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Abstract: Lubricant diagnosis serves as a crucial accordance for condition-based maintenance (CBM) involving
oil changing and wear examination of critical parts in equipment. However, the accuracy of traditional end-to-end
diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.
To address this, an attribute-driven adaptive diagnosis method is developed, involving three attributes: physico-
chemical, contamination, and wear. Correspondingly, a fuzzy fault tree (termed FFT)-based model is constructed
containing the logic correlations from monitoring indicators to attributes and to lubricant failures. In particular,
inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators. With
this model, the lubricant conditions can be accurately assessed through rule-based reasoning. Furthermore, to
enhance its intelligence, the model is dynamically optimized with lubricant analysis knowledge and monitoring
data. For verification, the developed model is tested with lubricant samples from both the fatigue experiment and
actual aero-engines. Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis
accuracy from 73.4% to 92.6% compared with the existing methods. While for the engine lubricant test, a high
accuracy of 90% was achieved.
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I. INTRODUCTION
As an essential component of mechanical equipment, lu-
bricants are not only the source of lubrication failures but
also function as a critical carrier for recording the wear
degradation of friction components [1-3]. Consequently,
the diagnosis of lubricant failures has become increasingly
important. In particular, this promising technique has been
significantly advanced by the development of sensing
technologies, which provide multiple indicators to enrich
the characterization integrity for lubricant conditions [4,5].
However, the diagnostic accuracy of lubricant failures
remains hampered by the reverse degradation and random
fluctuations of multiple lubricant indicators. Due to the
greater demand for precise equipment maintenance, further
development of diagnosis methods is urgent for the accurate
assessment of lubricant failures.

The core of lubricant failure diagnosis lies in establish-
ing a precise correlation between monitoring indicators and
the underlying condition. Given the limitations inherent in
single indicators, multi-indicators-based diagnosis method-
ologies have garnered significant attention for their com-
prehensive assessment capabilities. Early research had been
focused on knowledge-driven methods, such as expert
systems [6], fault trees [7], and D-S evidence theory [8].
These methods adopt symbolic representations and rule
formulations to capture expert knowledge derived from
historical failure events and utilize rule-based reasoning
to evaluate lubricant conditions. For example, an expert
systemmodel [9] is constructed by adopting fuzzy language
variables and rule combinations to diagnose lubricant

failures, in which the expert knowledge is utilized to
simulate human reasoning processes. Additionally, a
wear state diagnosis model [10] is established based on
evidence theory by using wear debris as evidence and
achieves synchronous diagnosis of wear degree and wear
location within the equipment. As can be observed, knowl-
edge-based diagnosis methods provide strong interpretabil-
ity by linking indicator changes to lubricant failures through
rule-based reasoning, but their limited knowledge renders
them less sensitive to complex lubricant failures arising
from coupled factors and random fluctuations in monitor-
ing data.

Considering the limited expert knowledge, data-driven
approaches adopt intelligent algorithms such as cluster
analysis [11] and support vector machines (SVMs) [12]
to establish a fuzzy mapping between lubricant conditions
and monitoring data. With multiple indicators such as
viscosity, Fe, Cu, Cr, and acid value, a comprehensive
representation space is constructed and then applied to
evaluate lubricant conditions by combining the multi-layer
perception (MLP) and radial basis function (RBF) network
[13]. In view of the limitations of fixed diagnosis thresh-
olds, a dynamic threshold determination method [14] is
established with the decision tree and stochastic filtering to
enhance model adaptability. Furthermore, the neural net-
work is employed to develop a spectral data analysis model
[15], and the genetic algorithm is adopted to optimize model
weights and thresholds. These data-based models signifi-
cantly improve the adaptability of lubricant failure diagno-
sis, but they often encounter diagnosis conflicts due to
sparse samples and reverse indicator degradation in lubri-
cant monitoring.

