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Abstract: Multiple-stage steam turbine generators, like those found in nuclear power plants, pose special
challenges with regards to mechanical unbalance diagnosis. Several factors contribute to a complex vibrational
response, which can lead to incorrect assessments if traditional condition monitoring strategies are used without
considering the mechanical system as a whole. This, in turn, can lead to prolonged machinery downtime. Several
machine learning techniques can be used to integrally correlate mechanical unbalance along the shaft with
transducer signals from rotor bearings. Unfortunately, this type of machinery has scarce data regarding faulty
behavior. However, a variety of fault conditions can be simulated in order to generate these data using
computational models to simulate the dynamic response of individual machines. In the present work, a multibody
model of a 640MW steam turbine flexible rotor is employed to simulate mechanical unbalance in several positions
along the shaft. Synchronous components of the resulting vibration signals at each bearing are obtained and
utilized as training data for two regression models designed for mechanical unbalance diagnosis. The first
approach uses an artificial neural network and the second one utilizes a support vector regression algorithm. In
order to test their performance, the stiffness of each bearing in the multibody simulation was altered between 50%
and 150% of the training model values, random noise was added to the signal and several dynamic unbalance
conditions were simulated. Results show that both approaches can reliably diagnose dynamic rotor unbalance even
when there is a typical degree of uncertainty in bearing stiffness values.
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I. INTRODUCTION
Multistage steam turbine generators are central to a signifi-
cant portion of baseline power generation worldwide and,
thus, are required to operate continuously for extended
periods of time [1]. These machines are therefore constantly
monitored through various techniques such as performance
analysis, oil analysis, and vibration analysis to ensure safe,
dependable, and reliable operation and to minimize down-
time losses through condition-based maintenance [2].

This paper focuses on online detection and diagnosis of
mechanical unbalance in these types of rotors. This is one of
the main causes of synchronous vibration in turbomachinery
which can shorten the lifespan of bearings, seals, and other
machine components if allowed to reach excessive levels.
Turbine generators consisting of several coupled high and
low pressure stages show flexible rotor behavior, which pose
additional challenges with regards to identifying and correct-
ing rotor unbalance [3]. Several factors contribute to a
complex rotor dynamic response in these rotors, such as
nonhomogeneous bearing stiffness coefficients, multiple
potential planes of unbalance, presence of misalignment
between rotor shafts andfluid dynamic effects, among others.
Under these conditions it becomes harder to isolate the

different sources of vibration from transducer signals using
traditional signal processing techniques. Furthermore, even
when unbalance is the root cause of an increment in rotor
synchronous vibration, some of the above factors can
obscure the source of this increment (i.e. the position of
the unbalanced plane along the rotor). Thus, in such complex
systems, it becomes necessary to integrate information from
several physical signals so as to properly correlate them with
mechanical faults. However, the available vibration data
corresponding to various types of faults on a particular steam
turbine generator will likely be limited. Therefore, dynamic
modeling of rotor-bearing systems becomes a key tool for
understanding how machine vibrations arise from particular
faults. Given that these machines have high costs associated
with downtime, it is especially important to identify the
unbalance state previous to any scheduled maintenance.

Multibody simulation (MBS) uses numerical methods
to solve the nonlinear equations of motion with respect to
time of machine elements that undergo large displacements.
The mechanical system is modeled in the form of individual
rigid bodies which can be coupled together with constraint
equations. This methodology has been used to model
unbalance in coupled dual-rotor systems [4]. By modeling
a multistage steam turbine in this way, any number of
unbalance conditions can be simulated, and the vibrational
response along the shaft can be obtained. Afterwards,
a machine learning algorithm can be used to generate aCorresponding authors: Oscar García Peyrano, Matías Marticorena (e-mails:
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meta-model of the system that can receive vibration signals
and output the unbalance state on all stages.

In recent decades, several machine learning approaches
have been explored and incorporated into machine fault
diagnosis, as they offer the possibility to adaptively learn
the diagnosis knowledge of machinery from previously
collected data [5–11]. Key features can be extracted from
a variety of transducer signals and correlated to different
machine health states to perform online diagnosis. This
strategy can be used with classification algorithms, for
anomaly detection and to identify certain types of faults
[8,9], or with regression algorithms, to model and predict
dynamic behavior [6,10–12]. Physics-informed machine
learning refers to the integration of real world data and
mathematical physics models even in partially understood,
uncertain contexts [13]. Recently, physics-informed
machine learning approaches have been proposed to struc-
tural heath monitoring [14] and to predict the dynamics of
specific machine tools [15] among others.

