positive suction head (NPSH). Dister [5] used the
vibration and line current data for the predictive mainte-
nance, and also techniques were suggested for online health
monitoring of pumps using currents, vibrations, acoustics,
and pressure variations. Zouari [6] facilitated the learning of
data in an industrial setting and designed a system made up
of multiple networks in order to simplify the learning data in
a commercial setting. Samanta et al. [7] presented his work
by conducting comparisons between neural networks
(NNs) and support vector machines (SVMs) based on
bearing fault data, and genetic algorithm was employed
to improve performance. Also, it was revealed that the
selection of features significantly influences the perfor-
mance of classifier.

Singh and Shaik [8] presented a method for detecting
faulty bearings in a three-phase induction motor and Stock-
well transform is used to extract features from motor
vibration signals. These features are then utilized by a
support vector machine (SVM) for fault classification and
localization. Barakat et al. [9] proposed a hard competitive
growing neural network (HCGNN) for diagnosing small
bearing faults. The HCGNN model is trained using vibra-
tion signals from bearings to learn patterns and classify
faults. This approach offers an effective and accurate
method for diagnosing small bearing faults. Zhao et al.
[10] utilized in machine health monitoring. These methods
leverage the power of neural networks to automatically
learn and extract valuable insights from large amounts of
sensor data. Deep learning enables effective fault detection,
classification, and predictive maintenance, enhancing
machine reliability and reducing downtime. Kane and
Andhare [11] applied to gear fault diagnosis using an
artificial neural network (ANN). By analyzing the sound
characteristics produced by faulty gears, psychoacoustic
principles are employed to extract relevant features. These
features are then input to an ANN for accurate gear fault
diagnosis, enabling effective maintenance strategies.

Wong [12] presented work on detection that is applied
to vibration signal monitoring and mono-block CP with
defective bearings, seals, impellers, and cavitation. It was
used as a test to predict the performance of pump and found
that measuring high frequency noise was a convenient way
of detecting cavitation. Widodo and Yang [13] presented a
survey of publications from 1996 to 2006 in depth, which
was based on a literature review on the use of SVM in
machine condition monitoring and diagnosis. It may be
deduced that he SVM in machine condition monitoring and
diagnosis is trending towards expertise orientation and
problem-oriented domain since year 2006. Rajakaruna-
karan et al. [14] proposed model took into account a total
of 7 categories of defects, including 20 failures from the CP
system. Using testing technique, the constructed neural

network model was simulated for pattern classification of
defect data, and almost 100% accuracy was attained.

Sakthivel et al. [15] differentiated the cavitation noise
using noise detection techniques and employing vibration
signal to diagnose mono block CP defects and monitoring
the health of the pump including taking into consideration
of the bearing, seal, and impeller flaws. Nasiri et al. [16]
analyzed and presented vibration signature to automate the
cavitation defect in CPs. Three healthy/faulty conditions—
normal, mild, and fully developed cavitation were identified
using the NN. If there is only one sensor, it should be used
in the radial position; if there are two, they should be used in
the radial and rear positions; and if there are three, the
sensors should be used in the radial, back, and front
positions; this will ensure that cavitation is detected
accurately.

Azadeh et al. [17] analyzed with the SVM and ANN
models, and developed an algorithm to classify two distinct
faults in CPs to handle noisy data. Vibration signature
analysis was used in a system that was described to auto-
mate the cavitation defect identification in CP. Three
healthy/faulty conditions- normal, mild, and fully devel-
oped cavitation were identified using an NN. Abdulkarem
et al. [18] used time and frequency domain vibration
analysis and investigated the impeller fault of a CP. In
this domain, the power spectrum and the vibration index at a
given frequency serve as defect indicators, and provided the
NN and fuzzy-neural network (FNN) for the defect identi-
fication of pumps. Rapur and Tiwari [19] considered impel-
ler cracking and suction obstruction categorization of faults
in pumps by analyzing the vibration signal. Blockage levels
in middle range (40% to 70 %) were shown to have
consistently excellent classification accuracy. To compre-
hend the onset of severe blockage, it is advised that a
threshold restriction of 65% be placed on classification
accuracy.

Lu et al. [20] analyzed the entry and exit pressure
parameters used to develop the cavitation in the pump
through experimenting and simulating. The size of the
dominant frequency rose initially with the incidence and
development of cavitation before eventually declining. The
pump head reduced by 0.77% from non-cavitation circum-
stances, as shown by the experimental and numerical
simulation data, and this might be interpreted as a sign
of impending cavitation. Zhao et al. [21] used the datasets
from rolling element bearings and planetary gearboxes, and
introduced disturbances into the input data of each auto-
encoder in order to ensure reliable feature reconstruction
and efficient high-level feature extraction. The practicality
and effectiveness of employing the deep learning method in
conjunction with SoftMax regression were showcased
when applied to feature extraction and fault diagnosis using
non-stationary and non-linear vibration data. Wang et al.
[22] introduced and diagnosed a fault utilizing complemen-
tary ensemble empirical mode decomposition (CEEMD),
sample entropy (SampEn), and random forest (RF), along-
side an applied practical fault detection for the CP. It is
observed that the CEEMD outperforms the EMD in dealing
with CP vibration signals by adding white noise to the
original signals. With the CEEMD, SampEn, and RF
together, these provided outstanding fault diagnosis perfor-
mance for CPs.

Azizi et al. [23] performed number of tests on a model
pump, and the pump case vibrations were recorded. The
EMD algorithm was used to deconstruct vibration signals.
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A total of 15 statistical features were taken. A hybrid feature
selection technique was proposed to choose the most effi-
cient feature subset in order to improve the accuracy of the
computerized diagnosis system. As a result, the overall size
of the feature set was lowered while also increasing the
accuracy rate to its highest attainable level of 100%. Rapur
and Tiwari [24] accounted obstructions and impeller cracks.
The hyper parameter of the classifier and the input features
produced from the time-domain vibration data were set
optimally. The study also demonstrates how this issue may
be used in various industries to assess the severity of a
CP blockage fault. This study examined the features of
five different obstruction circumstances and cavitation.
Bordoloi and Tiwari [25] used the features retrieved
from the time-domain vibration signal coming from the
pump casing and bearing block. Optimization techniques
were used to choose the kernel and SVM parameters. Also,
with greater pump speeds and better fault prediction accu-
racy was shown.