To enhance the assessment accuracy of lubricant fail-
ures, a novel diagnosis method is developed using an
attribute-driven model. Specifically, a fuzzy fault tree

Corresponding author: Tonghai Wu (e-mail: tonghai.wu@mail.xjtu.
edu.cn)

© The Author(s) 2024. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 207

Journal of Dynamics, Monitoring and Diagnostics, 2024, 3, 207-215
https://doi.org/10.37965/jdmd.2024.604 RESEARCH ARTICLE

mailto:tonghai.wu@mail.xjtu.edu.cn
mailto:tonghai.wu@mail.xjtu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jdmd.2024.604


(termed FFT) is established with logical correlations from
indicators to attributes and to lubricant failures. Fuzzy
evaluation and evidence theory are integrated to formulate
the rule-based inference mechanism for lubricant failure
deducing. Furthermore, this FFT model is optimized
through the integration of both lubricant knowledge and
monitoring data. For verification, a fatigue test and the
maintenance data are adopted.

The rest of this paper is organized as follows: Section II
contains the description of the developed model involving
characterization space for lubricant conditions, FFT model
construction, and model optimization strategy. The model
verification and aero-engine lubricant applications are
given in Section III. The conclusions are presented in
Section IV.

II. MATERIALS AND METHODS
Multi-source fusion is the foundation of lubricant failure
diagnosis, relying fundamentally on the coupling mecha-
nism of multiple indicators. Therefore, a FFT-based model
is adopted to illustrate the inducement mechanism from
indicator to failure. Specifically, attributes are introduced to
serve as the mediation layer, and the lubricant failure is
inferred layer by layer with the fuzzy evaluation and D-S
theory. Furthermore, the FFT model is optimized with both
knowledge and data to be more adaptive.

A. PRINCIPLE

Essentially, lubricant refers not just to the oil itself but also
to vital information during the lubrication process [16-18].
Accordingly, a comprehensive lubricant characterization
space is established, incorporating three critical attributes:
physico-chemical property, contamination, and wear. Each
attribute consists of several representative indicators. The
sketch of this construction is illustrated in Fig. 1. With this
framework, the lubricant condition can be deduced from the
monitoring indicators.

In considering both the representativeness and mea-
surability, the indicators for each attribute are defined as

follows. Viscosity stands as a pivotal indicator for the
physico-chemical attribute and is sensitive to the lubricant’s
aging degree [19]. The contamination attribute can be
represented by several indicators including the particle
count (PC) and the water content (WC) [20]. The wear
attribute can be represented by wear debris concentration
(WDC) and the proportion of large debris (PLD) [21].
Moreover, the changing rate of each indicator is also
considered to amplify the sensitivity of the characterization
space. In view of this, a range of indicators involving
viscosity, WC, PC, WDC, PLD, and their changing rates
are selected to characterize the lubricant condition.

While the characterization space provides a theoretical
basis for assessing lubricant conditions, there are distinct
gaps in applications. Foremost, the monitoring data is often
susceptible to random fluctuations due to the manual oper-
ation in lubricant sampling, analysis, etc., which are very
common in regular lubricant inspections. Second, indica-
tors may exhibit reverse trends during lubricant degrada-
tion, for example, the decrease in viscosity may be
accompanied by an increase in wear. This inconsistency
may induce conflicting conclusions for failure diagnosis.
All these challenges are addressed in the proposed diagno-
sis method.

B. MODEL CONSTRUCTION

Compared to machine learning methods, the fault tree
model [22] can conduct top-down event deduction to
describe coupling effects among multiple lubricant indica-
tors, thereby providing a high interpretability of diagnosis
results. Given this, the fault tree is adopted to establish the
lubricant diagnosis model. Among fault-free (FT) models,
FFT models [23] introduce fuzzy theory to address issues
arising from unclear failure mechanisms and uncertain
failure probabilities. In view of this, a FFT model is
proposed with the lubricant characterization space, involv-
ing two main parts: the FFT model and inference rule
formulation.