In the present work, a regression approach is employed
to map various states of mechanical unbalance on a multi-
body model of a steam turbine onto the rotor’s vibrational
response on each measuring point, in order to generate a
regression model (RM) of the rotor bearing system. Two
machine learning methods are trained using MBS data: an
artificial neural network (ANN) and a support vector regres-
sion (SVR) algorithm. Their diagnosis performance is then
evaluated using data from a modifiedMBSmodel in order to
address the issue of signal noise and parameter uncertainty.

II. PROPOSED METHOD
Vibration data corresponding to a range of unbalanced
conditions were generated using a flexible MBS of a
640 MW steam turbine generator.

The two RMs were designed in such a way that they
can receive data extracted from rotor bearing vibrations as
inputs and generate a prediction of the magnitude and angle
of unbalance at 10 locations along the shaft that gave origin
to those vibrations.

Figure 1 illustrates the training process of a generic RM
and its use for unbalance diagnosis. The MBS model that
generates training data should be properly modified if
changes in mechanical parameters take place, followed
by a re-training of the RM.

A. MULTIBODY SIMULATION OF A STEAM
TURBINE GENERATOR ROTOR

A dataset for the RMs was generated via a dynamic MBS
model of a 640MW steam turbine generator. The model is a
simplified version of the former steam turbine found in
Embalse nuclear power plant in Córdoba Province, Argen-
tina (Fig. 2).

The rotor is 55.7 m long and weighs approximately 350
tons. It has one high pressure stage, three low pressure
stages, and a synchronous generator, each one supported by
two journal bearings (10 in total). Lateral displacement is
measured at each bearing on the horizontal plane. Point
masses can be placed at radius of 1000 mm on the balancing
planes at the end of each turbine stage and generator in order
to simulate unbalance. Figure 3 shows a visual representa-
tion of the model. The first rotor corresponds to the high
pressure stage, followed by the three low pressure stages
and the generator rotor. Of these, the low pressure stages are
where the causes of vibration generally arise.

The MBS model consists of several interconnected
rigid body elements, in a lumped parameter configuration,
as shown in Fig. 4.

In order to represent rotor flexibility, each rigid shaft
element is connected to the next by a kinematic pair or joint
which allows rotational movement around the vertical axis
and the horizontal axis perpendicular to the shaft centerline.
Additionally, these joints have rotational stiffness values
assigned to them, which relate to shaft flexural stiffness
through the following equation:

krot =
EI

l
(1)

where E is the elastic modulus of the shaft, I its moment of
inertia, and l is the length of each segment [16].

The equations of motion of multibody systems can be
obtained using Lagrange’s equations with an augmented
formulation for kinematic constraints and can be written in
the following form [17]:

½M�q + ½Cq�Tλ = Qe + Qv (2)

where ½M� is the mass inertia matrix, ½Cq� the constraint
Jacobian matrix, λ the vector of Lagrange multipliers, Qe
the vector of generalized forces, and Qv the vector of
quadratic velocity inertia forces. Qe can be derived using
the principle of virtual work on locally applied forces, Fmn

Fig. 1. Diagram showing supervised training of a RM with
simulated data and its use for rotor unbalance diagnosis. Fig. 2. Embalse nuclear power plant turbine generator.
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and moments Tmn, acting on element m due to interaction
with body n. These, in turn, can be obtained as follows:�

Fmn

Tmn

�
= −

�
Kb

��
dmn

θmn

�
−
�
Db

��
ḋmn

θ̇mn

�
(3)

where dmn and θmn are the relative translational and rota-
tional displacements between elements and ½Kb� and ½Db�
are the stiffness and damping matrices. The latter are 6 × 6
symmetrical matrices, which correlate forces with displace-
ments and velocities between bodies in all degrees of
freedom. In the model, of three only two rotational degrees
of freedom remain unconstrained regarding movement
between shaft elements. Thus, ½Kb� and ½Db� take the form:

½Kb� =

2
64
k11 · · · k1N
..
. . .

. ..
.

kN1 · · · kNN

3
75 (4)

½Db� =

2
64
d11 · · · d1N
..
. . .