Panda et al. [26] performed training and testing at
greater rotational speeds using the SVM, the accuracy of
prediction in multi-class fault classification (various levels
of obstruction) was moderately higher. At higher rotational
speeds, the oncoming bubble creation was also shown to be
quite correctly anticipated. Rapur and Tiwari [27] intro-
duced a statistical feature called the inverse of standard
deviation, σ–1. This trait is proven to have enormous
promise for defect diagnostics because it lowers variance,
σ2, while maintaining the trends of standard deviation. Also,
it was noted that the combination of motor current and
vibration data characteristic was particularly promising for
investigation of CP flaws classification. All of the multi-
class classifications could be completed by the SVM clas-
sifier created utilizing μ (mean) and σ–1 features with nearly
flawless accuracy. Chakravarthy et al. [28] examined vari-
ous faults in centrifugal water pumps powered by induction
motors, which was used in agricultural fields and proposed
a algorithm to identify and classify the faults. Alabied et al.
[29] proposed an approach on intrinsic time scale decom-
position (ITD) for feature extraction and SVM for classifi-
cation of health conditions. ITD is a powerful tool for
extracting the most useful information from motor current
signals. Lei et al. [30] detected the health conditions of
machines automatically using conventional machine learn-
ing ideas and also transfer learning theories have the
potential to create diagnostic models that can be used to
fill the gap by allowing the knowledge of diagnosis to be
applied to various diagnosis tasks. Dewangan et al. [31]
developed a methodology for identifying and assessing the
severity of blockages and cavitation in centrifugal pumps
using fluid pressure data and deep learning-based binary
classification with accuracy of 95.8%. This approach aims
to prevent operational failures and system breakdowns by
providing accurate monitoring and fault detection.

Sha et al. [32] proposes a novel cavitation detection
framework for valves using XGBoost with adaptive
feature selection. It addresses small-sample issues with a
non-overlapping sliding window and enhances feature
extraction using FFT. The method significantly improves
cavitation detection accuracy, achieving a 4.67% increase
for binary classification and an 11.11% increase for four-
class classification over traditional XGBoost. Orrù et al.
[33] used the SVM and the multilayer perceptron (MLP)
algorithms, and compared both. The MLP exhibited super-
ior classification performance by accurately identifying two

out of the four failures that occurred within the specified
timeframe. In contrast, the SVM approach demonstrated
higher precision but poorer recall for the positive class.
Chen [34] altered the traditional Mahalanobis distance fault
for CPs with the introduction of the k-nearest neighbour
algorithm (KNN). The fault prediction accuracy of the off-
balance state was up to 82% using this technology, which
used vibration signals to detect distinct CP fault types. They
proposed a deep transfer convolutional neural network
(DTCNN). ResNet-50 was chosen as the pre-trained
deep convolutional neural network model and was trans-
ferred to solve the problem of bearing fault classification
using the transfer learning concept. The proposed method
was validated using two datasets from motor bearings and
self-priming CPs. The proposed model was tested on two
well-known datasets, and it achieved a near-perfect predic-
tion accuracy, surpassing alternative conventional machine-
learning and deep learning techniques. Sunal et al. [35]
examined the most recent advancements in machine learn-
ing-oriented pump condition monitoring and fault diagnosis
research and development.

Dewangan and Tiwari [36] utilized ANNs to detect and
classify cavitation and blockage faults using time-domain
analysis. They obtained the classification performance and
confusion matrix for different conditions with speed and
without consideration of speed as an input. Rapur and
Tiwari [37] suggested a flexible approach, which was based
on a multi-class SVM classifier with hyperparameter opti-
mization for characterizes the CP fault condition and iden-
tifying the traits that will classify the 33 CP errors. The
selected combined characteristics with 1/σwere performing
well at classifying faults. The methodology was tested at 8
distinct operational frequencies to determine how robust the
established technique was. The developed algorithm dem-
onstrated remarkable precision across all speeds in catego-
rizing various forms of flow instabilities, mechanical faults,
and their combined occurrences. Rapur et al. [38] ap-
proached for meeting the needs for machine maintenance
is condition-based maintenance (CBM). Modern CBM
techniques strive to minimize human involvement in the
real-time defect identification. This review outlines the
unexplored areas related to CP fault diagnostics and gives
future researchers in this subject a good start. Zaman et al.
[39] introduced the SGST method, combining STFT, GAN,
and Swin Transformer, to diagnose cavitation faults in
hydraulic machinery, achieving 98.6% accuracy. It en-
hances feature extraction and data augmentation, signifi-
cantly improving fault diagnosis accuracy over existing
methods. Sunal et al. [40] detected centrifugal pump faults
using real operational data, employing binary classification
of visual features from DQ/Concordia patterns with Re-
sNet-34, achieving up to 85.51% classification accuracy.
Indriawati et al. [41] approached leverages transfer learning
from image detection to solve real-life engineering pro-
blems. This study developed a fault detection system for
centrifugal pumps, specifically the Medium Pressure Oil
Pump (MPOP) and the Water Injection Pump (WIP), using
residual feature extraction in the time domain and a statis-
tical approach. The system achieved 91.67% accuracy for
MPOP, 94.8% for WIP, and over 99% accuracy during
online monitoring simulations.

Our review of the literature underscores the importance
of selecting the right signals for data collection in fault
identification. Research highlights that pressure, accelera-
tion, and motor line current signals are the most informative
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regarding the condition of CPs. However, no existing
studies have combined all three signals—pressure, acceler-
ation, and motor line current—to detect various degree of
blockages in healthy and two different faulty CPs. Newer
algorithms and data classification techniques are surpassing
older methods in performance. A significant gap in current
research is the limited focus on detecting various blockage
degrees in the inlet pipe of centrifugal pumps based on
different features extraction. Our study aims to address this
gap by focusing on degree of blockage detection in the inlet
pipe of CPs. What makes our work unique is the innovative
combination of acceleration, pressure, and motor line cur-
rent data to detect different degrees of blockage using an
artificial neural network (ANN) algorithm using different
features. Furthermore, we are inspired to explore various
statistical features derived from basic data, using them
either together or separately, to enhance the accuracy of
detection of various blockage degree.

This study is separated into the upcoming sections as
follows: Section II discusses the experimental setup and
data capture. Explanation of data classification methods is
covered in Section III. Section IV highlights the perfor-
mance and the accuracy of fault detection. Section V pre-
sents the final conclusions.