1) MODEL SKETCH. Referring to the FFT principle [23],
the FFT lubricant failure diagnosis model is constructed as
shown in Fig. 2. The top event of the fault tree is the
lubricant failure conclusion, which is determined by three
attribute branches: physico-chemical, contamination, and
wear. Excessive degradation of any one of these three
attributes will lead to lubricant faults. Therefore, their
effects on the top event can be represented by an OR
operation. The details for each branch are described as
follows.

Physico-chemical degradation involves two viscosity-
related mechanisms: exceeding the standards and rapid
change; thus, these two mechanisms are designated as basic
events with equal impact. Naturally, viscosity and its
changing rate are the bottom inputs of this branch. Simi-
larly, exceeding the standards and rapid change are also
suitable for the other two attributes. For the second branch,
the basic events of contamination exceeding standards can
be determined jointly by two indicators: PC and WC. The
second basic event of rapid change is represented by the
changing rates of these two indicators. In the third branch,
the basic events also consist of wear exceeding standards
and rapid change. WDC is selected as the characterization
indicator of exceeding standards, while the changing rate of
the WDC and the PLD are chosen as the characterization
indicators of the second events.

Fig. 1. Comprehensive characterization space for lubricant
conditions.
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As can be observed from Fig. 2, the basic events are
determined by the monitoring indicators and then used to
deduce the top events. It should be noted that AND opera-
tions and OR operations represent reasoning rules, which
will be described in the following sections.

2) INFERENCE RULES. The small number of samples
and reverse indicator degradation in lubricant monitoring
data pose significant challenges to the applicability of FT
models. To address this issue, the lubricant indicators are
transformed into probabilistic form through fuzzy evalua-
tion, and inference rules are formulated to reduce the
diagnosis uncertainty of lubricant failures.

(1) Fuzzy characterization. The essence of fuzzy

evaluation [24] is to transform deterministic values into
probabilistic forms through membership functions. How-
ever, traditional lubricant failure diagnosis methods are
constrained to binary assessments of health/failure states,
thereby incapable of providing the lubricant degradation
degree. In this work, lubricant conditions are divided into
four levels based on expert knowledge [25,26], namely
healthy, warning, mild fault, and severe fault. These levels
are symbolically characterized by fHS1,HS2,HS3,HS4g:
Considering that the random fluctuations and inconsisten-
cies of monitoring indicators will increase the diagnosis
uncertainties for lubricant conditions, the membership func-
tion is introduced to transform lubricant indicators into a
fuzzy manner according to the fuzzy theory. Compared to
trigonometric and trapezoidal functions, the Gaussian mem-
bership function offers a more precise depiction of complex
membership relationships through the fine-tuning of key
parameters. Therefore, the Gaussian membership function
is employed to calculate the membership probabilities of
monitoring indicators corresponding to the lubricant con-
dition levels, as defined in Eq. (1):

μHSjðxiÞ = exp

�
−
�
xi − aj
σj

�
2
�

(1)

where xi represents the i-th indicator involving its value and
changing rate, μHSjðxiÞ represents the membership proba-
bility of the indicator xi to the condition level HSj,
i = 1,2, : : : ,n, n is the total indicator number, j represents
the j-th lubricant condition, and ai and σj are the mean and
standard deviation of the membership function of the j-th
condition level.

(2) Inference rule formulation. Regarding the AND
operation in the FFT model in Fig. 2, the weighted fusion is
adopted to calculate the membership probability of basic
events or intermediate events corresponding to the condi-
tion levels, as defined in Eq. (2):

μHSjðXiÞ = wi1μHSjðxi1Þ + wi2μHSjðxi2Þ (2)

where wi is the weight corresponding to the i-th fused
monitoring indicator or the basic event, Xi, xi1, and xi2
represent the comprehensive variation, monitoring value,
and changing rate of the i-th fused monitoring indicator or
the basic event, respectively.