. ..
.

dN1 · · · dNN

3
75 (5)

Stiffness coefficients k44 = k55 = EI
l and kij = 0 for all

other i, j. Additionally, for body elements linked to one of
the journal bearings, bearing stiffness acts on both lateral
directions (k11 and k22). Only one of such elements, k33, will
have a stiffness coefficient acting on the axial direction to
represent the rotor’s thrust bearing. In ½Db�, similarly,
dij = 0 for i ≠ j. Lateral damping coefficients d11 and d22
act on elements linked to journal bearings, and axial
coefficient d33 acts on the thrust bearing. Rotational coeffi-
cients d44 = d55 represent the shaft internal friction. There
is a noncero damping coefficient d66 which represents
bearing friction forces produced by shaft rotation.

Bearings were modeled as shown in Fig. 5, with two
linear springs 90 degrees apart. Viscous damping was
modeled in the same way.

1) FEATURE EXTRACTION. The MBS outputs one dis-
placement signal for each bearing. For unbalance diagnosis
purposes, only the synchronous component of those signals
(1X vibration) is relevant. Therefore, for each simulation of
an unbalanced state, 10 1X vibration values will be obtained
using a Fast Fourier Transform algorithm. These values are
complex numbers whose absolute values and arguments
represent the 1X vibration magnitude and phase, respec-
tively, at each bearing.

B. ARTIFICIAL NEURAL NETWORK
ALGORITHM

This study employed a sequential ANN, where models are
created layer by layer and each one has only one input and
one output tensor. Layers are dense, meaning each neuron is
connected to every neuron in the following layer and the
“Adam” optimization algorithm was used [18]. Since the
network output is a floating-point tensor, the root mean
square error (RMSE) formula was selected as the algorithm
loss function [19]. RMSE was computed according to the
following formula:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

i=1

�
ypi − ysi

�
2

n

vuuut
(6)

where ypi is the predicted value for a given sample, ysi is the
corresponding simulated value, and n is the number of
samples.

For the neural network (NN) model, a 1-hidden layer
model was proposed. In order to obtain the optimal number
of neurons in this layer, several NN models were trained

Fig. 3. MBS model of a 640 MW steam turbine generator rotor with 10 bearings and 10 balancing planes.

Fig. 4. Lumped parameter configuration of the turbine shaft
between two bearings.

Fig. 5. Linear journal bearing model.
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varying this amount and the RMSE metric was calculated
for each case. Figure 6 shows the architecture of the ANN.

The first layer has 20 input values corresponding to the
real and imaginary parts of the 10 complex values from
MBS 1X vibration data. The output layer yields 20 values
which are the real and imaginary parts of the predicted
unbalance in each balancing plane. These values were
expressed as complex numbers for later efficacy evaluation
purposes. Their moduli and argument represent unbalance
magnitude and angle, respectively.

Another parameter that needs to be defined for the NN
model is the number of iterations of the data set. To evaluate
this, several networks were trained varying this parameter
between 1 and 2000, obtaining the RMSE for each model.

C. SUPPORT VECTOR REGRESSION

Support vector machine (SVM) algorithms were developed
by Vappnik et al [20] based on statistical learning theory.
Although SVMs were originally intended to solve binary
classification problems, they are currently used to solve
various types of problems, including regression problems
through the use of SVR. The basic idea of SVR is to map the
training data x∈X, to a higher dimensional space F through
a nonlinear mapping φ: X → F, where a linear regression
can be performed.

Considering the training data: {(x1, y1), : : : ,(xn, yn)},
where xi ∈ Rd and yi ∈ R. Let φ: X→ F be the function that
makes each input point x correspond to a point in the feature
space F. The goal is to translate the data points into this new
feature space where the function that best approximates the
outputs of our set can be found. In a general case, said
function will be as follows:

f ðxÞ = w,ϕðxÞ + b (7)

The optimization problem (also called primal problem)
can be represented by the following equations:

minimize
1
2
kwk2 þ C

Xn

i=1

ðξi þ ξ�iÞ

subject to yi − hw,ϕðxiÞi ≤ εþ ξi i = 1,::,n

hw,ϕðxiÞi − yi ≤ εþ ξ�i i = 1,::,n

ξi ≥ 0, ξ�i ≥ 0 i = 1,::,n

In this expression, ξi and ξ�i are the Lagrange slack
variables, while ε represents the error threshold, the value
below which the regression algorithm ignores the error at
the moment of fitting the training sample.