II. EXPERIMENTAL SETUP AND
EXPERIMENTATION DESCRIPTION

Machine Fault Simulator (MFS) provided by Spectra-
Quest™ was used for the experimentation. Figure 1 shows
the experimental setup and the close look of CP. A pump
was installed on the fixed base of theMFS and is driven by a
double-belt pulley system.Within the MFS setup, a 3-phase
induction motor is linked to the rotor via a flexible coupling.
The rotor is supported by two bearings at its extremities, and
these bearings are securely positioned between two station-
ary plates. The rotor shaft is attached to the CP using belt
drives to power it. The speed of the pump could be varied by
varying motor frequency using a variable frequency
drive (VFD).

Leak-proof fittings were made sure to be on the pump.
Figure 2 illustrates the presence of manual modulating
valves at the inlet of the water tank, facilitating flow
regulation.

To prevent cavitation-related issues, the water tank is
strategically positioned to ensure an ample head at the pump
inlet. By using a mechanical modulation valve at the suction
and discharge ends of the line connected to the pump outlet,

(a) 

 

            

    (b) 

Amplifiers 

DC Supply 

Low Pressure Transducer 

Motor Speed Regulator 

MFS Base Plate 

Induction Motor 

Data Acquisition System

Monitor 

Accelerometer 1 

Accelerometer 2 

Centrifugal Pump 

High Pressure Transducer 

Suction Pipe

Blockage in 

Inlet pipe 

Water Tank 

Fig. 1. (a) Experimental set-up (b) A close look.
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the pressure can be varied. The data is acquired with 5000
samples per set. For every pump working situation, 150 sets
of data aggregating 150 s are recorded. Each set of data has
a 0.1-second timeframe.

The pump is operated at a speed of 30 Hz to 60 Hz with
an interval of 5 Hz. The motor was heated up at a speed
higher than 60 Hz. Six equal intervals are marked on the
mechanical modulation valve, so that different degrees of
clogging could achieved by governing valve in different
intervals. B0 employs 0% clogging (unrestricted flow, no
disturbance), B1 indicates 16.7% clogging, B2 reveals
33.3% clogging, B3 displays 50% clogging, B4 shows
66.6% clogging, and B5 indicates 83.33% clogging.

Accelerometers: A pump with two triaxial acceler-
ometers affixed with sensitivities of 100.3, 100.7, and
101.4 mV/g (accelerometer-1) and 101, 101.1, and
101.4 mV/g (accelerometer-2) in the x, y, and z directions,
respectively, were used to analyses acceleration. Figure 3
depicts the orientations and accelerometers.

Pressure Transducers: For measuring liquid pressure,
two pressure transducers from “Nictech,” a sensitive silicon
chip is used. Current fluctuation can be used to interpret the
response from the pressure sensors when they are operating
in the operational range (0–60 psi) (4–20 mA). High- and
low-pressure transducers are shown in Figure 4.

Current sensing probes: The current line reading was
recorded using “The Keysight 1146B” current probes, as

shown in Figure 5. Current of 100 mA to 10 A rms can be
measured with current probes.

Data acquisition system: The NI PXI - 4472 is an 8-
channel and NI PXI -6251 is a 16-channel dynamic signal
acquisition module for high accuracy frequency domain

     
(a)                                                       (b) 

  

 
 

Rotating Knob Markings

Inlet
Outlet

Fig. 2. Mechanical modulating valves (a) Rotating knob
(b) Markings on the knob.

Accelerometer 1

Accelerometer 2 

Fig. 3. Sensor Placement with Tri-axial Accelerometers on Pump
Casing and Bearing Housing.

 

High Pressure Transducer 

Low Pressure Transducer 

Fig. 4. High- and low-pressure transducers mounted on the
pump.

Motor Lines 

Power Power 

Indicator 

Fig. 5. Current wires passing through Current probes.

Dspace 

Motor Current 

Accelerometer 

Pressure 

Transducer 

Ports  

Fig. 6. Dspace for collecting data.
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measurements. The eight channels of the NI PXI -4472 and
the 16 channels of the NI PXI -6251 simultaneously digitize
input signals over a bandwidth of DC to 45 kHz. Data
Acquisition system is shown in Figure 6.

A. DESCRIPTION OF EXPERIMENTATION

On theMFS, an experiment was performed to collect data at
various levels of flow obstruction (B0, B1, B2, B3, B4, B5)
at different frequencies (30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz,
55 Hz and 60 Hz). For each combination of pump running
speed and block level, data collection was done. In order to
obtain comprehensive insights into the fault, three distinct
types of sensor measurements were taken which are
accelerometers, pressure transducers, and current probes.
Accelerometers measure the system’s vibration, low and
high-pressure transducers measure the system’s pressure,
and current probes measure the current in the lines. To
capture vibration-related data, two accelerometers were

strategically placed. The first accelerometer (accelerome-
ter-1) was affixed to the pump casing, while the second
accelerometer (accelerometer-2) was positioned on the
bearing housing. On the pump casing, two pressure trans-
ducers measure the low and high pressure of the system.
Three current probes were deployed to measure the motor
line current. To collect the data, all of the sensors were
linked to the DAQ system’s various channels. The control
desk software utilized to record data that was gathered by
the sensors. Abbreviations used in this study and the details
of DAQ are given in Tables I and II, respectively.

Three-wire setup: Pressure sensor have output in the
Ampere form, which cannot measure by the DAQ, so to
make it possible we have to convert the signals into the
voltage and it can be possible by the connection shown in
Figure 7 with the help of resistor connected in the bread
board. According to the Ohm’s law, the voltage across a
conductor is directly proportional to the current flowing
through it, provided all physical conditions and tempera-
tures remain constant. This setup is called the three-
wire setup.

Simulink model: A Graphical MATLAB-Based Envi-
ronment for Modelling, Simulation, and Analysis of Multi-
Domain Dynamical Systems as shown in Figure 8. The
description of the model is given as the step size used is
0.0001 with infinity time and fixed step of time. Ode
(Runga-Kutta method) solver is used. This model facilitates
the ingestion of data from 11 sensors, visible on the
monitoring screen within the control desk app. The acquired
data is subsequently processed by a Data Acquisition
(DAQ) system, resulting in raw output data.