Regarding the OR operation in the FFTmodel in Fig. 2,
D-S theory [30] is introduced to fuse multi-source lubricant
information. Specifically, the membership probability of
intermediate events belonging to different condition levels
is adopted as evidence for deducing the occurrence proba-
bility of the top event. The D-S theory employs the set-
theoretic concept to assign probabilities for inputs. For
example, assuming a set A = fα1, α2, : : : , αng, the proba-
bility assignment function satisfies the mapping 2A → ½0,1�;
thus, the basic probability assignment (BPA) of the set A
can be calculated using Eq. (3):

Fig. 2. Framework of the FFT lubricant failure diagnosis model.
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8<
:

mxðϕÞ = 0
0 ≤ mxðαiÞ ≤ 1P

x⊆A mxðαiÞ = 1
(3)

where ϕ is the null set, mxðαiÞ represents the assigned
probability of the intermediate event x to the set αi, and
αi represents the condition level HSi.

To reduce the indicator uncertainty effect on fusion
results, a weight coefficient is introduced to measure the
credibility of the fused evidence, as defined in Eq. (4):

ak = â ×
�

wk

wmax

�
(4)

where ak is the weight coefficient,wk is the evidence weight
of intermediate events, and â is the weight measurement
parameter.

Furthermore, the calculations for the BPA and uncer-
tainty Θ are presented in Eqs. (5) and (6), in which the
uncertainty Θ represents the unassigned probability that
does not belong to any lubricant condition level:

mMk
ðHSjÞ = â ×

wk

wmax
× μSjðMkÞ (5)

mMk
ðΘÞ = 1 −

X4
k=1

â ×
wk

wmax
× μSjðMkÞ (6)

Using Eqs. (2) to (6), the OR operation for deriving
probabilities from intermediate events to top events can be
performed with the probability assignment function mðHSÞ
for intermediate events to different condition levels. Spe-
cifically, assuming the evidence to be fused areM1,M2, and
M3, the first step is to fuse the evidenceM1 andM2. Taking
the fusion of condition levelsHSn andHSn+1 as an example,
the fusion rules are presented in Table I. The fusion result
mð12Þ is further fused with evidence M3 using the same
process and ultimately outputs the BPA of the top event
across different lubricant condition levels.

The evidence fusion for lubricant failure diagnosis is
presented in Eq. (7):

8<
:mð2ÞðHSÞ =

P
M1∩M2=HS

mðM1ÞmðM2Þ
1−K

K =
P

M1∩M2=ϕ mðM1ÞmðM2Þ
(7)

where mð2ÞðHSÞ is the fusion result of two evidences and K
is the conflict coefficient.

After the evidence fusion of the OR operation, the
obtained BPA can be defuzzified referring to the utility
interval [31] and then acquire a quantitative failure proba-
bility HS for overall lubricant condition, as defined in
Eq. (8):

HS =
X4
j=1

mðHSjÞ × uðHSjÞ (8)

where mðHSjÞ and uðHSjÞ are the membership probability
and utility interval corresponding to the j-th condition level,
respectively.

C. OPTIMIZATION STRATEGY

Considering limited knowledge and the scarcity of lubricant
monitoring samples, a hybrid approach is developed to
optimize the parameters of the FFT model through the
knowledge-related analytic hierarchy process (APH) and
data-related entropy weight method. By this means, the FFT
model can be optimized for accurate lubricant failure
diagnosis.

1) APH WEIGHT ASSIGNMENT. AHP [32] decomposes
multi-criteria problems into a hierarchical structure of the
goal level, criterion level, and scheme level and assigns
weights based on the indicator relevance to each layer. In
view of this, AHP is introduced into the proposed FFTmodel
for weight assignment. Specifically, a transformation from
FFT to AHP is constructed, where the top event “lubricant
failure” corresponds to the goal level, the intermediate events
to the criterion level, and the basic events and monitoring
indicators to the scheme level. For multiple criteria at the
same level, pairwise comparisons are conducted to assess
each importance across a nine-point scale {1,2,3,4,
5,6,7,8,9}, where “1” indicates equal importance between
two criteria and “9” represents the utmost importance of one
criterion over the others. Subsequently, these scores are
adopted to obtain an importance matrix U for weight assign-
ment. Notably, the fusion weights of multiple lubricant
indicators are set with different importance matrices.