The parameter C is always positive and determines the
balance between the model complexity and the bias. The
larger it is, the more likely the RM is to overfit, while
smaller values of C lead to under-fitting. In SVR models, C
is a hyperparameter which is set by the user.

The Lagrangian dual problem for this case can be
represented by the following formulation:

maximize

−
1
2

Xn

i,j=1

ðαi − α�i Þðαj − α�j ÞhϕðxiÞ,ϕðxjÞi

−ε
X

n

i=1
ðαi þ α�i Þ þ

X
n

i=1
yiðαi − α�i Þ

subject toX
n

i=1
yiðαi − α�i Þ = 0 αi, α�i ∈ ½0,C�

It can be seen that the objective function only depends
on hϕðxiÞ,ϕðxjÞi. As an alternative to solving this calcula-
tion in the space F, which can be computationally intensive
for problems with high dimensionality, the algorithm
instead defines a kernel function K: X ×X → R, which
assigns a real value to each pair of elements of the input
space X. The new value refers to the scalar product of the
images of said elements in the new space F, that is,

Kðx,x0Þ = hΦðxÞ,Φðx0Þi (8)

where Φ : X → F.
In this study, three SVR kernels were utilized to solve

the unbalance mapping problem: the linear kernel, the
second-degree polynomial kernel, and the radial basis
function (RBF) kernel. These three can be expressed by
the following equations, respectively:

Kðx,x 0Þ = hx,x0i (9)

Kðx,x 0Þ = ðγhx,x 0iÞ2 (10)

Kðx,x 0Þ = expð−γkx − x02kÞ (11)

In these expressions, γ is a hyperparameter set by
the user.

D. TRAINING PROCEDURE

A data set was generated using the MBS model by simu-
lating a random unbalance value between 100000 gmm and
150000 gmm placed at a random angle on the balancing
planes of theMBS training model. On each individual rotor,
the two discs closest to rotor bearings were used as balanc-
ing planes. This was achieved by placing a point mass
between 100 and 150 grams at a distance of 1000 mm from
the shaft centerline.

Two types of unbalance were used: single plane and
two plane. For single-plane unbalance, the mass was placed
on one balancing plane at a time and this was repeated for
each of the 10 planes. For two-plane unbalance, a pair of
masses was placed with a 180° angle difference on every

X1+Y1i

X10+Y10i

X1

Y1

X10

Y10
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in19

in20

N11

N12

N180

out1

out2

out19

out20

.

.

.

.

.

.

.

.

. .
.
.

.

.

.

Vibration data
Input 
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Fig. 6. Architecture of the ANN for rotor unbalance diagnosis of
a rotor with 10 bearings and 10 balancing planes.
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possible combination of two balancing planes. Addition-
ally, residual unbalance was added by placing point masses
between 1 and 10 grams on each balancing plane, at random
angles.

All these cases add up to a set of 55 training runs. Each
set of training runs was simulated 20 times in order to
generate additional data with different values of residual
and single or two-plane unbalance within the given range,
giving a total of 1100 unbalance cases. 80% of these cases
were used as training dataset for the RMs. The remaining
20% were used as testing dataset.

E. EVALUATION AND COMPARISON

In order to assess the efficacy and robustness of each
approach, four unbalance scenarios were simulated. A
second multibody model was employed for this purpose,
which included variations of bearing stiffness and nonper-
iodic forces. The stiffness parameters of each bearing in the
second MBS model were set between 50% and 150% of the
value used for generating training data, with the purpose of
representing the uncertainty in stiffness coefficients. Noise
was also added to signals in the form of an input radial force
on both the horizontal and vertical directions, which took
random values between 0 and 250 N on each time step, so as
to take into account nonideal operating conditions which
affect vibration signals.

The following unbalance conditions were simulated
using the second MBS model described above. It should be
emphasized that these cases were used to evaluate the
proposed method and differ from the dataset employed
for training and testing the RMs:

Case 1: 75000 gr · mm at 107° on balancing plane 5

Case 2: 75000 gr · mm at 248° on balancing plane 1

Case 3: 75000 gr · mm at 252° on balancing plane 9
and 75000 gr · mm at 162° on plane 10

Case 4: 75000 gr · mm at 164° on balancing plane 3
and 75000 gr · mm at 74° on plane 8

The simulated 1X vibrations for each case were used to
estimate the unbalance on each balancing plane with both
RMs and the accuracy of the estimations was assessed.