Table I. Abbreviations

σ Standard deviation

μ Mean

κ Kurtosis

χ Skewness

x Input to the neural network

w Weight vector

b Bias vector

ŷ Predicted class

z Loss function

T Transpose

n Total number of data points in a collection

xi Amplitude of each data point

CP Centrifugal pump

HP Healthy pump

IF Impeller fault

PF Cover plate fault

RF Random forest

SVM Support vector machine

DT Decision tree

KNN K-nearest neighbours

XGB XGBoost

ANN Artificial neural network

SDG Stochastic gradient descent

Table II. Data acquisition system outlines

Blockage levels B0 (Full flow, no obstruction), B1 (1/6 obstruction), B2 (1/3 obstruction), B3 (1/2
obstruction), B4 (2/3 obstruction), B5 (5/6 obstruction)

Frequency 30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz, 55 Hz and 60 Hz

Quantity of each case in every pump condition 6 (Blockage levels) × 7 (Frequency) = 42 cases

No of measurement sets for each combination of
blockage level and frequency

150 sets

Data collection time for each blockagelevel and
frequency combination

150 sec

Timeframe for a single set collection 1 sec

Sample captured in one second 5000

Fig. 7. Three wiring setup to convert pressure transducer signals
(Ampere form) to voltage form (measurable form by DAQ).
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B. MEASUREMENT PROCEDURE

Vibration, pressure, and current lines signatures were used
for diagnosis of blockage level. Control Desk software was
used to configure data acquisition. To conduct time domain
measurements, a sampling rate of 5000 samples per second
was employed, resulting in the acquisition of 5000 samples.
Data collection was conducted over a period of 150 sec-
onds. For each of the sensors, 5000 × 150 non-overlapping
data points were captured.

The data were recorded on system hard drive, saved in
separate DAQ measurement files in.csv files for each
disturbance at individual CP speeds. The time domain
data can later be converted to any domain using various
transformations. A healthy pump, a pump with an impeller
defect, and a pump with a cover plate defect were sequen-
tially mounted on the MFS. Impeller fault and cover plate
fault is shown in Figure 9. The impeller plate has cuts on the
blades and the cover plate fault has number of pits on it and
these are supposed to formed due to the high-pressure
bubbles burst and hits the metal wall in the form of micro
jets and the cuts on the impeller blade and pits on the cover
plate, both are the actual fault type of the CP, which is

created artificially so that signals created to the artificial
fault can developed actual signals. The cavitation will cause
such an obvious and regular failure but here it is created
artificially by third party and available in our lab. Damage
can arise from the dynamic water flow’s swirling motion
within the turbine, triggering a range of effects. Dynamic
water flow over turbine blades can lead to damage in
various ways in which some are as follows: (1) Cavitation:
Cavitation occurs when water flowing over turbine blades
experiences pressure drops, causing vapor bubbles to form
and collapse, leading to shockwaves that erode the blade’s
surface, potentially causing cuts. (2) Vortex Fluctuations:
Swirling water causes pressure changes and stress on blade
surfaces, leading to fatigue and cuts over time. (3) Abrasive
Erosion: High-speed, sand-laden water erodes blades, cre-
ating cuts and grooves in sediment-rich areas. The design
and construction of the pump-turbine system could be one
reason. The striking of water may be effects more on the
cover plate than turbine blade. Hence cover plate has a
serious issue for cavitation than turbine blade. For each of
these 3 pump conditions, a suction blockage defect with six
severity levels was introduced.

In each pump state, the pumpwas operated at a series of
different speeds. A variable frequency drive was used to
operate the induction motor from 1800 rpm (30 Hz) to
3600 rpm (60 Hz) in steps of 300 rpm (5 Hz). Vibration,
pressure, and current signatures were used for blockage
level diagnosis. For each faulty condition, data were col-
lected at 5000 samples/s. Data for each condition was
collected for 150 seconds, resulting in a total of 150 records
collected for each fault condition. When the pump is faulty
and the suction clogging level is full flow (without any
obstruction level) and with an obstruction level of B5 by
using the signatures of vibration, pressure, and line current
at 30 Hz of impeller fault pump configurations are shown in
Figure 10. It is observed that as flow restriction increases to

Fig. 8. Simulink Model for display the sensors data signal in the monitor screen.

 

Pits 

Cuts on the blade

Fig. 9. Impeller fault (left) and Cover plate fault (right).
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the maximum level (B5), the pressure, vibration, and
current signal pulsations also increase, as shown in Fig-
ure 10 (b, d, f), compared to the conditions with no flow
restriction as shown in Figure 10 (a, c, e). As the liquid flow
area diminishes, the pressure of the liquid decreases corre-
spondingly. When this pressure falls below the vapor
pressure of the liquid, bubbles begin to form. Increased
flow restriction leads to more bubble formation, which in
turn elevates vibration levels and pressure pulsations. Also,
bubble formation occurs even at a low blockage level with a
high running speed. The description of each pump condi-
tion corresponding to each in Figure 10 can be found in
Table III.

C. DESCRIPTION OF FAULT SET

A total of 18 different fault conditions of the CP have been
considered in this study. Healthy pump with no blockage
(HP0), healthy pump with suction blockages (HPb), Impel-
ler fault with no blockage (IF0), impeller fault with suction
blockages (IFb), cover plate fault with no blockage (CP0)
and cover plate fault with suction blockages (CPb), where
b= 1, 2, 3, 4, 5. The fault set has six classes. We have
identified a total of 18 faults, as outlined in Table IV. These

faults encompass six distinct degrees of blockage levels
across three pumps. Our classification involves organizing
the fault set based on the blockage level. Each class
comprises data from all three pumps, and within each class,
we vary the blockage level. By incorporating all six block-
age levels, we create a comprehensive fault set conditions
that make up these sets have been explained in Table IV.
Class 1 (B0): HP0, PC0, IF0 represents a condition with

Fig. 10. Pressure, vibration, and motor current signals of impeller fault pump without obstruction level and final obstruction level (B5)
at 30 Hz (a) Impeller fault pump pressure signals without an obstruction (b) Impeller fault pump pressure signals with an obstruction of
level B5 (c) Impeller fault pump vibration signal without an obstruction (d) Impeller fault pump vibration signal with an obstruction level
of B5 (e) Impeller fault pump current signals without an obstruction (f) Impeller fault pump current signals with an obstruction level
of B5.

Table III. Description of Figure 10 pressure, vibration,
and motor current signals of impeller fault pump without
obstruction level and final obstruction level (B5)

Figure No. Signal Blockage levels

10(a) Pressure B0

10(b) Pressure B5

10(c) Vibration B0

10(d) Vibration B5

10(e) Current B0

10(f) Current B5

Units: Time (in seconds) and Pressure, Vibration and Motor current
signals (in volts).
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zero blockage, allowing full flow. This class includes all
datasets with no blockage across all three pumps: one
healthy pump and two faulty pumps.