The rationality of matrix U can be evaluated through a
consistency check (CR), as defined in Eq. (9). If the CR is
less than the accepted threshold of 0.1, the assignment of
matrix U is considered reasonable, thereby passing the
consistency check; otherwise, corrections to matrix U are
necessary to improve consistency. After performing the
consistency check, each column of matrix U undergoes
element accumulation, followed by normalization to calcu-
late the weight matrix α of different attributes, namely the
prior weights of physico-chemical, contamination, and
wear information at the criterion level. By repeating this
process, the importance assessment of each indicator can be
conducted in the scheme layer and applied to acquire prior
knowledge weights for lubricant indicators:

CR =
λmax − m

RIðm − 1Þ (9)

where λmax is the maximum eigenvalue of matrixU, m is the
order of matrix U, and RI is a random index associated with
the matrix order.

2) ENTROPY WEIGHT OPTIMIZATION. The knowledge-
related APH approach provides fixed weights for the FFT
model but poses limitations in adaptability when applied to

TABLE I. Relevant rules of evidence synthesis for intermediate events

Evidence M2

Evidence to be fused HSn HSn+1 Θ
Evidence M1 HSn m1ðSnÞm2ðSnÞ m1ðSnÞm2ðSn+1Þ m1ðSnÞm2ðΘÞ

HSn+1 m1ðSn+1Þm2ðSnÞ m1ðSn+1Þm2ðSn+1Þ m1ðSn+1Þm2ðΘÞ
Θ m1ðΘÞm2ðSnÞ m1ðΘÞm2ðSn+1Þ m1ðΘÞm2ðΘÞ
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random lubricant monitoring data. To address this issue, a
data-related optimization strategy is proposed based on
entropy weighting. This strategy takes normalized lubricant
monitoring data as input and calculates the weight βj for
each indicator through information entropy, as defined in
Eq. (10). The larger the information entropy of an indicator,
the higher its weight. Conversely, the smaller the informa-
tion entropy of an indicator, the lower its importance. By
this means, the knowledge-related weights can be dynami-
cally adjusted according to lubricant monitoring data:

βj =
1 − ej

n −
P

n
j=1 ej

(10)

where n is the total number of lubricant indicators.

3) KNOWLEDGE AND DATA INTEGRATION. For com-
prehensive optimization of the FFT model, knowledge-
related weights and data-related weights are integrated,
as defined in Eq. (11):

Pij =
αi + βijPðαi + βijÞ

(11)

where αi represents the knowledge-related weight of the i-th
indicator and βij represents the data-related weight of the
j-th group for the i-th indicator.

Through the measures described above, an FFT lubri-
cant failure diagnosis model can be constructed by integrat-
ing the indicators from physico-chemical, contamination,
and wear attributes. Furthermore, model parameters are
optimized using the knowledge and data-integrated strategy
for adaptive diagnosis of lubricant failures.

III. VERIFICATION AND
APPLICATIONS

For verification, the constructed FFT model is tested with
actual lubricant degradation data from a fatigue test of
harmonic reducer. Subsequently, the method is applied
to the evaluation of aero-engine lubricants.

A. VERIFICATION

1) DATA ACQUIREMENT. A harmonic reducer fatigue
tester is adopted to obtain full-length lubricant degradation

samples, as shown in Fig. 3. The harmonic reducer consists
of three core components: the rigid gear assembly, the
flexible gear assembly, and the wave generator assembly.
To accelerate lubricant degradation, the lubricant properties
are artificially modified in accordance with lubricant
replacement standards. Concretely, the high temperature
is adopted to heat the lubricant for aging failure accelera-
tion. Different levels of water contamination and non-
metallic particle pollution are simulated by adding varying
concentrations of water (ranging from 0% to 0.2%) and
silica particles (ranging from 0 to 200 ppm) into the
lubricant, respectively. Moreover, additional iron particles
and high operational load are integrated to accelerate the
wear process. Each lubricant sample is then served as the
lubricating medium of the harmonic reducer to simulate
typical lubricant conditions. Furthermore, a lubricant mon-
itoring system is employed, integrating an online ferrogra-
phy (OFE) sensor, a lubricant physico-chemical (LPC)
sensor, and a particle count (PCO) sensor to acquire six
types of indicators.