As an example to show the rotor behavior, case 1
(unbalance on plane 5) is analyzed. Figure 7 shows the 1X
vibration magnitude on each bearing. Figure 8 displays the
shaft orbits on the first and fifth bearing.

The fifth bearing, despite being closest to where the
unbalance weight was placed, has the second smallest 1X

response. Meanwhile at the first and fourth bearings, where
only residual unbalance was simulated, amplitudes are
almost 15 times higher. This example illustrates that, in
complex rotor dynamic systems, vibration amplitude alone
is insufficient to determine its root cause.

Relative displacement of the turbine shaft with respect
to the fifth and first bearings is shown on Figs. 9, 10,

Fig. 7. 1X vibration magnitude on rotor bearings for case 1.

Fig. 8. Rotor orbits on the first and fifth bearing for case 1.

Fig. 9. Relative displacement of the shaft on the fifth bearing, for
case 1.

Fig. 10. Relative displacement of the shaft on the first bearing,
for case 1.
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respectively. Time history signals are portrayed above and
their frequency spectra below.

The simulated vibrations have amplitude values in the
order of those typically found in large nuclear steam
turbines at nominal speed [21]. The time history responses
have some noise content in the low frequency range, mainly
due to rotor modal response, and in the high frequency
range, due to the random radial force included in the
simulations. The frequency spectrum of the fifth bearing
also shows 2X (50 Hz) harmonic content. Rotor response to
unbalance reflects on the 1X amplitude. Its magnitude and
angle were obtained by using fast Fourier transform after
performing time synchronous averaging of the vibration
signal in order to reduce any noise that could be distorting
the 1X component.

III. RESULTS AND DISCUSSION
A. ANN PARAMETER ANALYSIS AND
OPTIMIZATION

Table I shows the RMSE values obtained from training
several ANNs like that shown in Fig. 6 with different
amounts of hidden layer neurons.

The NN models show that significantly smaller errors
were found for 20 neurons or higher. Because of the lesser
associated complexity, a 20-neuron layer was chosen for the
ANN to be tested with various data set iterations.

B. RMSE vs. NUMBER OF DATA SET
ITERATIONS

Figure 11 shows RMSE plotted against number of iterations
on the training dataset for the ANN model. It can be seen
that the error stabilizes after 500 iterations, therefore this
value was chosen for the RM for unbalance diagnosis.

C. SVR PARAMETER ANALYSIS AND
OPTIMIZATION

As mentioned before, for the SVR models, three kernels
were proposed: linear, second-degree polynomial, and
RBF. The next step was to determine the best parameters
for each kernel. In order to accomplish this, an exhaustive
search was carried on, optimized by cross-validation. The
parameter C could vary between 10−2 and 1010, and γ,
between 10−9 and 103. This analysis led to the set of results
shown on Table II.

Once the parameters were determined, the data set
generated by the training model was split between training
and testing data, with an 80% – 20% ratio. Using these, each
kernel was trained again, and the results were evaluated by
the RMSE metric, as presented in Table III.

It can be seen that the second degree Poly kernel has a
poor performance in comparison to the other two cases, a
behavior that could be attributed to convergence issues. Due
to its higher performance and inherent simplicity, the linear
kernel was chosen in order to continue the study.

D. PERFORMANCE OF THE RMS FOR
DYNAMIC UNBALANCE DIAGNOSIS

In this section, results from both RMs regarding each of the
four unbalance scenarios generated by the second MBS
model are presented. Figure 12 simulated values of residual
and severe unbalance on each balancing plane, alongside
those calculated by the ANN and SVR models.

Both magnitude and angle are plotted for each unbal-
ance scenario, but angles are only shown for planes with
severe unbalance.

In all four cases, severe unbalance values calculated by
the RMs differ from those simulated in the second MBS
model by less than 12%. Residual unbalance values have
similar error relative to the simulated severe unbalance
(75000 gr·mm).

The relative error between simulated and RM-pre-
dicted values was calculated as follows:

ΔUk

jUref j
=
jjUp

k j − jUs
kjj

jUref j
(12)

where ΔUk is the difference between the predicted and
simulated unbalance moduli at the kth plane. The reference
value jUref j = 75000 gmm is the unbalance being used as
severe unbalance on the simulations performed with the
second MBS model. Table IV shows the maximum relative

Table I RMSE for NNs with different number of
neurons on the hidden layer

Neurons in hidden layer RMSE [gr·mm]

10 26000

15 16403

20 182.5

25 12

30 70

Fig. 11. RMSE vs. number of dataset iterations.