3. DATA CLASSIFICATION
METHODOLOGY

The experiments yielded pressure, acceleration, and current
signatures that were used for fault categorization at various
frequency. Deep learning-based neural networks are em-
ployed for fault classification. A machine learning method
called deep learning enables computer systems to get better
with practise and data. When solving challenging environ-
mental issues in the real world, this method works incredi-
bly well. Supervised learning and unsupervised learning are
two subcategories of machine learning algorithms. In this
study, supervised learning has been used to achieve its
goals. The programme is instructed to divide/classify the
data in accordance with various characteristics. The method
creates the function called y= f(x), which bridges the input
and output. Deep learning uses optimization algorithms to
enhance the performance of fault classification. A machine
learning algorithm is created by combining various optimi-
zation algorithm elements, such as an optimization method,
a model, and a dataset. In real-world scenarios, the algo-
rithm seeks to reduce training error rather than finding the
optimum function. Various hyperparameters can also be
tuned to enhance the performance of a learning algorithm. A
subfield of machine learning known as deep learning. It is a
discipline where independent learning and growth depend
on the study of computer algorithms. The machine learning
relies on more basic principles, whereas deep learning
makes use of artificial neural networks designed to replicate
the ways of people think and perceive information. A
typical neural network consists of several layers of inter-
connected neurons, known as neural nodes. These layers
include a single input layer, one or more hidden layers, and
a single/multiple output layer as shown in Figure 11. When
a node receives an input, it performs a transformation on
that input and then sends an output based on the result of
that transformation. This study utilizes an architecture
comprising one input layer, six hidden layers, and an output
layer with five classes. Here is the fundamental structure of
a Neural Network.

The network receives input x from the input layer.
Following the input layer, several hidden layers extract data
that becomes increasingly important. Finally, the output
layer predicts the kind of class of the input. During training,
the network aims to establish a mapping between the input
data vector x and its corresponding labelled category y. In
this process, the neurons within the initial hidden layer
compute a fundamental vector function, denoted as z, which

serves as the starting point for mapping. This function
involves the weighted sum of the input x along with a
bias. The expression for z is as follows:

z = wTx + b (1)

Here, w and b represent the weight and bias vectors,
respectively, while the superscript T signifies the transpose
operation. The variable x denotes the input supplied to the
neural network.

An activation function is applied to compute the vector
function z as shown in Figure 12. It is discovered that the
“Rectified linear unit” (ReLU) activation function performs
better than all other activation functions. The subsequent
hidden layer receives the output, which includes the bias of
the weighted sum of the activation function. Ultimately,
data categorization is achieved through the output layer.
Notably, the 'SoftMax’ activation function proves effective
within the output layer for multiclass classification tasks.
This is due to its capacity to yield values within the 0 to 1
range, facilitating the creation of a probability distribution
across various events. The chance of every target class out
of all possible target classes are returned by this function.
Just using simple mapping, the discussed process assists in
completing a complex routing.

sðziÞ =
expðziÞP
k
i= 0 expðziÞ

(2)

For error computation, the sparse categorical cross
entropy loss function is used in this work. The weights
and biases of nodes of the neural network will be adjusted in
accordance with the law of gradient descent.

wnew = w − αdw bnew = w − αdb (3)

where,wnew is the updated weight, α is the learning rate,w is
the previous weight and dw is the partial derivative of the
cost function with respect to the weight. Also, bnewis the

Table IV. Fault classification sets description

Fault set Classes (labels)

1 Class 1(B0): HP0, PC0, IF0

Class 2(B1): HP1, PC1, IF1

Class 3(B2): HP2, PC2, IF2

Class 4(B3): HP3, PC3, IF3

Class 5(B4): HP4, PC4, IF4

Class 6(B5): HP5, PC5, IF5

Fig. 11. Structure and function of neural networks.

Fig. 12. Neuron in a neural network.
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updated bias, b is the previous bias and db is the partial
derivative of the cost function with respect to the bias. The
local sparse categorical cross entropy loss function is used
to prevent situations from developing. As our data classes
are mutually exclusive, we use sparse categorical loss
function as its computation is faster. Expression for this
loss function is:

L = − log fpðs ∈ cÞg (4)

where L refers to loss function, s represents samples, c refers
to classes, and s ∈ c addresses to sample s belongs to class
c. Enhancing the classifier’s performance can be achieved
by adjusting different hyperparameters. Improperly adjust-
ing the hyper-parameters results in either “under fit” or
“over fit” circumstances. In this paper, open-source deep
learning libraries 'Keras’ and 'Scikit learn’ are utilized in
Python (Jupyter) software.

IV. RESULTS AND DISCUSSION
As stated previously, the purpose of this study is to recog-
nise severity of the block level utilized multiclass classifi-
cation with the help of multiple sensor data. Only six
statistical features are considered and retrieved from raw
sensor data in order to avoid excessive duplication in the
input data. The picking of the features for a given set of data
and defect is not predetermined. As a result, features such as
mean (μ), standard deviation (σ), mode (M), Entropy (S),
kurtosis (κ), and skewness (χ) are considered, which can
refer to various data aspects. As a result, only six features
are examined. We have used the multi sensor signals to
capture the more features, which can help us to predict the
best and accurate result. With the help of raw data, we have
found six features of each sensor (total 11) separately, and
we have used the six feature indicators.

A. FEATURE INTRODUCTION

Mean (μ): Mean represents the statistical average of values
of the data points of the signal.

μ =
1
n

Xn
i= 1

xi (5)

where n is the total number of data points in a collection and
xi is amplitude of each data point.

Standard Deviation (σ): The standard deviation is a
measurement of how far data point values deviate from the
data set’s mean value.

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i= 1

ðxi − μÞ2
ðn − 1Þ

s
(6)

Entropy (S): Entropy serves as a universal indicator of
system disorder and is mathematically represented as

S =
Xn
i= 1

PðxiÞlog10PðxiÞ (7)

Skewness (χ): Skewness is an indicator of how asym-
metrically the probability distribution is distributed around
the mean.

χ =
Xn
i= 1

ð1n
P

n
i= 1 ðxi − μÞ3Þ

σ3
(8)

Kurtosis (κ): Kurtosis is the measure of the extent of
spikiness or flatness of the data points.

κ =
Xn
i= 1

ð1n
P

n
i= 1 ðxi − μÞ4Þ

σ4
(9)

B. TEST OF FEATURE PERFORMANCE

Three approaches were used to examine the effectiveness of
the retrieved statistical features as follows: first individual
sensor data are considered separately, second is the combi-
nation of the few bests performing features, and lastly on all
the best features set.