All the indicators are listed in Table II. Particularly,
PC-5μm and PC-15 μm are selected to comprehensively
characterize the PC. The reason can be attributed to the fact
that the significance of particles to the contaminant levels
varies with their sizes, where large particles signify a higher
contaminant level. Through accelerated experiments, 274
sets of lubricant condition deterioration data are collected,
encompassing six kinds of samples: normal, aging failure,
wear failure, water contamination, non-metallic particle
pollution, and composite failure samples.

2) RESULT EVALUATION. To validate the effectiveness
of the proposed FFT model, 274 sets of real lubricant
samples are randomly sampled, with 180 sets used for
training and the remaining 94 sets for testing. Diagnostic
results of the testing samples are presented in Fig. 4, where
the true lubricant condition is determined based on expert
experience and oil change standards [25,26]. As can be
observed, the proposed model achieves a diagnostic accu-
racy of 92.6%, demonstrating high consistency with the true
lubricant conditions.

3) OPTIMIZATION STRATEGY VALIDATION. For the
knowledge and data-integrated optimization strategy, a
comparison is made between the FFT model and a new
GD-FFT model, which utilizes a gradient descent (GD)

Fig. 3. Fatigue test rig for lubricant degradation.
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optimization algorithm [33] instead of the integrated opti-
mization strategy. It should be noted that the training
samples and initial parameters for these two models are
consistent. The weight variations applied by the two meth-
ods on the testing samples are visualized in Fig. 5, where
distinctively colored boxes denote the indicator weights
calculated by the integrated optimization strategy, whereas
the red dashed line signifies the weights calculated by the
GD algorithm.

As can be observed from Fig. 5, the proposed inte-
grated optimization strategy, in contrast to the GD algo-
rithm, can adaptively adjust the indicator weights according
to the data variations of testing samples. Furthermore, the
GD-FFT model is applied to evaluate the 94 sets of testing
samples, and its diagnostic accuracy is 85.1%, which is
lower than that of the FFT model. This lower accuracy may
be attributed to the limitation of the GD-FFT model in
dynamically adjusting parameters.

4) ACCURACY COMPARISON. Using the 94 sets of
testing samples, the FFT model is compared with the fuzzy
evidential reasoning (FER) model [34], the SVM model
[12], and the GD-FFT model. Among them, the SVM
model employs nonlinear mapping to transform the sample
space into a high-dimensional feature space and then seeks
an optimal hyperplane to distinguish different lubricant
conditions. For the FER model, multiple lubricant

indicators can be synthesized through fuzzy membership
evaluation and evidence integration for multi-attribute deci-
sion-making of lubricant conditions. The diagnostic accu-
racy of the four methods is presented in Table III. As can be
observed, the proposed FFT model achieves higher recog-
nition accuracy than the comparative models. In particular,
compared to the most popular SVM model, the diagnostic
accuracy has been improved from 73.4% to 92.6%, which
may be attributed to the fact that rule-based reasoning and
integrated optimization strategy are introduced to enhance
the model adaptability.

B. APPLICATIONS

To evaluate the model practicability, the constructed FFT
model is applied to diagnose the lubricants from actual aero-
engines. The tested lubricants are collected from three
operational states of aero-engines, including normal testing,
return-to-factory maintenance, and overhaul. A total of 40
aero-engine lubricant samples are collected from various
locations, including the oil sump, front cavity, accessory
gearbox, etc. Part of the detected data is shown in Table IV.