Table II Results for SVR kernel parameter analysis

Kernel γ C

Linear - 1

Second degree Poly 10−9 0.01

RBF 10−6 1000000.0

Table III RMSE of each SVR kernel.

Kernel RMSE [gr·mm]

Linear 1989

2nd degree Poly 40550

RBF 4509
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errors of both RMs for each of the four unbalance scenarios
simulations. SVR shows somewhat higher errors on two-
plane unbalance predictions. Besides this, no significant
advantages were found between the results yielded either by
the ANN or by the SVR regression models. However, an
aspect that should be taken into account when designing
condition monitoring strategies is that of complexity and
reliability. Although the ANN achieved slightly more
accurate predictions, its internal model cannot be inspected,
which adds a degree of uncertainty to its application [22].

Fig. 12. Simulated vs. predicted unbalance. On the left: unbalance magnitude for each plane. On the right: polar plot for planes with
severe unbalance. a) Case 1. b) Case 2. c) Case 3. d) Case 4.

Table IV Maximum relative errors of SVR and ANN
models for each unbalance scenario

SVR (%) ANN (%)

Case 1 8.7 7.3

Case 2 8.0 8.6

Case 3 10.9 6.6

Case 4 11.8 9.5
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This method is effective for discriminating between
severe and residual unbalance. For the purposes of this
work, unbalances below 104 gr·mm were considered resid-
ual. Adequate follow-up of values above this limit through
continuous monitoring, in combination with RMs of this
kind, can alert operation and maintenance personnel of
developing unbalance on its early stages.

The RM calculated angles also approximate simulated
ones with enough precision so as to be of value for
condition monitoring of unbalance, with differences smaller
than 8°. Monitoring of 1X vibration angles can help dif-
ferentiate between mechanical unbalance and other faults
that also cause an increase of 1X vibration amplitude, like
magnetic unbalances due to stator field asymmetries and
looseness of foundation elements. In such cases, these
angles will not remain constant, as with mechanical
unbalance.

Linear stiffness and damping coefficients were used on
both MBS models, which are adequate for machines of this
scale operating at supercritical speeds [21]. For simulations
involving resonances or other high amplitude displace-
ments, nonlinear stiffness coefficients should be utilized
instead.

IV. CONCLUSIONS
The online unbalance diagnosis of a large multistage steam
turbine generator was addressed in this paper. The proposed
method utilizes a MBS dynamic model of the rotor bearing
system to generate vibration data from a series of represen-
tative unbalance conditions. A RM is then trained using
these data, so that the unbalance condition of the machine
being modeled can be rapidly calculated from the synchro-
nous vibration measured at its bearings. The MBS can be
periodically revised to follow any relevant changes in the
mechanical and operational characteristics of the machine,
so that the RM can be retrained to include the new behavior.
Typical changes in mechanical parameters (such as shaft
alignment or support structure stiffness) can be detected and
quantified from vibration analysis. As theMBSmodel is fed
back with the updated mechanical parameters and the RM
model is retrained, this feedback loop can be regarded as an
intermediate step to an application of physics-informed
machine learning.

The method was evaluated using a MBS model of a
640 MW turbine generator. Two machine learning techni-
ques were proposed for RM generation: an ANN and an
SVR algorithm. It was found that RMSE significantly
decreases for ANNs with 20 hidden-layer neurons or
more and for 500 or more iterations of the training dataset.
For SVR, the linear and RBF kernels yielded lower RMSE
values, but the linear kernel was ultimately selected due to
its comparative simplicity.

The two RM algorithms were shown to accurately
predict single and two-plane unbalance simulated on a
second multibody model with different bearing stiffness
than those of the original model and with added signal
noise. No significant advantages or disadvantages were
found between the two machine learning methods, although
it should be noted that the higher degree of complexity
associated with ANNs and the difficulty to analyze its
internal behavior compromises their reliability.

Overall, this method has the potential to become a new
tool for continuous online monitoring and condition-based

maintenance of large scale steam turbines. Further experi-
mental research must be done to assess the effect of faults
that modify the stiffness of rotor elements, such as a lacing
wire failure, shaft cracks, etc.
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