1) INDIVIDUAL PERFORMANCE OF FEATURES. It can
be computationally expensive to use raw data directly.
Additionally, it can contain redundant data, which would
have an impact on how the network is trained. The size of
the data and the temporal complexity can be reduced while
still capturing meaningful information by extracting fea-
tures. The different statistical features considered in this
study are standard deviation, variance, mean, median,
mode, kurtosis and skewness. As there is no specific rule
to choose the algorithm therefore these extracted features
fed as input to a Kernel SVM, Random Forest, Logistic
Regression algorithm. At each frequency (say, 30 Hz),
datasets from blockage levels B1 to B5 are collected and
analysed using various algorithms to determine the classi-
fication accuracy of each individual feature (say, σ) as
shown in Figure 13. This process is repeated at 45 Hz and
60 Hz and take the average of them also. Each individual
feature is tested for their performance with different
algorithms. It is found that RF performs better than Kernel
SVM, Logistic Regression algorithm. Also, in the RF
model with mean gives accuracies of 98.2% at 30 Hz,
98.87% at 45 Hz and 99.81% at 60 Hz, with overall average
accuracy of 98.96 %, which is the highest amongst all the
statistical features considered. So, the RF model is consid-
ered for further combination of feature calculations and the
mean is considered as the best statistical feature among all
others but the standard deviation and the entropy are also
close to the mean. So, the mean, standard deviation and
entropy will take into consideration while finding the
blockage severity accuracy and other features are ignored
as of their low performances as shown in Figure 13. The
description of the RF is given as the estimator used is ten
with ten cross validation fold and the criteria used is
entropy. It is found that features work less accurately at
lower frequencies (30 Hz) compared to higher ones (60 Hz).
This shows that the individual feature matters less for
accuracy at low frequency but does vary at higher frequen-
cies (50 Hz–60 Hz). It seems that signals change a bit at
lower frequencies, while more bubbles form at higher
frequencies during our experiment. Using just one feature
at low frequencies does not give us useful information.
So, we tried combining different features, as shown in
Figure 14, and saw that this improved how well the
classifier works.

2) COMBINATION PERFORMANCE OF FEATURES. A
single feature is insufficient at the slow speed to gather
any insightful data. Various combinations of these qualities
are tested to overcome this issue, one can observe that by
using the combination of the features there is an enhance-
ment in the classifier’s performance (refer to Figure 14).
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Now this pattern can be observed that by increasing the
frequency, the performance of the classifier is increasing. At
higher blockage levels and frequencies, the complex inter-
play of fluid dynamics, system response, and sensor signals
provides the model with more informative data for accurate
blockage detection and classification. Higher frequencies
result in the flow of fluid through the system becoming
more turbulent, leading to clearer signals due to increased
effects such as vibration, pressure pulsations, and current
lines, along with increasing obstruction levels, which result
in more pronounced changes in pressure, velocity, and other
flow parameters. This indicates an improvement in signal
capture, as shown in Figure 14, where we have combined
(σ,μ), (σ,s), and (μ,s) to find that the classification accuracy
of the combined features is better able to predict the signals
compared to individual features. The combination feature,
which performs best is the standard deviation and mean,
with accuracies of 98.80% at 30 Hz, 99.05% at 45 Hz and
99.35% at 60 Hz, and with an average accuracy of 99.06%,
which is the highest amongst all the statistical features set

considered. Now several two best feature combination (σ
and μ) are chosen, which is shown in Figure 14. As speed
increases, performance of classifier also increases because
combining of all the statistical features gives better result as
shown in Figure 14.

3) PERFORMANCE WITH COMBINATION OF ALL FEA-
TURES. All these features set (σ,μ,s) can be used together
for further improvement in the classification accuracy.
The standard deviation, mean, and entropy achieved accu-
racies of 98.86% at 30 Hz, 99.44% at 45 Hz, and 99.67% at
60 Hz, averaging at 99.26%. This highest average accuracy
among all considered statistical features indicates the pre-
cision of this feature set in capturing signals. After consid-
ering all three features, the difference in accuracy with
speeds is depicted as indicated in Figure 14. It is evident
that the classification accuracy rises with frequencies,
which is a sign that obstruction level severity is enhancing
by the classification accuracy. The trend indicates that
classification accuracy rises with both higher frequencies
and more severe blockages, suggesting a link between

Fig. 13. Random Forest algorithm used to identify the performance for different statistical features at three different frequencies and
their average.

Fig. 14. Classifier performance versus Frequency with combination of the features at three different frequencies.
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accuracy and cavitation severity. Low accuracy points to
typical signal variation, whereas high accuracy hints at
pronounced signal changes due to increased bubble forma-
tion and more numerous signals. The depicted performance
of all features is shown in Figure 14. As a result, all
the features are chosen at once for the remaining of
the study.

C. CLASSIFICATION ALGORITHMS FOR
BLOCKAGE SEVERITY

A variety of methods can be applied for the classification
purposes for a given input. Determining the best algorithm

for the application in issue is essential. In this investigation,
a spectrum of classification techniques was explored,
encompassing XGBoost (XGB), Decision Tree (DT),
K-Nearest Neighbours (KNN), Random Forest (RF), and
the intricate realm of Artificial Neural Network (ANN).
Data from all operating frequencies are used. Pressure
signals, vibration signals and motor current signals are
also taken into consideration. The accuracy of classification
of these algorithms have been presented in Figure 15(a). All
classification methods are tuned and the neural network
demonstrates to be the best classifier in a tuned state. The
neural network exceeds all other classification techniques
with a fault set accuracy of 99.38%.

Fig. 15. Performance while making the Neural Network (a) Different classification algorithm at their tuned states in which Neural
Network performs best (b) Selection of train-test ratio in which 80:20 ration found best (c) Selection of optimization algorithm in which
Nadam executes best (d) Selection of weight initializers in which Lecun Uniform shows best performance (e) Selection of activation
function in which Relu found best.
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In Section IV.D, the steps of tuning the Neural Net-
works are described and then this model is used to predict
the blockage severity, which is of five classes as class 1 (B0)
is ignored because it is without any disturbance (fully flow).
So, classes from class 2 (B1) to class 6 (B5) is taken into
consideration.