The 40 sets of aero-engine lubricant samples are input
into the FFT model, and the diagnosis results are illustrated
in Fig. 6. As can be observed, an accuracy of 90.0% has
been achieved, and only four samples are mistakenly
recognized.

Table II. Part of lubricant degradation samples (Note that PC-5 μm represents the count of particles with size>5 μm, and
PC-15 μM represents the count of particles with size >15 μM)

Number
Service time

(h)
Viscosity

(cP)
PC-5 μm
(piece/ml)

PC-15 μm
(piece/ml)

WC
(ppm) WDC PLD

1 7 25.98 38900 3200 29.84 0.12 0

2 11 26.43 12300 400 39.74 0.01 0

3 15 26.36 14400 300 40.01 0.03 0

4 21 26.63 12800 2400 32.98 0.24 0

: : : . : : : : : : : : : : : : : : : : : :

91 61 25.61 273400 45450 31.29 8.15 0.023

92 45 27.20 264750 27050 95.31 8.66 0

93 55 29.30 160050 6000 66.82 8.27 0.019

94 40 29.60 335250 6400 34.06 0.61 0

Fig. 4. Diagnostic results of the testing samples based on the FFT model.
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With the satisfied test results, the FFT model can be
considered as an effective means for assessing lubricant
conditions even with limited samples. Furthermore, the
proposed FFT model can be applied to evaluate different
lubricants, and a small number of failure samples are
required to optimize model parameters for accurate lubri-
cant condition diagnosis. Nevertheless, the proposed FFT
model requires further optimization to accommodate spe-
cial application conditions involving lubricant replacement,
equipment start–stop cycles, and temperature alternating
changes. Lubricant condition prediction provides

Fig. 5. Weights calculated by optimization strategies: (a) physico-chemical indicator weights, (b) contamination indicator weights,
(c) wear indicator weights, and (d) different attribute weights.

Table III. Accuracy comparison of various methods for
lubricant failure diagnosis

Model Accuracy

FFT 92.6%

GD-FFT 85.1%

FER 76.6%

SVM 73.4%

Table IV. Part of the detected data from aero-engine lubricants

Number
Service time

(h)
Viscosity

(cP)
PC-5 μm
(piece/ml)

PC-15 μm
(piece/ml)

WC
(ppm) WDC PLD

1 5 26.53 9600 0 38.39 0.03 0

2 10 26.39 14400 300 39.01 0.02 0

3 15 25.91 16800 1400 38.8 0.01 0

4 20 26.93 13100 900 35.66 0.185 0

5 25 26.99 16300 1200 35.28 0.222 0

: : : . : : : : : : : : : : : : : : : : : :

37 240 24.99 228900 3650 92.82 0.888 0.033

38 260 24.46 301500 13700 94.65 2.368 0

39 285 29.2 314000 65200 34.2 2.96 0

40 300 28.45 251600 52200 34.06 1.776 0.02
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significant support for the predictive maintenance of equip-
ment. Another direction of interest will focus on the re-
maining useful life prediction of lubricants by integrating
time-series monitoring data with degradation mechanisms.

IV. CONCLUSIONS
In this study, an FFT model incorporating rule-based
reasoning has been developed and implemented to diagnose
lubricant failures. The following key contributions have
been made:

An attribute-drivenmodel has been developed: The FFT
model has been embedded to illustrate the logical correlation
from indicators to attributes and lubricant failures.

Knowledge and data have been integrated: The lubri-
cation condition diagnosis model has been designed to fuse
both lubricant analysis knowledge and monitoring data,
effectively addressing the issues associated with small
sample sizes in traditional models.

Diagnostic accuracy has been significantly improved:
Compared to existing representative methods, the proposed
model has enhanced diagnostic accuracy from 73.4% to
92.6%. Further application in aero-engine lubricant diag-
nosis shows an average of 90%.

Overall, this model represents a significant advance-
ment in lubricant failure diagnosis, providing a robust and
adaptable solution for practical applications.
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