D. STEPS FOR TUNNING THE ARTIFICIAL
NEURAL NETWORK

Before going to start tuning process, few things we have
taken into consideration by working iteratively again and
again over the model. We used a systematic approach for
hyperparameter tuning, focusing onmanual exploration and
iterative adjustments based on real-world performance data.
We targeted critical factors like the number of hidden
layers, batch size, epochs, activation function and weight
initializations at different train test ratio to enhance model
performance and optimized our model with up to six hidden
layers and five output layers. We also fine-tuned batch sizes
around 40 to strike a balance between computational effi-
ciency and model accuracy. We have considered six hidden
layers because it is found that less than the six hidden layers
are not performed that much better as six hidden layers do.
The number of neurons set in each hidden layer is 55 and the
output layer has 5 neurons as five classes (B1 to B5). In the
hidden layer Relu activation function is used and for the
output layer, Softmax activation function is used as it is
found that both of them have the best combination. The
number of epochs found to be 130 as at this number the
model performance is at its peak. It is found that if we
increase the epochs greater than the 130 then the model
performance started decreasing, and 40 minibatch sizes
were found by performing iteratively. Table V provides
the tuned neural network model configuration. To avoid the
overfitting, dropout regularization is also used, which ran-
domly drops a number of neurons in a neural network
during model training on the basis of probability. In this
model, we found 0.5 works best as the dropout regulariza-
tion probability.

1) FINAL PRE-PROCESSING STEP – FEATURE SCAL-
ING. When numerical input variables are scaled to a
standard range, many machine learning algorithms perform
better. In this investigation, distinct signatures had quite
diverse numerical values. This might result in various
gradient descent step sizes for certain features. Feature
scaling is used to make the gradient descent to the minima
more flexible. The feature scaling method used in this study

is standard scaling, often known as standardisation. Math-
ematically standardization represents as

X0 =
X − μ

σ
(10)

2) SELECTION OF THE TRAINING TESTING RATIO. In
neural networks, various training testing ratio like as 25:75,
30:70, 50:50, 80:20, 90:10 is tested to get the best classifi-
cation accuracy. Over all of the consideration, 80:20 train-
ing testing ratio worked best. So, 80:20 training testing ratio
is taken into consideration in further neural network. The
training accuracy of 80:20 ratio is 97.41% and the testing
accuracy trigged with the 92.16%. The better accuracy with
an 80:20 train-test split compared to a 90:10 split is likely
because the larger test set (20%) provides a more compre-
hensive and stable evaluation of the model’s performance,
reduces the risk of the model being too tailored to the
training data, and results in more reliable and realistic
performance metrics. It can be shown in Figure 15(b).

3) SELECTION OF THE OPTIMIZATION ALGORITHM. In
neural networks, optimization algorithms train the weights
and biases associated with each network neuron in an effort
to lower the cost function. For this study, many optimiza-
tion methods, including stochastic gradient descent (SDG),
RMSprop, Adadelta, Adam, and Nadam. However, Nadam
have been taken into consideration as it performs best in
all others. The classification accuracies of the models
using these optimization algorithms have been presented
in Figure 15(c).

4) SELECTION OF NETWORK WEIGHT INITIALIZA-
TION. It is crucial to initialise network weights correctly
to prevent gradients from inflating and disappearing. It may
also further effect on how the network is trained. This study
considers several weight initialization methods, including
Uniform, Lecun Uniform, Normal, Zero, Glorot Normal,
Glorot Uniform, He Normal, and He Uniform. The classi-
fication accuracies of the models using these weight initi-
alizations have been presented in Figure 15(d). Lecun
uniform with a classification training accuracy of 97.43%
and classification testing accuracy of 91.45% performs the
best amongst all the weight initializers considered and
hence chosen for further analysis.

5) SELECTION OF THE ACTIVATION FUNCTION. When
creating any neural network, the activation function must be
carefully chosen. How well the network model learns the
training dataset is determined by the activation function of
the hidden layer. The kind of output we can get depends on
the activation function in the output layer. The output layer
of the algorithm uses the Softmax activation function
because this is a multiclass classification problem. It in-
volves testing each of the available relevant functions to
find the one that is most suited to the application before
deciding on the activation function for hidden layers. For
this aim, many activation functions like Softmax, Softplus,
Softsign, RELU, Tanh, Sigmoid, Hard-sigmoid, and Linear
activation function are taken into consideration. The clas-
sification accuracies of the models using these weight
initializations have been presented in Figure 15(e). Relu
activation function is most effective for this application,
with a classification accuracy of 97.41%. Additionally, it
should be mentioned that the Lecun uniform weight ini-
tialization method complements the Relu activation func-
tion the best.

Table V. Configuration of the neural network used

Hidden layers 6

No. of neurons in each hidden layer 55

Activation function used in each hidden layer Relu

Activation function used in output layer Softmax

Optimizer Nadam

No. of epochs performed 130

Mini batch size 40

Weight initialisation type Lecun uniform

Signals used All

Frequency considered 30 Hz – 60 Hz
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E. TEST OF BLOCKAGE SEVERITY LEVEL

At different levels of obstruction, the potency of features is
also assessed (B1, B2, B3, B4 and B5). Testing for blockage
occurs at a stepping size of 5 Hz and an operating frequency
of 30 Hz to 60 Hz.

1) BLOCKAGE SEVERITY LEVEL WITH THE SINGLE FEA-
TURE. The blockage severity levels are predicted under
the single feature, which perform best in all other that is the
standard deviation, mean, and entropy. We predicted the
five-blockage level from B1 (Low severity level) to B5
(High severity level). Figure 16 displays the categorization
accuracy provided by each feature at various levels of
obstruction across the whole frequency range (30 Hz, 35 Hz,
40 Hz, 45 Hz, 50 Hz, 55 Hz and 60 Hz) and with all the
sensor data together. One can see that the classification
accuracy does not follow a set pattern when only consider-
ing one characteristic. For enhanced reliability in results,
employing combinations of these features is advisable.

2) BLOCKAGE SEVERITY LEVEL WITH THE COMBINA-
TION OF FEATURES. Combinations of these traits can be
employed to provide results that are more dependable.
Figure 16 displays the fluctuation in classification accuracy
with extent of obstruction for several feature combinations.
There is a pattern formed and can be seen in the Figure 16.
The pattern of increasing the accuracy of the severity level
as the blockage level is elevated. Now like as in individual
feature, there is no peaks and valleys found. This can be
seen in classifier performance for all of the classes is higher
than 90%, suggesting that the level of obstruction may be
identified with better precision. We can also observe that the
classifier performance for the same type of accelerometer,
pressure, and motor current sensor data are very close,
indicating that the test results can repeatable. The relation-
ship between the categorization accuracy and blockage
level can be seen to follow a pattern. We can see that
most blockage levels can now be detected more accurately
across with the combo of features. Also, only a small area
around the actual blockage level is affected by inaccurate
blockage level detection, which is a sign of qualitative
growth. The degree of blockage influences how accurately
the classification is made. When all the features are consid-
ered, the classifier will perform better.

3) BLOCKAGE SEVERITY LEVEL WITH THE ALL OF FEA-
TURES. In this subsection, classification accuracy is ele-
vated as the number of blockage severity level is increased,
and is demonstrated in Figure 16. The investigation of the
performance of features reveals that when used collectively,
these features improve data comprehension and defect
prediction.

The classifier performance is high for greater blockage
levels, which implies that one may forecast the severity
of the blockage issue based on the classification accuracy.
All of the above features would be combined in the
remaining study. The confusion matrix of the model for
all feature blockage is presented in Table VI. An C ×C
matrix called a confusion matrix is used to assess the
effectiveness of a classification model, where C is the total
number of target classes. The projected values of the
machine learning model are compared to the actual target
values in the matrix.

Table VI shows the classification confusion matrix
when all statistical features are considered by the classifier.
We can see that the classifier’s performance in estimating
the degree of obstruction has increased.

As we observe the increasing severity of blockage, it
becomes evident that combining all statistical features and
all signals of dynamic pressure, vibration, and current
yields the most accurate results. This study enables the
prediction of the level of obstruction in the inlet pipe,
facilitating preventive maintenance to avoid breakdowns.
Different blockage levels (B1, B2, B3, B4, B5) exhibit
prediction accuracies of 96.57%, 96.83%, 97.87%, 99.18%,
and 99.49%, respectively. The near-perfect prediction of

Fig. 16. Performance of the classifier vs obstruction level using at five different obstruction levels.

Table VI. Confusion matrix for all combined features at
five different blockage classes

Predicted levels

Actual levels 2369 0 32 0 52

0 2365 26 43 7

0 25 2246 0 25

9 2 9 2286 0

0 5 0 7 2285
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blockage levels in the inlet pipe, reaching close to 100%, is
significant for preventing shutdowns. This research deline-
ates the degree of blockage in the inlet pipe of the CP, with
Class B1 exhibiting 96.57% classification accuracy. Nota-
bly, as blockage severity increases, classification accuracy
also rises, culminating in 99.49% accuracy for Class B5,
nearing 100%. Ultimately, this predictive capability serves
as a valuable tool for proactive maintenance, ensuring
uninterrupted operation of the system and minimizing
downtime.

In this study, a deep learning model has been devel-
oped for efficient pump health diagnosis. The decision-
making steps that went into selecting the input signals, the
feature used for extraction, the optimization algorithm,
network weight initialization, activation function, and the
number of hidden layers, number of neurons used in each
layer, and dropout regularization technique to be used for
avoid overfitting in the model. These all contributed to the
creation of the final tuned model. Pressure, vibration, and
current motor signal are utilized to illustrate the interde-
pendence between the obstruction and blockage severity.
Figure 17 displays the flow chart for the entire process
which refers to the entire procedure of data processing.
Table VII gives the comparison between this study and
other literature papers which shows that comparing to other
SOTA, this method is more accurate by varying 2.41% to
15.69%. In comparison to Perovic et al., whose minimum
accuracy is 83.8%, this present work shows an improve-
ment of 15.69%. Similarly, compared to Wang et al., who

achieved a maximum accuracy of 97.08%, this present
work demonstrates an increase of 2.41%.

V. CONCLUSIONS
Successful deep learning-based fault diagnosis in the CPs
using time domain multiple sensor data are presented. The
progression of a pump blockage is believed to be gradual,
closely associated with the potential occurrence of cavita-
tion. Thus, the timely identification of blockages holds
paramount significance. The impeller and pits on cover
plate faults are induced artificially. Different levels of flaw
classes (B0, B1, B2, B3, B4 and B5) are considered as class
B0 is ignored because it is without any disturbance (fully
flow). The obstruction severity of the CP can be identified
by the successful application of pressure signatures from
pressure transducers, vibration signatures from acceler-
ometers, and current signatures from motor currents. Accu-
racy of the fault prediction is enhanced when data is
collected from several sensors. The combination of various
sensors and features yielded a better improved accuracy.
The mean, standard deviation, entropy, mode, kurtosis,
and skewness are taken from the time-domain signals
representing to all the signals. It has been discovered
that the combination of these features provides accurate
fault severity identification. The mean was the best individ-
ually feature used to extract information from these data in
time domain and a combination of standard deviation,

Fig. 17. An overview of the data processing flowchart for the present study.
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mean, and entropy is found best for the all-combined
statistical features set. Development of the artificial neural
network model has been done successfully. Standardization
was then done to scale the different input features as a part
of feature scaling. The hyperparameter tuning was done to
improve the classification accuracy of the model. The
number of hidden layers found are six and number of
neurons found in each layer is 55 and iteration performed
is 130. ReLU is used in the hidden layer while the Softmax
function is applied to the output layer. The ultimate opti-
mized ratio for training and testing is 80:20. The dropout
regularisation method is used to check for the presence of
overfitting and rule it out with a probability of 0.5. The tuned
model predicted the severity of suction blockages with an
accuracy of 99.49%. The prediction accuracies for blockage
levels B1, B2, B3, B4, andB5 are 96.57%, 96.83%, 97.87%,
99.18%, and 99.49%, respectively, nearing near-perfect
accuracy close to 100%. This study effectively identifies
blockage severity in the CP’s inlet pipe, showing increasing
accuracy with higher severity levels.

A method presented to classify inlet pipe blockages
into five levels, helping us prioritize maintenance efforts
effectively. By tackling blockages early, we reduce down-
time, cut emergency repair expenses, and boost the overall
reliability of our systems. Using data-driven insights lets us
make informed decisions, optimizing our maintenance
schedules and ensuring our equipment stays healthy in
the long run. This approach is key to improving efficiency
and keeping our systems running smoothly day in and day
out. It has also been observed that the more severe the
blockage, the more classifiable it becomes. The obtained
accuracy was adequate to foretell the degree of obstruction,
and the results also show that collecting data from multiple
sources is always advantageous. The classification accuracy
and confusion matrix inferred to the accelerometer sensor,
motor current sensor, and pressure sensor data indicated
that all these signals can be used to determine severity level
of the obstruction level.

The present study leveraged time domain data. In
forthcoming research, the integration of frequency domain
data for blockage level detection could be explored simi-
larly to time domain data, thus allowing for a comparative
analysis of outcomes. The same data classification tech-
nique may be utilized to examine various other traits
derived from same sensor data for monitoring of the
obstruction. Also, the same study can be conducted using
a CNN model.
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